首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Litter decomposition in a subtropical plantation in Qianyanzhou,China   总被引:1,自引:0,他引:1  
A long-term (20 months) bulk litter decomposition experiment was conducted in a subtropical plantation in southern China in order to test the hypothesis that stable isotope discrimination occurs during litter decomposition and that litter decomposition increases concentrations of nutrients and organic matter in soil. This was achieved by a litter bag technique. Carbon (C), nitrogen (N) and phosphorus (P) concentrations in the remaining litter as well as δ13C and δ15N during the experimental period were measured. Meanwhile, organic C, alkali-soluble N and available P concentrations were determined in the soils beneath litter bags and in the soils at the control plots. The dry mass remaining (as % of the initial mass) during litter decomposition exponentially declined (y = 0.9362 e−0.0365x , R 2 = 0.93, P < 0.0001), but total C in the remaining litter did not decrease significantly with decomposition process during a 20-month period. By comparison, total N in the remaining litter significantly increased from 5.8 ± 1.7 g kg−1 dw litter in the first month to 10.1 ± 1.4 g kg−1 dw litter in the 20th month. During the decomposition, δ13C values of the remaining litter showed an insignificant enrichment, while δ15N signatures exhibited a different pattern. It significantly depleted 15N (y = −0.66x + 0.82, R 2 = 0.57, P < 0.0001) during the initial 7 months while showing 15N enrichments in the remaining 13 months (y = 0.10x − 4.23, R 2 = 0.32, P < 0.0001). Statistically, litter decomposition has little impact on concentrations of soil organic C and alkali-soluble N and available P in the top soil. This indicates that nutrient return to the topsoil through litter decomposition is limited and that C cycling decoupled from N cycling during decomposition in this subtropical plantation in southern China.  相似文献   

2.
Annual amounts of litterfall and nitrogen input by litterfall were measured in a subtropical evergreen broad-leaved forest to examine the contribution of a liana species, Mucuna macrocarpa Wall., to the spatial heterogeneity of litterfall production and nitrogen input. The total litterfall in the study plot was 7.1 t ha−1 year−1. The amount of litterfall varied with topography and was greatest at the valley bottom and decreased toward the ridges. Macuna macrocarpa litterfall was absent on the ridges although it accounted for the largest percentage, 32%, of total leaf litter production in the valley. Nitrogen input by litterfall was 69 kg ha−1 year−1 in the plot. Nitrogen input by litterfall was also largest at the valley bottom and decreased toward the ridges. Leaf litter of M. macrocarpa had approximately twice the nitrogen concentration of litterfall of other species. Macuna macrocarpa accounted for 42% of nitrogen input by leaf litter in the valley. The abundance and the high nitrogen concentration of M. macrocarpa intensified differences in the amount of litterfall and nitrogen input by litterfall between valleys and ridges. It was concluded that a liana species, M. macrocarpa, can contribute to the spatial heterogeneity of litterfall and may subsequently affect nutrient cycling in a subtropical evergreen broad-leaved forest on Okinawa Island.  相似文献   

3.
Multipurpose trees, the integral components of homegardens, contribute significantly to the closed nutrient cycling processes and sustainability of the ecosystem. Although, the litter production and probable nutrient returns via litter in homegardens have been documented, quantification and characterization of the decomposition and bioelement release from the litter have received relatively little scientific attention. The objective of the present study is to explore the litter dynamics of six locally important multipurpose trees (Mangifera indica L., Artocarpus heterophyllus Lamk., Anacardium occidentale L., Ailanthus triphysa Dennst., Artocarpus hirsutus L. and Swietenia macrophylla L.), in an agroforestry homegarden in Southern Kerala, India. Litterfall and nutrient additions in the six species ranged from 383 to 868 g m−2 yr−1, nitrogen, 6.4 to 8.8, phosphorus, 0.17 to 0.42 and potassium, 1.1 to 2.8 g m−2 yr−1. The annual litter output in the homegarden was 425 kg with A. hirsutus, M. indica, A. heterophyllus and A. occidentale recording significantly higher litter and nutrient additions. Leaf litter decay studies revealed A. heterophyllus and A. occidentale to be the most labile litter species and S. macrophylla the most recalcitrant. The decay rate coefficients varied significantly among the species. Foliage decomposition rates related to the initial chemical composition of the litter revealed best correlation with lignin. NPK release was almost complete by the end of decay in all species inspite of the initial phases of accumulation observed for nitrogen and phosphorus. Two-way analysis of variance test revealed significant differences in the contents of the three elements as a function of species and time elapsed. Macronutrients were released in the order K>N/P. The higher rates of decay and nutrient turnover in M. indica, A. heterophyllus and A. occidentale foliage indicated the potential of using these species’ litter as nutrient inputs in agriculture while A. triphysa, A. hirsutus and S. macrophylla perform better as organic mulches taking a longer time for decay and hence nutrient release.  相似文献   

