首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organic carbon content in developed soddy-podzolic soils increased during the overgrowing of abandoned plowland with meadow and forest vegetation. The highest carbon content was recorded at the stage of 40–50-year-old forest, which was related to the largest input of organic matter into the soil and the intense litter decomposition during this period. A decrease in the soil carbon content was observed during the development of forest vegetation on the long-term hayfields in place of the former croplands, because the humus content in the lower part of the old-arable horizon decreased significantly. The spatial variability in the distribution of organic carbon in the soils increased with the development of forest biogeocenoses.  相似文献   

2.
[目的]研究龙川江流域6种不同植被类型对紫色土腐殖质(胡敏酸、富里酸、胡敏素)和土壤养分(总磷、速效磷、总氮、碱解氮)剖面分布特征的影响,为该地区保持土壤肥力提供科学依据。[方法]采用锯齿形布点法,采集紫色土表层至30 cm深度的3个土层紫色土样品,用3次4分法分离多余样品,并测定相应指标。[结果]总磷、速效磷、总氮、碱解氮的含量和腐殖质、胡敏素、胡敏酸、富里酸碳量随土壤深度的增加而减小,枯枝落叶层显著高于其他层(地下0—10,10—20,20—30 cm),不同植被类型土壤无显著差异。果园土壤腐殖质及其组成显著高于桉树林覆盖土壤,表现为果园落叶阔叶林暖温性针叶林针阔混交林灌丛桉树林。土壤腐殖质各组分之间均存在极显著正相关关系,腐殖质组成与土壤有机质、总磷、速效磷、总氮、碱解氮均存在显著正相关关系。[结论]果园和落叶阔叶林下土壤腐殖质及其组分显著高于其他植被类型土壤,腐殖质组分含量与土壤理化性质之间呈极显著正相关。  相似文献   

3.
The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils (Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil (Luvic Phaeozem)), and forest-steppe (gray forest soil (Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.  相似文献   

4.
The aim of this work was to investigate the potential of forest humus forms as indicators of soil C storage. To this purpose, Mediterranean forest soils in Southern and Central Italy were examined. Sites differed for elevation, climate, parent material and vegetation conditions, while summer drought was the common ecological factor. A morpho-functional criterion, based on holorganic layers thickness and A horizon properties, was used to classify humus forms, which ranged from Dysmoder to Eumull. Such variability allowed understanding of factors influencing organic matter storage. The relations between carbon stock and humus form were investigated for the topsoil layer (0–20 cm), which was supposed to contain the soil C pools most sensitive to climate change. We found that humus forms can be grouped in statistically different populations, with respect to topsoil C stocks. The use of A horizon structure was the main diagnostic criterion and represented the most effective approach to humus classification in Mediterranean conditions. It appears that humus forms have a clear potential as indicators of organic carbon status in Mediterranean forest soils.  相似文献   

5.
The soils under two meadows overgrown by a small-leaved forest that are no longer used for agricultural purposes were studied. The changes in the plant cover resulted in an increase in the soil acidity, a decrease in the humus content, and a transformation of its composition; the content of fulvic acids increased. The most essential modifications to the soils were related to alterations in the density of the birch forest. The degree and rate of these changes depended on the local environmental conditions, such as the soil texture, the depth of the moraine layer, and the dynamics of vegetation. The dynamics of acidity were displayed to a greater degree in the sandy soils, while the dynamics of the humus content and its reserves were evidenced in the heavy-textured soils.  相似文献   

6.
A study was carried out on some basic characteristics of the organic matter in the surface horizons of soils from the two different geological (calcareous and acid metamorphic rocks) and ecological systems under a Mediterranean climate in Southeast Spain. The results show some noticeable differences in soil organic matter composition. This is likely due to typical Mediterranean climate and well adapted vegetation. There is a tendency towards a greater stability for the soil humus formed under slightly alkaline soil in comparison to the slightly acidic environment. The samples taken from the latter environment have a higher content in free organic matter, a lower content in total extractable humin and a greater relative proportion of aliphatic chains and lignin in the humic acids. The results also suggest some differences caused by the type of vegetation (forest and scrubland ecosystems) in the soil humus chemistry, with a more obvious negative effect under reforestations with species of Pinus in an acidic soil environment (a higher content in free organic matter, lesser presence of fungal-derived perylenequinonic pigments in the humic acids, and a higher content in little evolved forms of nitrogen and lignin in the humic acids). In general the organic matter under scrubland and Quercus vegetation is more decomposed and the humus is more evolved than under Pinus vegetation.  相似文献   

