首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three experiments were conducted to evaluate ovarian follicular dynamics and functional activity during pregnancy in cattle. In 11 pregnant Charolais cows of Experiment I, size of largest follicle, number of follicles and accumulated follicle size were reduced by day 27 of pregnancy on the ovary bearing the corpus luteum (CL) but not on the non-CL bearing ovary. In experiment II, local attenuation of ovarian follicular development on the CL bearing ovary of seven pregnant heifers was evident compared to the contralateral ovary without the CL. However, in four hysterectomized heifers, follicular development was sustained on both the CL- and non-CL bearing ovaries when CL maintenance was achieved without presence of the uterus or conceptus. In Experiment III, steroidogenic characteristics of the largest and second largest follicles at 17 d postestrus were evaluated for seven pregnant and six cyclic cattle. Follicle by physiological status interactions were detected for both aromatase activity of the follicle and follicular fluid concentrations of estradiol and progesterone. In cyclic cows, the largest follicle had appreciably more aromatase activity than did the second largest follicle; whereas, aromatase activity of the largest follicle from pregnant cows was less than that of cyclic cows. However, in pregnant cows the second largest follicle became the estrogen-active follicle, and this follicle occurred with a higher frequency on the ovary contralateral to the CL-bearing ovary. These changes in aromatase activity were reflected by parallel changes in estrogen concentrations of follicular fluid. The higher progesterone concentration in follicular fluid of the largest follicle in pregnant cows provided further confirmation of their atretic status. In conclusion, during early pregnancy the conceptus and/or uterus ipsilateral to the conceptus appear to secrete compounds which alter local follicular steroidogenic activity and attenuate subsequent follicular growth between 17 to 34 d of pregnancy on the CL-bearing ovary. This local mechanism acting within the ovary may contribute to the antiluteolytic effects of early pregnancy in cattle.  相似文献   

2.
The objectives of this study were to characterize and compare ovarian follicular populations in Gene Pool Control (GPC, randomly selected) and Relax Select line (RS, nine generations of selection for high ovulation rate followed by six generations of random selection) gilts during different stages of the estrous cycle. Thirty-five RS and 23 GPC gilts were allotted randomly within litter for ovary recovery on either d 3, 15 or 19 of the estrous cycle. Surface follicles on the ovaries were classified by size (small, less than 3 mm; medium, 3 to 6.9 mm; large, 7 to 12 mm), and counts were recorded for each ovary. Ovarian weight (OW), number of corpora lutea (CL), follicular fluid volume (FFV) from small, medium and large follicles, residual ovarian weight and follicular fluid weight (FFW) also were recorded. Total numbers of small and medium follicles were greatest on d 15, whereas total number of large follicles and FFW were greatest on d 19. The OW, FFW and follicle numbers of all classes were lowest on d 3. The RS gilts expressed longer interestrous intervals (21.9 vs 20.4 d, P less than .05) and higher ovulation rates (18.5 vs 15.3 CL, P less than .01) than GPC gilts. The left ovary of RS gilts was responsible for most of the ovulation rate advantage (10.3 vs 7.4 CL, P less than .01) Overall, GPC gilts had more total small follicles than RS gilts (P less than .01). The advantage was due primarily to higher numbers of small follicles at d 15.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ovarian follicular growth, function and turnover in cattle: a review   总被引:3,自引:0,他引:3  
Studies in cattle assessing changes in number and size of antral follicles, concentrations of estradiol, androgens and progesterone in serum and follicular fluid, and numbers of gonadotropin receptors per follicle during repetitive estrous cycles and postpartum anestrus are reviewed. The rate of growth of small follicles (1 to 3 mm) into larger follicles increases as the estrous cycle progresses from d 1 to 18 (d 0 = estrus). Size of the largest antral follicle present on the ovary also increases with advancement of the estrous cycle. Most large follicles (greater than 10 mm) persist on the ovarian surface for 5 d or more between d 3 and 13 of the bovine estrous cycle. After d 13, most of these large follicles are replaced more frequently by new growing follicles (turnover) with an increased probability for recruitment of the ovulatory follicle after d 18. More research is needed to determine the time required for growth of bovine follicles from small to large antral size and evoke recruitment of the ovulatory follicle. Factors that regulate selection of the ovulatory follicle are unknown but may involve increased frequency of LH pulses in blood, altered blood flow and(or) changes in intrafollicular steroids and proteins. Quantitative evaluation of ovarian follicles indicated occurrence of consistent short-term changes in fluid estradiol and numbers of luteinizing hormone receptors in cells of large follicles only during the pre-ovulatory period. Presumably, low concentrations of follicular estradiol found during most of the estrous cycle are not due to a lack of aromatizable precursor or follicle-stimulating hormone receptors. Follicular fluid concentrations of progesterone increase only near the time of ovulation. Little is known about changes in follicular growth, turnover and function during postpartum anestrus in cattle. However, preliminary data suggest that the steroidogenic capacity of large follicles changes markedly during the postpartum period.  相似文献   