4.
Rates of weight loss and nutrient (N and P) release patterns were studied in the leaf litter of the dominant tree species (Ailanthus grandis, Altingia excelsa, Castanopsis indica, Duabanga sonneriatioides, Dysoxylum binectariferum, Mesua ferrea, Shorea assamica, Taluma hodgsonii, Terminalia myriocarpa and Vatica lancefolia) of a tropical wet evergreen forest of northeast India. Nitrogen and phosphorus mineralization rate and decay pattern varied significantly from species to species. In general, the decay pattern, characterized by using a composite polynomial regression equation, exhibited three distinct phases of decay during litter decomposition—an initial slow decay phase (0.063% weight loss day−1), followed by a rapid decay phase (0.494% weight loss day−1) and a final slow decay phase (0.136% weight loss day−1). The initial chemical composition of the litter affected decomposition rates and patterns. Species like D. sonneriatoides, D. binectariferum, and T. hodgsonii with higher N and P content, lower carbon and lignin content, and lower C:N ratio and lignin:N ratio exhibited relatively faster decomposition rates than the other species, for example M. ferrea, C. indica and A. grandis. A slow decay rate was recorded for species such as M. ferrea, C. indica, and A. grandis. The initial N and P content of litter showed significant positive correlations with decay rates. Carbon and lignin content, lignin:N, and C:N showed significant negative correlations with decay rates. Soil total N and P, and rainfall, soil temperature, and soil moisture had positive correlations with decay rates. The rapid decomposition rates observed in comparison with other different forest litter decay rates confirm that tropical wet evergreen forest species are characterized by faster decomposition rates, indicating a faster rate of organic matter turnover and rapid nutrient cycling.  相似文献   

5.
Patterns of litterfall and nutrient input in a subtropical evergreen broad-leaved forest in northern Okinawa, Japan, were studied during May, 1996–April, 1999. The mean annual rate of litterfall in the five sampling plots ranged from 6.84 to 8.93 Mg ha−1 yr−1, of which 63.3–68.5% were leaves; 22.4–29.1% woody parts (including branches < 5.0 cm in diameter and bark); 2.8–5.0% sexual organs and 4.6–6.3% miscellaneous material. Significant differences were found among plots and among years. Significantly monthly differences pronounced seasonal patterns in litterfall were observed. Total litterfall and leaf litter showed negative correlations with relative basal area of the dominant species,Castanopsis sieboldii; and showed positive correlations with mean height of the stands. The dominant species,C. sieboldii produced an average of 2.36 Mg ha−1 yr−1 of leaf litter, which covered 30.5% of the annual litter production, and the nutrient input from those litterfall contributed 32.3, 28.3, 30.2, 22.2, 32.5, and 30.5% of total N, P, K, Ca, Mg, and Na, respectively. Nutrient use efficiency in litter production was high, especially for P and K compared with other broad-leaved forests in Japan indicating that P and K may be limiting in Okinawan evergreen broad-leaved forest.  相似文献   