7.
周红  何欢  肖蒙  何忠俊 《土壤学报》2021,58(4):1008-1017
云南省森林生态系统在全球碳循环及平衡中具有不可替代的作用,但其森林土壤腐殖质组分特征及其影响因素尚不十分清楚。基于云南省不同林区采集的88个表层土样,通过描述性统计和回归分析量化了海拔、土壤类型、坡向和坡度、年均温和年降水量对土壤腐殖质组分分布影响的相对重要性,探讨云南省森林土壤腐殖质组分分布特征。结果表明:云南省森林土壤表层有机碳含量为8.40~199.73 g·kg~(–1),平均含量为51.37 g·kg~(–1),土壤可提取腐殖质碳含量为2.54~84.02 g·kg~(–1),平均含量为24.52 g·kg~(–1);胡富比均值小于1,土壤腐殖质聚合度较低;土壤腐殖质组分分布特征总体表现为滇西北、滇东北部较高,滇中、滇南部较低;土壤类型、海拔、年均温是影响云南省森林土壤腐殖质组分含量的主导因子,各因素的贡献程度总体呈现为土壤类型最高,其次是年均温、海拔,这说明土壤类型对森林表层土壤腐殖质的积累起重要作用。  相似文献   

8.
 The nonlinear model of the carbon cycle in soils (NAMSOM) was used to analyze the sensitivity of soil organic matter levels to variations in carbon turnover parameters. We were able to predict the sensitivity of soil organic matter levels to variations of climate-dependent carbon turnover parameters, which allowed us to compare the sensitivity of soil organic matter levels to net primary productivity of plant communities and plant debris decomposition rate constants across the range of soils in the European part of Russia. The results indicate that meadow steppes show the lowest sensitivity to variations of these parameters. In passing from meadow steppes to the northern taiga and to semideserts, the sensitivity increases. In general, soil organic matter levels of boreal forest ecosystems are about 2–3 times more sensitive to input and decomposition of plant debris than to decomposition of humus. In subboreal grassland ecosystems the sensitivity to humus decomposition increases and becomes closer to the degree of sensitivity shown by soil organic matter levels to variations of productivity and decomposition of plant debris. The proposed method may be useful for predicting the response of ecosystems to climatic change. Received: 1 December 1997  相似文献   

9.
Conversion of meadow and forest ecosystems to agricultural land generally leads to changes in soil structure. This comparative study presents the composition and stability of structural aggregates in humus horizons (0–30 cm) of noncarbonate silty‐clay Fluvisols in the Kolubara River Valley, W Serbia. Aggregates collected from under a native forest were compared to aggregates from meadows and arable fields which underwent crop rotation for > 100 y. The results show that size distribution and stability of structural aggregates in the humus horizons of arable soil are significantly impaired due to long‐term anthropogenization. In the humus horizons, the content of the agronomically most valuable aggregates (0.25–10 mm) decreased by a factor of ≈ 2, from 68%–74% to 37%–39%, while the percentage of cloddy aggregates (>10 mm) increased by a factor of ≈ 2, from 23%–31% to 48%–62%, compared to forest aggregates. The long‐term‐arable soil had significantly (p < 0.05) lower aggregate stability, determined by wet sieving, than meadow and forest soils. The lowest aggregate stability was found in aggregates > 3 mm. Their content is ≈ 2.5–3 times lower in arable soil (13%–16%) than in forest soil (32%–42%) at a depth of 0–20 cm. The largest mean weight diameters of dry aggregates (dMWD) with a range between 12.6 and 14.7 mm were found in arable soil, vs. 9.5–9.9 mm in meadow and 6.5–8.3 mm in forest. The arable soil had significantly lower mean weight diameters of wet‐stable aggregates (wMWD) and a lower structure coefficient (Ks) than forest and meadow soils. The dispersion ratio (DR) of arable soil was significantly higher than that of forest and meadow soils. Forest and meadow showed a significantly higher soil organic‐matter content (SOM) by 74% and 39%, respectively, compared with arable soil, while meadow uses decreased the SOM content by 57% compared with forest at a depth of 0–10 cm. In conclusion, the results showed that long‐term conventional tillage of soils from natural forest and meadow in the lowland ecosystems of W Serbia degraded soil aggregate–size distribution and stability and reduced SOM content, probably resulting in lower productivity and reduced crop yields.  相似文献   