4.
The characteristics of the major follicular waves (primary and secondary) throughout estrous cycle were studied in 7 healthy Caspian mares (age, 4-15 years; weight, 198.6 ± 0.9 kg) during the breeding season. Ovarian follicular dynamics were monitored by using an ultrasound scanner equipped with a 5-MHz, B-mode, linear-array, rectal transducer throughout 2 complete estrous cycles. The diameters of antral follicles (5 mm) were measured, averaging the narrowest and widest dimensions. To detect follicular wave emergence, the diameter profile of the 3 largest follicles per ovary of each mare was determined without considering day-to-day identity of follicles but with maintenance of distinction between left and right ovaries. The primary waves originated on day 6.4 ± 0.81 (ovulation = day 0) when the mean diameter of ovarian follicles was 9.6 ± 1.05 mm. Divergence between the dominant preovulatory follicle and subordinate follicles occurred on day 13.4 ± 0.81, when the dominant follicle was 18.1 ± 2.67 mm in diameter. The intervals from emergence to divergence and from divergence to ovulation were 7 ± 0.68 and 8.7 ± 0.68 days, respectively. Secondary major follicular waves were not observed during this study. In conclusion, only 1 major follicular wave was detected in a Caspian mare, confirming the data previously described in other equine breeds. It is also indicated that the occurrence of 1 major follicular wave per cycle is a more common phenomena in equine species.  相似文献   

5.
Factors that affect ovarian follicular dynamics in cattle.   总被引:1,自引:0,他引:1  
Studies of ovarian follicular dynamics in cattle may lead to methods for improving fertility, for synchronizing estrus with more precision, and for enhancing superovulatory responses. Within an estrous cycle, two or three large (> 10 mm) follicles develop during consecutive waves of follicular growth. The last wave provides the ovulatory follicle, whereas preceding wave(s) provide follicles that undergo atresia. The life span of large follicles seems to depend on the pulsatile secretion of LH; decreased frequency of LH pulses results in atresia of large follicles. Aromatase activity in the walls of the largest follicles is greatest during the first 8 d of the estrous cycle and decreases by d 12. Steroidogenesis of the largest and second-largest ovarian follicles differs on d 5, 8, and 12 of the estrous cycle. Follicular dynamics are altered by negative energy balance and lactation. The number of large follicles and concentration of estradiol during the preovulatory period differs between postpartum lactating and nonlactating cows. Dietary fats stimulate follicular growth when they are fed to increase energy balance. Administration of bovine somatotropin decreases energy balance and has a differential effect on ovarian follicular responses; growth of the largest follicle does not change, but growth of the second-largest follicle is stimulated by somatotropin. Studies of follicular dynamics in lactating cows demonstrate changes in ovarian function associated with energy balance that may be related to inefficient reproductive performance of cows producing high yields of milk.  相似文献   

6.
This study aimed to investigate the intra- and interovarian relationships among the corpus luteum (CL), the largest follicle (LF) and follicular population in non-pregnant and between the conceptus and ovarian structures in pregnant ewes. In experiment 1, the follicular and luteal structures were examined in 538 reproductive systems of non-pregnant Awassi ewes. The follicular population was categorised into small (SF), medium (MF) and large (LF) groups. Inter-relationships between CL and follicular population and between LF and subordinate follicles were determined. In experiment 2, the location and number of conceptuses were identified and correlated with the ovarian structures in 58 reproductive systems of pregnant ewes. Effects of pregnancy status, stage of pregnancy, pregnancy side and conceptual number on follicular population were determined. The results showed that the right ovary was more active than the left ovary. CL had intraovarian positive effect on the number of medium and large follicles. LF had no local suppressive effect on the subordinate follicles. Side and stage of pregnancy and the conceptual number did not affect the follicular population. Accordingly, it can be concluded that the LF has no local suppressive effect on the subordinate follicles. The CL has intraovarian positive effect on the follicular population. Follicular population does not show remarkable changes during the first term of pregnancy. The present study probably provides information which may help in the understanding of the ovarian dynamics during pregnancy in sheep.  相似文献   