6.
The study was carried out in a 9-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.), stand over a span of three years from July 1992 to June 1995, primarily to predict litter production from exteral tree dimensions by combining open-top clothtrap and clipping methods. Litter production was virtually concentrated in October and November. Stem cross-sectional area at the crown base was proved to be the reliable predictor of litter production, and that single regression model was evolved irrespective of year. The regression model had proportional constants of 2.696 × 10−2 and 3.540 × 10−2 kg cm−2 year−1 for leaf litter and total litter production, respectively. Utilizing the model, leaf litter production of the stand was assessed to be 5.04, 5.12, and 4.99, and total litter production to be 6.48, 6.58, and 6.40 Mg ha−1 year−1 for the first, second and third year, respectively. Biomass increment was 6.67, 7.80, and 7.70, tree mortality was 0.15, 0.13, and 0.41, and insect grazing was 0.09, 0.05, and 0.002 Mg ha−1 year−1 for the first, second and third year, respectively. Above-groud net production was therefore 13.39, 14.55, and 14.51, Mg ha−1 year−1, and biomass accumulation ratio (biomass/net production) was 1.86, 2.21, and 2.76 year for the first, second and third year, respectively. Considering data from earlier studies and the results of this study, biomass accumulation ratio,BAR (year), of hinoki stands was best related to above-ground biomass,y (Mg ha−1), using the power function:BAR=0.112y 0.936. Excluding seedling stands, leaf efficiency (above-ground net production per unit leaf mass) of hinoki stands was 0.91±0.02 (SE) Mg Mg−1 year−1, irrespective of stand biomass or age.  相似文献   

7.
During 7 years (1979–1985) cacao harvests (beans and husks) have been recorded for the agroforestry systems ofTheobroma cacao underCordia alliodora andErythrina poeppigiana shade trees. The mean oven dry cacao yields were 626 and 712 kg.ha−1.a−1 cocoa beans underC. alliodora andE. poeppigiana respectively. Harvests have gradually increased over the years and the plantation has now reached maturity. Annual extraction of N, P, K, Ca and Mg in fruits, which is relatively small, was calculated on the basis of chemical analyses. The following average values were found (kg.ha−1.a−1): At the age of 8 years, theC. alliodora trees have reached 26.7 cm diameter (DBH) and 14.0 m in height. Mean annual growth (from age 5 to 7) is 14.6 m3.ha−1.a−1. Natural plant residue production has been measured for 4 years (Nov. 1981–Oct. 1985). UnderE. poeppigiana it has reached a value of 8.91 t.ha−1.a−1 and underC. alliodora 7.07 t.ha−1.a−1. The shade trees have contributed 57 and 47% respectively. Transference and decomposition rates are high and important in the nutrient cycles. The nutrient content of the litter was analysed and corresponding average yearly transfers were (kg.ha−1.a−1): For part I see Vol. 4, No. 3, 1986. Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesselschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

8.
In a field study involving 8–9 year-old woodlots of nine fast growing tree species in Kerala, India, the amount and nutrient content of litterfall were monitored. Decay rate constants and litter half-lives were estimated by fitting a single exponential model to the litter decomposition data. Annual litter production ranged from 3.43 Mg ha−1 (Pterocarpus) to 12.69 Mg ha−1 (Acacia). Litterfall of Acacia, Ailanthus, Pterocarpus and Casuarina followed a uni-modal distribution pattern. Nutrient content of litter samples showed considerable variations, owing to species and sampling time. Based on mean litter N content, the nine species were broadly divided into high, medium and low detrital N species. Litterfall accounted for substantial nutrient recycling within the system. Results of the litter bag study revealed that residual litter mass declined exponentially with time for Ailanthus, Pterocarpus, Casuarina and Leucaena. Paraserianthes showed a linear trend, while Emblica and the two Artocarpus species exhibited a bi-phasic pattern of mass loss. Both initial lignin content and lignin–N ratio had a negative, although modest influence on decay rate coefficients, while initial N content exerted a positive influence. Nutrient release from the decomposing litter followed either a tri-phasic pattern characterised by an initial accumulation, followed by a rapid release and a final slower release phase, or a bi-phasic pattern that is devoid of the initial accumulation phase.  相似文献   