10.
A significant change in the properties of mountainous meadow soils of the Ai-Petri Plateau has taken place under the impact of artificial plantations of pine, birch, and larch created in the Crimean highlands in the middle of the 20th century. In comparison with the soils under meadow vegetation, the soils under forest vegetation are characterized by an increased content of large aggregates, a decrease in the humus content, and an increase in the soil acidity and in the iron content of the organomineral compounds. The most dramatic changes in the structural state of the soils are observed under the plantations of pine. The changes in the acidity and the iron content are most pronounced under larch stands. The decrease in the humus content is observed under all tree species. Thus, in the soil layer of 0–10 cm under pine, birch, and larch stands, the content of Corg is 1.2, 1.3, and 1.4 times lower, respectively, than that in the soil under meadow vegetation.  相似文献   

11.
Boreal forest soils have the potential to sequester large amounts of carbon by accumulating charcoal from fire. Some suggest that sequestration rates could be large enough to account for some of the missing sink in the global CO2 budget, but further data on soil charcoal pools are necessary to adequately develop boreal carbon budgets under a changing climate and fire regime. The primary objective of this study was to determine the amount of charred wood in surface mineral soil horizons (Ah) of the Boreal Transition of Saskatchewan, a fire-prone grassland forest ecotone region of western Canada. A second objective was to use the charcoal data to infer vegetation dynamics and the development of these Ah horizons as a function of parent material type, i.e. glacio-fluvial, glacio-lacustrine and glacial till. The latter objective served to provide information in regards to future vegetation shifts and ecosystem C budgets of Boreal Plain ecosystems under climatic warming. The carbon fraction measured as charcoal is an important component of organic matter in Ah horizons of Chernozemic soils in Saskatchewan and differs from the classical model of humus fractions in Chernozems which suggests that it is a system created from microbial degradation of root litter only. The carbon sequestered as charcoal within the whole ecoregion was estimated at 36.1 Tg, which is the lower limit of the global annual rate of charcoal accumulation in terrestrial environments estimated from experimental fires. Charcoal pools were consistently lower in the fluvial soils relative to the lacustrine and till soils. We suggest a model where dry conditions and low water availability prevailing under the coarser fluvial soils during the Holocene favoured the dominance of low productivity herbaceous vegetation that led to a high ash to charcoal production ratio from fire and to the development of relatively thick Ah horizons through below ground additions of organic matter from root decay. We propose that the more available water in lacustrine and till soils favoured the growth of trembling aspen which, through less frequent/intense fires relative to grasslands and incomplete burning of the woody material, led to high charcoal accumulation rates in soil. The development of thick Ah horizons in lacustrine soils likely occurred during a warm and dry period of the early Holocene (i.e. the hypsithermal) when herbaceous vegetation invaded forested land or during dry spells in the mid to late Holocene (e.g. the Medieval Warm Period) when opening of forest canopies occurred, thus augmenting light transmission to the forest floor and favouring the growth of herbaceous vegetation in the understory. Such events did not create deep Ah horizons in the tills soils as a consistent rock impediment near the surface limited the penetration of understory roots at greater depth. These results suggest that fluvial sites my be the first shifting to herbaceous vegetation in the future due to climatic warming, followed by till sites and then lacustrine sites.  相似文献   

12.
The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0–10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.  相似文献   