7.
Acid and alkaline phosphatase in bovine antral follicles   总被引:1,自引:0,他引:1  
Acid and alkaline phosphatases were measured in the follicular fluid of 766 individual follicles from 96 cows. Follicles were obtained by bilateral ovariectomy or at slaughter from animals at various stages of the estrous cycle and pregnancy. Mean follicle size varied with the physiological state of the cow (P less than .0001). Acid phosphatase activity (U/microliters) varied inversely with follicle size (P less than .001) but not with stage of the estrous cycle or gestation. Total acid phosphatase activity per follicle increased with follicle size (P less than .05). Neither acid phosphatase nor alkaline phosphatase concentration was associated with atresia. Alkaline phosphatase activity (U/microliters) was greater in the smallest follicles (less than 50 microliters) than in other size groups (P less than .0001). Alkaline phosphatase activity (U/microliters) was greater (P less than .05) during the preovulatory phase of the estrous cycle than during other phases. A high concentration of follicular fluid phosphatases cannot be used as a marker for atresia but is characteristic of healthy small antral follicles.  相似文献   

8.
To investigate some biochemical changes during bovine follicle development, ovaries were obtained from cyclic heifers (7 to 11 heifers/d on each day of the 21-d estrous cycle; N = 152). Follicular fluid from the two largest follicles from both ovaries and a pool from small follicles (N = 30/cow) were collected from each animal and analyzed for ionic, enzymatic and endocrine changes in relation to day of the estrous cycle, follicle size, rank and atretic or growing status. Follicular fluid alkaline phosphatase activity and ascorbate concentrations were highest in all follicular sizes during the earlier portion of the estrous cycle (d 1 to 12; P less than .05), then decreased to the lowest levels (d 13 to 21). As follicular size (diameter) increased lactate dehydrogenase (LDH), acid and alkaline phosphatase activity was reduced in follicular fluid (P less than .05). Alkaline phosphatase and LDH activity tended to be increased in atretic follicles (P less than .10), and was correlated with increased progesterone and androgen concentrations of follicular fluid (r = .4, P less than .05). Both albumin and total protein concentrations decreased as follicular diameter increased (P less than .05). Sodium concentrations in follicular fluid were greater in growing-antral than atretic follicles, and increased with follicular enlargement (P less than .05). Follicular potassium concentrations increased as the estrous cycle progressed (P less than .05), and tended to be elevated in atretic follicles (nonsignificant). Both Ca and Mg concentrations increased with follicular enlargement (P less than .05). Dehydroepiandrosterone and testosterone were the predominant androgens in follicular fluid (androstenedione, the lowest concentration); their concentration decreased with follicle development (P less than .05), but were quite variable. Estradiol was increased in growing follicles (P less than .01). Estrone and estradiol concentrations increased as ovulation approached, particularly in small follicles (less than or equal to 4 mm diameter). Changes of biochemical components found in follicular fluid that relate to the growth and atresia process may provide a more sensitive and accurate method to classify follicle status, and thus aid in understanding the complexity of events associated with maturation of the bovine follicle and oocyte.  相似文献   