9.
在孟加拉吉大港丘陵地区,调查了热带季风气候条件下的3种人工林(7年生大叶相思(Acacia auriculiformis)林、15年生大叶相思林和18年生混交林)和1种天然林的森林凋落物及其对土壤性质的作用.结果表明,总的有机质积累随人工林树龄增加而增加,但是年积累量随之降低.在同一植被类型内,不同坡位新鲜或部分分解的凋落物有机质累计量变化较大,坡底部有机质积累量最高,沿着山坡向上逐渐减少.在15年生大叶相思人工林内,土壤整合有机物积累量变化趋势与新鲜或部分分解有机质积累量变化趋势相反.在7年生和15年生的大叶相思林以及18年龄的阔叶混交人工林内,新鲜、部分分解和完全分解(含土壤整合有机质)有机质总生产速率分别是2554.31、705.79和1028.01kg.ha-1·a-1,新鲜凋落物有机质在3种林分中的生产速率分别是38.23,19.40和30.48 kg·ha-1·a-1.3种人工林和自然林内,平均新鲜凋落物的有机质积累占有机质产出总量的32.45%,部分分解凋落物占13.50%,而全分解整合土壤有机质占54.56%.森林土壤酸度随凋落物分解阶段的深入而增加.  相似文献   

10.
Nitrogen fixation during litter decomposition was studied for 34 months using litterbags containing newly fallen litter of coniferous species Cryptomeria japonica and Pinus densiflora and that of deciduous species Quercus serrata. Litterbags were set in contact with the forest floor in a deciduous broad-leaved forest near the top of a slope and in a C. japonica stand at the middle of the slope at a watershed in eastern Japan. Nitrogen-fixing activity, estimated by acetylene reduction after 16 and 19 months of incubation, was 62.65–3.86 nmoles C2H4 h−1 g−1 DW in Cryptomeria litter, but only 1.07–0.09 in Pinus and 0.72–0.04 in Quercus. The rate of N increase in decomposing litter was highest in Cryptomeria. Fungal biomass in decomposing litter, estimated by ergosterol content, increased during the initial 16 months of incubation in Cryptomeria and Quercus, and during the initial 19 months of incubation in Pinus. The litter decomposition rate was highest in Cryptomeria among the three species, due to increased N content and fungal biomass in Cryptomeria litter. Thus, N increase in decomposing Cryptomeria litter affects the subsequent N dynamics and decomposition pattern.  相似文献   

11.
Biomass and nutrient transfer (N, P, K, Ca, Mg) of bilberry (Vaccinium myrtillus L.) leaf litter fall, as well as decomposition and nutrient release, were studied in four mature forest stands situated in Central and South Sweden. Bilberry leaf litter fall amounted to between 33 and 55 kg ha‐1 yr‐1 in the four stands. Only minor differences between sites were noted for litter concentrations of N, P and Ca, whereas K and Mg showed somewhat larger variability. Relative amounts of the five nutrient elements in the litter fall were generally in the order N > Ca > K > Mg > P. The amounts of nutrients returned to the forest floor by the annual leaf litter fall in the stands ranged from 0.4 to 0.8 kg ha‐1 for N, 0.4 to 0.6 kg ha‐1 for Ca, 0.2 to 0.7 kg ha‐1 for K, 0.1 to 0.2 kg ha‐1 for Mg and 0.04 to 0.08 kg ha‐1 for P.

The decomposition of the local bilberry leaf litter was followed by means of litterbags during three years. At all sites there was an extremely rapid mass loss from the litter (between 45% and 54%) during the first four to five months of decomposition. After this initial phase, the decomposition rates decreased markedly and after three years the accumulated mass losses of the litters varied between 64% and 78% at the studied sites. After two and three years of decomposition, three of the sites exhibited almost similar litter mass losses whereas at the fourth site the litter was decomposed to a significantly lower degree. The pattern of nutrient release from the decomposing bilberry leaf litter differed somewhat from site to site. Minor differences were, however, noted for P, Ca and Mg while N and K were more strongly retained in the litter at one of the sites.  相似文献   

