首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aqueous suspensions and oil emulsions of a commercial [14C]diflubenzuron (N-[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide) formulation (Dimilin W-25) remained on the leaf surface of greenhouse-treated plant tissues. Absorption, translocation, and metabolism of the [14C]diflubenzuron were not significant. Less than 0.05% of the applied 14C was found in newly developed plant tissues 28 days after spray treatment. [14C]Diflubenzuron was degraded in soil. After 91 days, biometer flask studies showed that 28% of the 14C incorporated into the soil as [14C]diflubenzuron was recovered as 14CO2. Major dichloromethane-soluble soil residues were identified as unreacted [14C]diflubenzuron and [14C]4-chlorophenylurea. A minor unknown degradation product cochromatographed with 2,6-difluorobenzoic acid. Insoluble 14C-residues increased with time and represented 67.8% of the residual 14C in the soil 89 days after treatment. Cotton plants grown for 89 days in [14C]diflubenzuron-treated soil contained only 3% of the 14C applied to the soil. Small quantities of acetonitrile-soluble [14C]4-chlorophenylurea were isolated from the foliar tissues. Root tissues contained small amounts of [14C]diflubenzuron and trace quantities of a minor 14C-product that chromotographed similarly to 2,6-difluorobenzoic acid. Most of the 14C in the plant tissues (84–93%) was associated with an insoluble residue fraction 89 days after treatment.  相似文献   

2.
2,6-Difluorobenzoic acid, one of the two primary diflubenzuron metabolites, is rapidly and completely degraded in soil. Times to 50% disappearance were 9 and 12 days in two agricultural soils. [14C]Carbon dioxide was an ultimate product of the ring-14C-labelled compound. A part of the radioactivity, increasing with time to one third of the applied dose of 1 mg kg?1, could not be extracted from the soil.  相似文献   

3.
The fate of 4-chlorophenylurea in soils was studied with two preparations: one labelled with 14C in the phenyl ring and the other in the carbonyl group. The initial dose of 1 mg kg?1 decreased to 50% in about 5 weeks in aerobic sandy clay and in about 16 weeks in anaerobic hydrosoil. Soil treatment with each of the preparations resulted in the release of [14C]carbon dioxide, pointing to decarbonylation and ring opening. The fraction of non-extractable (soil-bound) radioactivity increased during incubation. Quantities of ring-14C-labelled and carbonyl-14C-labelled bound residues differed strongly in the aerobic soil but only slightly in the anaerobic hydrosoil. It is assumed that two sorts of bound residues are formed from 4-chlorophenylurea: one is fairly stable and might consist of bound 4-chloroaniline or its transformation products, whereas the other is presumed to be a degradable derivative of 4-chlorophenylurea.  相似文献   

4.
The uptake and translocation of [14C]asulam (methyl 4-aminophenyl-sulphonylcarbamate), [14C]aminotriazole (1-H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail), a weed of mainly horticultural situations. Under controlled-environment conditions, 21°C day/18°C night and 70% r. h., the test herbicides were applied to 2-month-old and 2-year-old plants. Seven days following the application of 0.07-0.09 °Ci (1.14mg) of the test herbicides to young E. arvense, the accumulation of 14C-label (as percentage of applied radioactivity) in the treated shoots, untreated apical and basal shoots was as follows: [14C]asulam, 13.2, 0.18 and 1.02%; [14C] aminotriazole, 67.2, 3.65 and 1-91%; [14C]glyphosate, 35.9, 0.06 and 0.11%. The equivalent mean values for the accumulation of 14C-label in 2-year-old E. arvense were [14C]asulam, 12.0, 1-15 and 1.74%; [14C]aminotriazole, 58.6, 9.44 and 4.12%; [14C]glyphosate, 33.1, 0.79 and 2.32%. In the latter experiment, test plants received 0.25-0.30 °Ci (4mg) of herbicide, they were assessed after a 14-day period and the experiment was carried out at 3-week intervals between 2 June and 25 August on outdoor-grown plants. Irrespective of test herbicide or time of application, very low levels of 14C-label accumulated in the rhizome system. Only 0.2% of the applied radioactivity was recovered in 2-year-old plants and 0.4% in 2-month-old plants. In the young plants [14C]asulam accumulated greater amounts and concentrations of 14C-label in the rhizome apices and nodes than [14C]aminotriazole or [14C]glyphosate treatments. Inadequate control of E. arvense under field conditions may be due to limited basipetal translocation and accumulation of the test herbicides in the rhizome apices and nodes.  相似文献   