13.
有机碳是形成土壤团聚体的重要物质,植被群落通过有机残体的输入增加土壤有机碳含量,从而通过影响团聚体的形成而影响土壤结构。为探究不同植被群落对土壤结构改良的意义,对黄土丘陵区森林带和草原带的不同植被群落土壤团聚体中有机碳组分进行了研究。结果表明:(1)研究区域森林带土壤有机碳含量大于草原带,森林带植被群落土壤总有机碳含量大小顺序为:辽东栎群落>人工刺槐群落>狼牙刺群落,草原带植被群落土壤总有机碳含量大小顺序为:人工沙棘群落>达乌里胡枝子+茭蒿群落>铁杆蒿+达乌里胡枝子群落;(2)土壤活性有机碳和腐殖质碳占土壤总有机碳的比例在两种植被带之间基本相同,相同植被群落土壤活性有机碳占土壤总有机碳的比例高于腐殖质碳占总有机碳的比例;(3)森林带土壤>0.25 mm团聚体含量显著高于草原带土壤>0.25 mm团聚体含量,各种形态的有机碳随着土壤团聚体粒级的增大有机碳含量呈先增加后减少或者随着团聚体粒级的增大而增大的趋势,2~0.25 mm和<0.25 mm团聚体中有机碳含量最高;(4)草原带每种植被群落土壤活性有机碳含量空间差异性较大,辽东栎群落各种形态土壤有机碳含量的空间差异性都较大,<0.25 mm团聚体腐殖质碳含量大于其他粒径;(5)草原带人工沙棘群落土壤各种形态有机碳在土壤剖面上的含量差异很小,其他各植被群落0~10 cm土层土壤有机碳含量均大于10~20 cm土层。  相似文献   

14.
The influence of forest fires on the properties of taiga brown, gley taiga brown, and alluvial bog soils widespread in the area of the Norskii Reserve (the Amur River basin) was studied. During several years after the fire, the humus content increased, especially in the soils subjected to fires of high intensity. In the soils of steep slopes, the humus content decreased due to damage to the forest vegetation and activation of lateral runoff after the fire. As a rule, in the soils subjected to fire, the C ha-to-C fa ratio increased and correlated with the fire intensity. Some relationships between the forest fires and the acid-base properties of the soils were revealed. After the fires, the pH values often became higher. The stronger the fire, the higher the pH values. The stony soils differed from the other ones, since the reaction of their upper horizons turned out to be more acid after the fires. The analysis of the authors’ and literature data showed that the pyrogenic changes of some soil properties have been poorly studied and need further investigation, including their geographical aspects.  相似文献   

15.
The influence of bioclimatic conditions related to the elevation above sea level on the quantitative and qualitative parameters of humus in mountain soils has been studied. It is shown that changes in the water and temperature conditions with the altitude do not exert significant effect on the humus content in mountain- forest soils, because the total amount of soil organic matter mainly depends on the composition and state of the vegetation cover. The humus content is the highest in meadow soils formed on mountain plateau with excessive moistening, which determines the formation of dense grass cover and the temperature regime favorable for humification. The percentage of Cha in the composition of Corg and the optical density of humic acids (HAs) are the qualitative parameters of the soil humus status changing with the altitude. The intensity of humus coloring of the soil depends on the content and optical density of HAs. A comparison of color intensity in the mountainous meadow chernozemlike soils and plain chernozems has shown its significant dependence on the hydrothermic conditions.  相似文献   

16.
三江平原典型环型湿地土壤有机碳剖面分布及碳贮量   总被引:2,自引:0,他引:2  
殷书柏  杨青  吕宪国 《土壤通报》2006,37(4):659-661
选取岛状林(棕壤型草甸白浆土)、小叶章草甸(潜育白浆土)和毛果苔草沼泽湿地(腐殖质沼泽土)研究了三江平原典型环型湿地土壤剖面有机碳分布特征与积累现状。结果表明,从环型沼泽湿地边缘向中心,土壤剖面有机碳含量和有机碳储量变化明显。小叶章草甸剖面土壤有机碳含量高于岛状林,但两者差异不大;毛果苔草沼泽湿地明显高于岛状林和小叶章草甸,最大值(为284.1 g kg-1)出现在10~20 cm,20 cm以下明显下降。从环型沼泽湿地边缘向中心,土壤剖面有机碳储量明显增加。1m深度内有机碳储量分别为1.04、1.48和4.22×104t km-2。  相似文献   