12.
Tree based land use systems make a valuable contribution to sequester carbon and improve productivity and nutrient cycling within the systems. This study was conducted to determine biomass production, C-sequestration and nitrogen allocation in Gmelina arborea planted as sole and agrisilviculture system on abandoned agricultural land. At 5 years, total stand biomass in agrisilviculture system was 14.1 Mg ha−1. Plantations had 35% higher biomass than agrisilviculture system. At 5 years, leaves, stem, branches and roots contributed 4.1, 65.2, 10.0 and 20.7%, respectively to total standing biomass (17.9 Mg ha−1). Over the 5 years of study, trees had 3.5 Mg ha−1 more C and 36 kg ha−1 more N in plantation than agrisilviculture system. Biomass and C storage followed differential allocation. Relatively more C was allocated in above ground components in plantations compared to agrisilviculture system. C:N ratios for tree components were higher in stem wood (135–142) followed by roots (134–139), branches (123–128) and leaves (20–21). In agrisilviculture system crops recommended are: soybean and cowpea in rainy season; wheat and mustard in winter season. After 5 years, soil organic C increased by 51.2 and 15.1% and N by 38.4 and 9.3% in plantation and agrisilviculture system, respectively. Total C storage in abandoned agricultural land before planting was 26.3 Mg ha−1, which increased to 33.7 and 45.8 Mg ha−1 after 5 years in plantation and agrisilviculture system, respectively. Net C storage (soil + tree) was 7.4 Mg ha−1 in agrisilviculture system compared to 19.5 Mg ha−1 in G. arborea monoculture stands. The studies suggest that competitive interactions played a significant role in agrisilviculture system. Plantations were more efficient in accreting C than agrisilviculture system on abandoned agricultural land.  相似文献   

13.
Tree-based land-use systems could sequester carbon in soil and vegetation and improve nutrient cycling within the systems. The present investigation was aimed at analyzing the role of tree and grass species on biomass productivity, carbon sequestration and nitrogen cycling in silvopastoral systems in a highly sodic soil. The silvopastoral systems (located at Saraswati Reserved Forest, Kurukshetra, 29°4prime; to 30°15prime; N and 75°15prime; to 77°16prime; E) consisted of about six-year-old-tree species of Acacia nilotica, Dalbergia sissoo and Prosopis juliflora in the mainplots of a split-plot experiment with two species of grasses, Desmostachya bipinnata and Sporobolus marginatus, in the subplots. The total carbon storage in the trees + grass systems was 1.18 to 18.55 Mg C ha−1 and carbon input in net primary production varied between 0.98 to 6.50 Mg C ha−1 yr−1. Carbon flux in net primary productivity increased significantly due to integration of Prosopis and Dalbergia with grasses. Compared to 'grass-only' systems, soil organic matter, biological productivity and carbon storage were greater in the silvopastoral systems. Of the total nitrogen uptake by the plants, 4 to 21 per cent was retained in the perennial tree components. Nitrogen cycling in the soil-plant system was found to be efficient. Thus, It is suggested that the silvopastoral systems, integrating trees and grasses hold promise as a strategy for improving highly sodic soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
This long term experiment provides production data for evaluation of combined forestry and livestock systems. Five systems were established in Pinus radiata planted in 1981 (620 mm average annual rainfall). Sheep were introduced in 1984 and trees were pruned in several lifts. Adjusted tree stockings were (1) 60 widely spaced trees ha−1, (2) 200 widely spaced trees ha−1, (3) 200 trees ha−1 in five-row belts, (4) 1,090 trees ha−1 (unpruned) and 815 trees ha−1, and (5) no trees (open pasture). Tree growth, wool production, liveweight gain and pasture production were measured. At year 25, tree diameter under bark at 1.3 m (DBHUB) in Systems 1, 2, 3 and 4 (unpruned) was 46.0, 39.2, 33.5 and 24.1 cm, while volume of bark-free 6-m butt-logs was 49, 117, 86 and 233 m3 ha−1. Inner rows of System 3 belts contained smaller trees than outer rows. Pruned System 4 trees had slightly greater diameter than unpruned trees. Pasture production declined with tree stocking and time, due to shading and competition. Wool production (WP ha−1) and liveweight gain (LWG ha−1) declined linearly from year 9 to 17 with increasing disparity among systems. In 1998 (year 17) WP ha−1 in Systems 1, 2 and 3 was 64, 16 and 43% of that in open pasture. Further analysis is needed to evaluate the financial costs and returns of various systems under particular rotation lengths and market prices.  相似文献   