9.
The effects of progesterone (P4) on follicular growth and fertility in ewes were examined. In Experiment 1, 22 ewes received either one or three packets of P4 (5 g/packed) or an empty packet subcutaneously (sc) from Days 5 to 15 of the estrous cycle (estrus = Day 0). On Day 6, P4-treated ewes received 12.5 mg of prostaglandin F2α. Follicles ⩾3 mm in diameter were observed via transrectal ultrasonography daily from Day 4 through estrus, corpora lutea (CL) were observed 5 to 7 d after estrus. Ewes with low (LOW; ⩽1 ng/ml; n = 5), intermediate (MED; > 1 and <2 ng/ml; n = 10), or normal (NOR; ⩾2 ng/ml; n = 7) P4 in jugular plasma on Days 7 through 15 differed in follicular development. The largest follicle at estrus was larger in ewes with LOW vs. MED and NOR P4 (7.8 ± 0.3 vs. 6.9 ± 0.2 mm; P < 0.05). Treatments differed in proportions of multiple-ovulating ewes, in which the oldest ovulatory follicle was first observed before Day 10 (LOW: 3 of 3, MED: 6 of 10, NOR: 0 of 5, respectively; P < 0.05). Estradiol was higher early in the treatment period in LOW ewes than in MED and NOR ewes (day × treatment; P < 0.05). In Experiment 2, ewes received 5 mg of P4 in corn oil (low progesterone [LP]; n = 51) or 2 ml of corn oil (CON; n = 49) sc every 12 hr on Days 6 through 14 of the estrous cycle before mating. LP ewes received 15 mg of prostaglandin F2α on Day 6. Mean serum P4 on Days 7 through 15 was 0.6 ± 0.1 ng/ml in LP and 1.9 ± 0.1 ng/ml in CON ewes. Eleven LP and 12 CON ewes were scanned daily from Day 4 through mating, and in all ewes (n = 93), CL were counted 10 d after mating and embryos were counted at 25, 40, and 60 d of gestation. In multiple-ovulating ewes, day of cycle of appearance was earlier for the oldest (Day 6.1 ± 0.8 vs. 10.4 ± 0.8) but not second oldest (Day 11.7 ± 1.0 vs. 12.2 ± 0.9) ovulatory follicles in LP compared with CON ewes. The conception rate was lower in LP (72%) than in CON ewes (98%; P < 0.01). However, numbers of CL 10 d after mating, and in pregnant ewes, numbers of embryos 25 d after mating and lambs born, did not differ with treatment. In summary, low P4 increased the size of the largest follicles and the age of the oldest ovulatory follicles. Embryos resulting from the ovulation of older and younger follicles in the same ewe did not differ in their ability to survive.  相似文献   

10.
Follicular development was examined by transrectal ultrasound scanning in 12 heifers during 51 oestrous cycles. Internal diameters of largest and second largest follicles and the number of smaller ovarian vesicles were determined. Diameters of dominant follicles showed inverse growth pattern to the second largest follicles and numbers of smaller follicles (greater than or equal to 5 mm). There was an increase in diameters of the largest follicles from beginning of dioestrous to day 9 and from time of luteolysis to ovulation, which was coincident which a decrease in diameters of the second largest follicles and numbers of smaller ovarian vesicles. Smaller follicles increased in count and diameter, when the dominant follicle achieved its largest dimension and started to regress. The cyclic corpus luteum had no local influence on diameters of the largest and second largest follicles in the ovary bearing the corpus luteum versus the contralateral ovary. Internal diameters of oestrous follicles measured 14.7 +/- 2.6 mm in heifers and 15.3 +/- 2.9 mm in cows at the day of oestrous (p greater than 0.05; t-test). Dioestrous follicles with similar size were detected during various stages of the oestrous cycle. The diameter of the dominant follicle is not an accurate criterion for determining the stage of the oestrous cycle.  相似文献   

11.
采用S-P免疫组织化学法通过CD34抗体标记血管内皮细胞,测定绵羊发情周期的0、5、9、12、15d的卵巢内原始卵泡、初级卵泡、次级卵泡、近成熟卵泡、卵巢间质微血管的分布,并分析微血管密度(MVD)的变化规律,探讨绵羊发情周期不同时期各级卵泡微血管生成状态及卵泡微血管生成与卵泡发育的关系。结果表明,绵羊的原始卵泡周围无独立血管网,而初级卵泡的卵泡膜附近开始出现微血管,其MVD值为3.60±0.89,次级卵泡周围微血管密度值显著增高(P〈0.05),MVD值为6.80±0.84。大窦腔卵泡0、5、9、12、15dMVD分别为15.80±0.84、23.00±2.30、22.40±2.41、21.20±2.28、34.80±2.39。0~5dMVD值显著升高(P〈0.05),而5、9、12dMVD值差异均不显著(P〉0.05),12~15dMVD值又明显升高(P〈0.05)。卵巢间质MVD值在各个发情周期各个时期差异均不显著(P〉0.05)。说明绵羊在发情周期内卵泡的血管新生是从初级卵泡开始的,并且卵巢的血管新生主要发生在卵泡上,而卵巢间质无血管新生现象。  相似文献   