17.
The properties of loamy sandy postagrogenic soils in the course of their natural overgrowing were studied in the southeastern part of Kostroma oblast. Micromorphological indications of tillage were preserved in these soils at least 35–40 years after the cessation of their agricultural use. In the course of the soil overgrowing with forest vegetation, the bulk density of the upper part of the former plow horizon decreased, the pH and the ash content of the litter horizon somewhat lowered with a simultaneous increase in the acidity of the upper mineral horizon, especially at the beginning of the formation of the tree stand. In 5–7 years after the cessation of tillage, the former plow horizon was differentiated with respect to the organic carbon content. The total pool of organic carbon in the upper 30 cm increased. In the course of the further development, in the postagrogenic soil under the 90to 100-year-old forest, the organic carbon pool in this layer became lower. The soil of the young fallow (5–7 years) was characterized by the higher values of the microbial biomass in the upper mineral horizon in comparison with that in the plowed soil. In general, the microbial biomass in the studied postagrogenic ecosystems (the soils of the fields abandoned in 2005 and 2000 and the soil under the secondary 40-year-old forest) was lower than that in the soil of the subclimax 90to 100-year-old forest. The enzymatic activity of the soils tends to increase during the succession. The restoration of the invertase and, partly, catalase activities to the values typical of the soils under mature forests takes place in about 40 years.  相似文献   

18.
Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land‐use change depends on the stability of SOM against decomposition, which is influenced by stabilization mechanisms in the soil. To quantify organic carbon stocks and to clarify the importance of chemical and physical soil characteristics for carbon stabilization in volcanic ash soils, we applied selective extraction techniques, performed X‐ray diffraction analysis of the clay fraction and estimated pore‐size distribution of soils under natural upper montane forest and grassland (páramo) in the Ecuadorian Andes. Our results show that organic carbon stocks under both vegetation types are roughly twice as large as previously reported global averages for volcanic ash soils. SOM stabilization is suggested to be dominantly influenced by the following chemical and physical soil characteristics: (i) direct stabilization of SOM in organo‐metallic (Al‐humus) complexes, explaining at most 40% of carbon accumulation, (ii) indirect protection of SOM (notably aliphatic compounds) through low soil pH and toxic levels of Al, and probably also (iii) physical protection of SOM caused by a very large micro‐porosity. Moreover, in the case of the forest soils, inherent recalcitrance of OM itself was responsible for substantial accumulation in ectorganic horizons. Both vegetation types contributed to soil acidification, thus increasing SOM accumulation.  相似文献   

19.
红松人工林腐殖质组成及其结合形态研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 运用野外调查与实验分析相结合的方法,对不同生长发育阶段红松人工林(林龄25、45、58、68 a)和红松混交林(林龄60a)根际与非根际土壤有机质含碳量、腐殖质组成与结合形态进行了研究。结果表明:不同年龄阶段红松人工纯林、红松混交林土壤有机质含碳量、腐殖质各组分含碳量随土层深度的加深而降低,并且根际土壤高于非根际土壤。就土壤腐殖质组成而言,除林龄58a红松人工林根际土壤和45a红松人工林非根际土壤外,其他林型土壤胡敏酸含碳量均高于富里酸含碳量;胡敏酸与富里酸比值(HA/FA)在1.00~2.45之间;土壤重组腐殖质、松结态腐殖质、稳结态腐殖质含碳量大小顺序为林龄58>68>25>45a;红松混交林除紧结态腐殖质外,其他腐殖质各组分含碳量均高于红松人工林。  相似文献   

20.
Soils open for forestation in Chile are characterized by their very low organic carbon content; therefore, new forest plantations, needed to restore soil ecological equilibria, are scarcely developed. Stabilized sewage sludge contain organic compounds which have been demonstrated can serve as good soil amendments. To evaluate their actual uses in Chile it is necessary to characterize the carbon (C)-distribution pattern of such sludges in order to foresee their potential contribution for soil reclamation and plant growth, acting both as a source of stable C-reservoir and as readily available C-source.

The molecular weight (m.w.) distribution and carbon balance in Chilean sewage sludges are quite similar to soil humus and some woody by-products, as sawdust and bark dust. Total C varies from 30 to 35%, N from 5 to 9%, and P from 10,000 to 12,000 ppm. No significant content was found for heavy metals.

The C-balance indicates that around 70% of total-C is under stabilized forms as humine and humic macromolecule structures. The sewage sludge can be considered as good amendments for forest soils, especially in areas heavily eroded and depleted of natural humus. Their soluble-C fractions (13% of total-C) will serve as good energy starter source to strengthen indigenous soil microbial ecology, while their high m.w. fractions (humic acid-like and humine-like macromolecules) will serve both as good humus reservoir and as microelement frame in soils treated with such sewage sludges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号