15.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

16.
A study was conducted in an agricultural field to examine the biomass production of three fast-growing short rotation woody crop (SRWC) species, Populus deltoides, Quercus pagoda, and Platanus occidentalis using fertilization and irrigation (fertigation). The study included a randomized complete block (RCB) with five treatments; control, irrigated, and irrigated with 56, 112, and 224 kg nitrogen (N) ha−1 year−1. We quantified survival, basal area, standing biomass, aboveground net primary productivity (ANPP), leaf area index (LAI), and growth efficiency (GE) for each species along the soil nitrogen and water gradient. P. deltoides had low rates of survival (83, 82, and 77% years six, seven, and eight, respectively), but had production values greater than Q. pagoda and P. occidentalis. Standing biomass reached its peak for P. deltoides and P. occidentalis (17.56 and 10.36 Mg ha1, respectively) in the irrigation treatment, and in the 112 kg N treatment for Q. pagoda (5.42 Mg ha−1). P. deltoides and P. occidentalis ANPP peaked in the irrigation treatment (6.66 and 6.31 Mg ha−1 year−1, respectively) and in the 112 kg N (4.43 Mg ha−1 year−1) for Q. pagoda. ANPP was correlated with LAI; however, the relationship was species specific. Maximum ANPP was reached below the maximum LAI for Q. pagoda and P. occidentalis. P. deltoides ANPP was highest at the maximum LAI, which was achieved with IRR. These results suggest that species-specific cultural practices producing optimum LAI and maximum ANPP should be identified before fertigation techniques are adopted widely for SRWC production on agricultural fields.  相似文献   

17.
Nutrient concentrations in plant and soil and their rates of cycling in poplar (Populus deltoides)-based agroforestry systems were studied at Pusa, Bihar, India. The nutrient concentrations in the standing biomass of the crop were more than those in tree, whereas the nutrient contents showed the reverse trend. Soil, litter and vegetation accounted for 80.3–99.5, 0.1–5.0 and 0.4–14.7%, respectively, of the total nutrients in the system. Considerable reduction (40–54%) in concentration of nutrients in leaves occurred during senescence. The uptake of nutrients by vegetation, and also by different components with and without adjustment for internal recycling, were calculated separately. Annual transfer of litter nutrient to the soil by vegetation was 37.3–146.2 N, 5.6–17.9 P and 25.0–66.3 K kg ha−1 year−1 in young (3-year-old) and mature (9-year-old) plantations. Turnover rate and time for different nutrients ranged between 0.86–0.99 year−1 and 1.01–1.16 years, respectively. Compartmental models for nutrient dynamics have been developed to represent the distribution of nutrient contents and net annual fluxes within the system. This study shows that the poplar-based agroforestry system can be sustainable in terms of soil nutrient status.  相似文献   

18.
The study was conducted to improve our understanding of the effects of forest disturbance on litterfall and patterns of nutrient return in three subalpine forest ecosystems (i.e. Betula utilis-dominated, Abies pindrow-dominated, and Acer mixed broadleaf) of Indian west Himalaya. Total litterfall (t ha−1 yr−1) ranged between 2.6–3.6 and 2.1–2.6 for pristine and degraded stands, respectively. Whereas total litterfall decrease from pristine to degraded stand was about 25–30% in B. utilis and Acer mixed-broadleaf forests, the level of disturbance did not affect total litterfall in A. pindrow (coniferous) forest. Nutrient (N, P, and K) concentrations in litter components of the forests studied also varied across forest types and disturbance intensities. For pristine stands, among all the forests, return of total nutrients via litterfall was higher. The study revealed that patterns of litterfall and nutrient return in the forests studied were sensitive to intensity of disturbance, although sensitivity varied among forest types and nutrient contents. Increased intensity of disturbance greatly affected the total annual amount of nutrient return in broadleaf forests. Maximum impact was recorded in B. utilis forest with a significant decline in nutrient return from pristine to degraded stands (i.e. 64% for N, 38% for P, and 67% for K). Corresponding values for decline in Acer mixed forest were 17, 13, and 33% for N, P, and K, respectively, whereas in A. Pindrow forest N return was 15% higher and P return was 33% lower. This study indicates that the litterfall and litter nutrient concentrations in these forests are sensitive to the intensity of disturbance, which affects the amount of nutrient return. This will have a strong bearing on forest nutrient cycling.  相似文献   