12.
13.
We examined the gene and protein levels of tumor necrosis factor (TNF)-α, its receptors (types I and II, designated TNF-RI and TNF-RII, respectively), TNF receptor-associated factor 2 (TRAF2) and morphological features in the porcine corpus luteum (CL), on Days 13 and 17 (Day 0 = the last day of estrus) of the estrous cycle or of early pregnancy. Gene expression levels of TNF-α, TNF-RI, TNF-RII and TRAF2 were unaffected by the day or reproductive status. TNF-α concentration was significantly higher in the CL on Day 17 of pregnancy than on Day 13 of pregnancy and on day 17 of the estrous cycle. The TNF-RI protein level was significantly higher in the CL on Days 13 and 17 of pregnancy than those of the estrous cycle, significantly increasing on Day 17 compared with those on Day 13 in pregnancy. In relation to TNF-RII protein levels, although there were no change during pregnancy, there was a tendency (P?=?0.0524) to up-regulate as pregnancy proceeded. In estrous cycle, TNF-RII protein levels decreased significantly as luteolysis proceeded. TRAF2 protein level was significantly higher in the CL on Days 13 and 17 of pregnancy than during estrous. There were few apoptotic bodies in the CL between Days 13 and 17 of pregnancy than during esrous. There were few apoptotic bodies in the CL between Days 13 and 17 of pregnancy. The number of apoptotic bodies was much greater than the CL on Day 17 of the estrous than those of pregnancy. Thus, the TNF-α and TNF-RI and TNF-RII pathways including the TRAF2 protein, known to control of cell differentiation, tissue renewal and apoptosis, might participate in maintaining the porcine CL during early pregnancy.  相似文献   

14.
A serial ultrasonographic study was conducted on nine jennies aged 5–15 years from January to April 2008 with the objective of studying ovarian follicular dynamics and estrus manifestations under controlled management. Ovarian follicular activity was determined from the number and size distribution of follicles, length of interovulatory interval (IOI), growth rate of preovulatory follicles, diameter of follicles at the onset of estrus, and incidence of ovulation. Estrus manifestations were characterized using length of estrus and estrous cycle. The mean (±SD) number of follicle detected per ovary was 5.45?±?2.3 (range, 1–16) with sizes ranging from 2.9 to 44 mm. The mean (±SD) size of follicle encountered at the onset of estrus was 25.9?±?3.7 mm (range, 20.9–34.4) while that of the preovulatory follicles at ?1 day before ovulation was 36.81?±?3.78 mm. The mean (±SD) IOI, estrus, and estrous cycle length were 25.4?±?3.6, 7.9?±?2.9, and 24.2?±?7.4 days, respectively. The mean (±SD) growth rate of the preovulatory follicle after the day of divergence was 1.9?±?0.3 mm/day. Serum progesterone profile followed the same patterns of ovarian dynamics with maximum values being detected during midluteal phase. Serum progesterone assay revealed blood progesterone profiles of <1.0 ng/ml during estrus and up to 11 ng/ml during midluteal phase with a pattern following follicular dynamics. Body condition of the study jennies steadily increased and was positively correlated (r?=?0.52, p?<?0.001) with the diameter of the preovulatory follicle. In conclusion, the ultrasonic evaluation has revealed that follicular dynamics of jennies were generally related with body condition which might have been influenced by the type of management.  相似文献   

15.
Collection efficacy and in vitro embryo developmental ability of oocytes obtained from Duroc‐breed ovary donors at different stages of the estrous cycle (days 6, 12 and 16 after estrus) were performed. The numbers of collected oocytes did not differ significantly among the different estrous cycle groups (total 72–90 oocytes per gilt). However, the blastocyst rates of oocytes collected on days 12 and 16 (9.2% and 19.4%, respectively) were significantly higher than those on day 6 (1.1%). More oocytes were obtained on day 16 from small follicles (<2 mm in diameter; 85.3 oocytes per gilt) than from medium‐sized (≥2–<6 mm) and large (≥6 mm) follicles (17.5 and 12.8 oocytes, respectively). The blastocyst rates in both the medium‐sized and large follicle groups (20.0% and 19.2%, respectively) were significantly higher than that in the small follicle group (6.3%). The blastocyst cell numbers in both the medium‐sized and large follicle groups (39.4 and 43.3 cells, respectively) were significantly higher than that in the small follicle group (30.6 cells). The results suggest that oocyte collection from cycling Duroc pigs can be carried out efficiently from the late luteal to follicular stage. Those oocytes collected from medium‐sized and large follicles show better embryo development.  相似文献   

16.
Previous research indicated that the size of the ovulatory follicle at the time of insemination significantly influenced pregnancy rates and embryonic/fetal mortality after fixed-timed AI in postpartum cows, but no effect on pregnancy rates was detected when cows ovulated spontaneously. Our objective was to evaluate relationships of fertility and embryonic/fetal mortality with preovulatory follicle size and circulating concentrations of estradiol after induced or spontaneous ovulation in beef heifers. Heifers were inseminated in 1 of 2 breeding groups: (1) timed insemination after an estrous synchronization and induced ovulation protocol (TAI n = 98); or (2) AI approximately 12 h after detection in standing estrus by electronic mount detectors during a 23-d breeding season (spontaneous ovulation; n = 110). Ovulatory follicle size at time of AI and pregnancy status 27, 41, 55, and 68 d after timed AI (d 0) were determined by transrectal ultrasonography. Only 6 heifers experienced late embryonic or early fetal mortality. Interactions between breeding groups and follicle size did not affect pregnancy rate (P = 0.13). Pooled across breeding groups, logistic regression of pregnancy rate on follicle size was curvilinear (P < 0.01) and indicated a predicted maximum pregnancy rate of 68.0 +/- 4.9% at a follicle size of 12.8 mm. Ovulation of follicles < 10.7 mm or > 15.7 mm was less likely (P < 0.05) to support pregnancy than follicles that were 12.8 mm. Ovulatory follicles < 10.7 mm were more prevalent (28% of heifers) than ovulatory follicles > 15.7 mm (4%). Heifers exhibiting standing estrus within 24 h of timed AI had greater (P < 0.01) follicle diameter (12.2 +/- 0.2 mm vs. 11.1 +/- 0.3 mm) and concentrations of estradiol (9.9 +/- 0.6 vs. 6.6 +/- 0.7) and pregnancy rates (63% vs. 20%) than contemporaries that did not exhibit behavioral estrus. However, when differences in ovulatory follicle size were accounted for, pregnancy rates were independent of expression of behavioral estrus or circulating concentration of estradiol. Therefore, the effects of serum concentrations of estradiol and behavioral estrus on pregnancy rate appear to be mediated through ovulatory follicle size, and management practices that optimize ovulatory follicle size may improve fertility.  相似文献   

17.
Two experiments were conducted to determine the effect of exogenous gonadotropins on follicular development in gilts actively immunized against gonadotropin releasing hormone (GnRH). Four gilts, which had become acyclic after immunization against GnRH, and four control gilts were given 1,000 IU pregnant mare serum gonadotropin (PMSG), while four additional control gilts were given saline. Control animals were prepuberal crossbred gilts averaging 100 kg body weight. Control gilts given saline had ovaries containing antral follicles (4 to 6 mm in diameter). Control gilts given PMSG exhibited estrus and their ovaries contained corpora hemorrhagica and corpora lutea. PMSG failed to stimulate follicular growth in gilts immunized against GnRH, and ovaries contained regressed corpora albicantia and small antral follicles (less than 1 mm in diameter). Concentrations of luteinizing hormone (LH) and estradiol-17 beta (E2) were non-detectable in gilts immunized against GnRH and given PMSG. In the second experiment, five gilts actively immunized against GnRH were given increasing doses of PMSG every third day until unilateral ovariectomy on d 50. PMSG failed to stimulate follicular growth, and concentrations of follicle stimulating hormone (FSH), E2 and LH were not detectable. Six weeks later, gilts were given a booster immunization and then were given 112 micrograms LH and 15 micrograms FSH intravenously every 6 h for 9 d. The remaining ovary was removed on d 10. Although LH and FSH concentrations were elevated, administration of gonadotropins did not stimulate follicular growth or increase E2 concentrations. These results indicate that neither PMSG or exogenous LH and FSH can induce E2 synthesis or sustain follicular development in gilts actively immunized against GnRH.  相似文献   