19.
Litterfall is an important ecological process in forest ecosystems, influencing the transfer of organic matter, carbon (C), nitrogen (N), phosphorous (P) and other nutrients from vegetation to the soil. We examined the production of different litterfall fractions as well as nutrient content and nutrient inputs by senesced and green leaf-litter in a semiarid forest from central Mexico. From September 2006 to August 2007, monthly litter sampling was carried out in monospecific and mixed stands of Quercus potosina and Pinus cembroides. Litterfall displayed a marked bimodal pattern with the largest annual amount (5993 ± 655 kg ha−1 yr−1) recorded in mixed stands, followed by Q. potosina (4869 ± 510 kg ha−1 yr−1), and P. cembroides (3023 ± 337 kg ha−1 yr−1). Leaves constituted the largest fraction of total litterfall reaching almost 60%, while small branches contributed with 20–30%. Overall, N content in leaf-litter was higher while lignin content was significantly lower for Q. potosina than for P. cembroides. Thus, greater litter quality together with higher litter production caused the largest C, N and P inputs to forest soils to occur in monospecific Q. potosina stands. Green leaf fall displayed significantly lower lignin:N and C:N ratios in Q. potosina than P. cembroides suggesting faster decomposition and nutrient return rates by the former. Although we recorded only two green leaf fall events, they accounted for 18% and 11% of the total N and P input, respectively, from leaf-litter during the study period. Apart, from the large spatiotemporal heterogeneity introduced by differences in litter quantity and quality of evergreen, deciduous and mixed stands, green litterfall appears to represent a much more important mechanism of nutrient input to semiarid forest ecosystems than previously considered.  相似文献   

20.
The exotic tree Melaleuca quinquenervia (melaleuca) forms dense forests usually characterized by low plant diversities and dense litter biomass accumulations on forest floors of ecologically sensitive ecosystems, including portions of the Florida Everglades. We quantified litter accumulation in mature melaleuca stands and compared decomposition rates of melaleuca leaves with a sympatric native plant, either Cladium jamaicense (sawgrass) in sawgrass marshes or Pinus elliottii (slash pine) in pine flatwoods habitats that varied in soil types. Total litter accumulation in mature melaleuca forests prior to June 1997 ranged from 12.27 to 25.63 Mg ha−1. Overall, melaleuca leaves decomposed faster in organically rich versus arenaceous soils. Decomposition rates were lower for melaleuca leaves than for sawgrass in both melaleuca-invaded and uninvaded sawgrass marshes. In arenaceous soils of pine flatwoods, melaleuca leaf and pine needle decomposition rates were similar. Complete mineralization of sawgrass leaves occurred after 258 weeks, whereas melaleuca leaves had up to 14% and pine foliage had up to 19% of the original biomass remaining after 322 weeks. Total carbon (C) in intact decomposing leaves varied slightly, but total nitrogen (N) steadily increased for all three species; the greatest being a fourfold in sawgrass. Increases in N concentrations caused decreases in the C/N ratios of all species but remained within an optimal range (20–30) in sawgrass resulting in higher decomposition rates compared to melaleuca leaves and pine needles (C/N ratio >30). Slower decomposition of melaleuca leaves results in denser litter layers that may negatively affect recruitment of other plant species and impede their establishment in invaded communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号