18.
Effects of recombinant bovine somatotropin (rbST) on ovarian and uterine function and the production of components of the insulin-like growth factor (IGF) system were examined during the period of maternal recognition of pregnancy in cattle. Lactating dairy cows were treated with 25 mg/d rbST (n = 8) or saline (n = 8) for 16 d after estrus. Ovaries, uteri, and conceptuses were collected on Day 17 after estrus. The length (millimeters) of the conceptus was recorded. The concentration of IGF-I and the content of IGF-binding proteins (BP) in uterine flushings were determined. Corpora lutea (CL) were weighed, and the number of follicles (⩾2 mm in diameter) were counted. Follicular fluid from the largest and second-largest follicles was assayed for the concentration of IGF-I, IGFBP, progesterone, and estradiol. The length of the conceptus and the total amount of IGF-I in uterine fluid were similar for rbST and control. Recombinant bST increased 1) the weight of the CL, 2) the number of largest follicles (10 to 15 mm in diameter), 3) the concentration of IGF-I in the follicular fluid, 4) the follicular fluid content of IGFBP of the largest estrogenic follicle, and 5) the quantity of IGFBP in uterine flushings. The concentration of progesterone in the follicular fluid tended to be increased in rbST-treated cows, whereas the concentration of estradiol was similar to that of control cows. The concentration of progesterone in plasma was similar for rbST compared with control. In conclusion, the administration of rbST in lactating dairy cows for 16 d after estrus did not alter the growth of the conceptus collected on Day 17. The greatest responses to rbST were found within the ovary, where rbST increased the weight of the CL and altered the amount of IGF-I and IGFBP in the follicular fluid.  相似文献   

19.
Relatively few studies have been reported regarding the reproductive physiology of female Thai native cattle. Therefore, the objective of the present study was to evaluate the follicular dynamics and concentrations of follicle stimulating hormone (FSH), estradiol (E2) and progesterone (P4) during the estrous cycle in Thai native heifers (TNH) and to compare obtained results with those of European and Indian cattle breeds previously reported. For the detection of estrus, ovaries of all 20 heifers were examined twice daily (12 h intervals) by ultrasonography for three consecutive estrous cycles. From data of 60 estrous cycles (n = 60 estrous cycles from 20 heifers), it was found that 14 (70%) and 6 heifers (30%) had two (42 estrous cycles collected from 14 heifers) and three follicular waves (18 estrous cycles collected from 6 heifers), respectively. The days when estrus was detected, interovulatory intervals, life‐spans of corpus lutea (CL), and days for growing and regression of CLs were shorter in the two follicular waves than those in the three follicular waves (P < 0.05). In both two and thre follicular waves, larger maximum diameters and higher growth rates of the dominant follicle (DF) in an ovulatory wave were observed than those of the preceding waves without ovulation (P < 0.05). There was a progressive increase in follicular size and FSH and E2 production during follicular growth in each follicular wave. In addition, the FSH and E2 peak concentrations during the ovulatory wave were higher than those of the anovulation waves (P < 0.05). Moreover, although the ovarian follicular dynamic patterns in Thai native heifers were similar to those previously reported for European and Indian cattle breeds, the diameter of the largest preovulatory follicle (OF), subordinate follicles (SF) and CLs were smaller than those in European and Indian cattle breeds. In conclusion, when compared with European and some breeds of Indian cattle, the length of interovulatory intervals was shorter, and the sizes of dominant SF and CLs were smaller in Thai native heifers.  相似文献   

20.
The aim of the study was to investigate the histological characteristics and steroid concentrations in follicular fluid of different populations of follicles at different stages of development, during pregnancy and the oestrous cycle in cows. Follicles from ovaries collected at a slaughterhouse were allocated into three size categories (small, 2–5.9 mm; medium, 6–13.9 mm; and large, 14–20 mm) in pregnant and non-pregnant cows. Slices were stained with HE and PAS for histological analysis. Follicular fluid was pooled according to size and pregnancy status and estradiol, testosterone and progesterone concentrations in follicular fluid were determined by RIA. Characteristics of healthy follicles did not differ, regardless of follicle size or pregnancy status. Total histological atresia was significantly higher in pregnant cows than in non-pregnant cows (p < 0.05). Estradiol increased and testosterone decreased significantly, while follicles increased in size, in both non-pregnant and pregnant cows (p < 0.05). Nonpregnant cows had the highest estradiol values in follicles of all sizes. Medium and large follicles from pregnant cows showed the lowest testosterone concentration (p < 0.05). Progesterone levels increased with follicle size only in non-pregnant animals. In large follicles, progesterone concentration was significantly higher in non-pregnant cows than in pregnant cows (p < 0.05). Considering steroid concentration and histological findings, most large follicles might be atretic during pregnancy in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号