5.
Buffers and leaf discs of mature tobacco (Nicotiana tabacum L.) were utilized to study [14C]-ethylene and 14CO2 evolution from radiolabeled ethephon, (2-chloroethyl)phosphonic acid. Metabolic fate of [14C]ethephon in leaf discs was investigated by use of thin-layer chromatography, high-voltage paper electrophoresis, autoradiography, and liquid scintillation spectroscopy. The evolution of labeled ethylene generally increased with increasing buffer pH, buffer volume, and dosage of [14C]ethephon. [14C]Ethylene was evolved, increasingly with time, from [14C]ethephon either added to the buffer or applied to leaf discs. The rate of [14C]ethylene evolution was maximum during the first day and leveled off on the fourth day. More than 50% of the total [14C]ethylene evolution over a 96-hr period was recovered during the first 24 hr after [14C]ethephon application. No 14CO2 was evolved when [14C]ethephon was degraded in the presence of buffer or leaf discs. Only ethephon itself, and no detectable metabolite thereof, was discovered in the methanolic extract of the leaf disc tissue. An insignificant amount of 14C activity (approximately 2% of the extracted 14C) was detected in the residue. By means of gas chromatography, it was confirmed that in buffers and tobacco leaf tissue ethephon breaks down to release ethylene but not CO2.  相似文献   

6.
Growth (14 days) of sorghum (Sorghum bicolor L. cv G522 DR) from seed planted in sand into which alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] was uniformly incorporated (0, 0.07, 0.14, 0.28, 0.56, 1.12, 2.24, or 4.48 kg/ha) was reduced by 0.14 kg/ha and severely inhibited (88%) by 0.56 kg/ha while cellular water cotent was not greatly influenced by 0.56 kg/ha. When added into the nutrient solution bathing the roots of 96-hr sorghum seedlings, alachlor (0, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, or 128 ppmw) was not lethal to 14-day-old sorghum at rates up to 32 ppmw (92% survival); however, shoot and root lengths were reduced 43 and 58%, respectively. Alachlor inhibition of sorghum growth appears to be closely associated with inhibition of cell enlargement; the coleoptile is the most susceptible stage of sorghum growth to alachlor. This situation closely resembles growth where gibberellic acid (GA) synthesis is inhibited. [2-14C]Mevalonic acid ([2-14C]MVA) incorporation into terpenoid GA precursors was evaluated using a cell-free enzyme system from etiolated sorghum coleoptiles. Alachlor did not inhibit total 14C incorporation but incorporation of 14C into kaurenol and sterols was decreased ca 80 and 75%, respectively, by 10?6M alachlor. Analyses for [14C]geranylgeraniol (GG), [14C]farnesol, and [14C]geraniol contents showed accumulation of [14C]farnesol and [14C]GG, and decreased [14C]geraniol. When seeds to which CGA-43089 [α-(cyanomethoximino)-benzacetonitrile] was applied 8 weeks prior to planting were substituted for untreated seeds, incorporation of [2-14C]MVA into [14C]kaurenol was increased by alachlor while [14C]GG and [14C]farnesol accumulated and [14C]geraniol was absent at 10?6M alachlor. Additionally, sterol content increased in “safened” systems but was still decreased by alachlor. These data demonstrate multiple sites of alachlor activity in the GA and terpenoid biosynthetic pathway.  相似文献   

7.
[2-14C]Mevalonic acid incorporation into gibberellic acid precursors was measured in cell-free extracts from sorghum [Sorghum bicolor (L.) Moench var. G-522 DR] coleoptiles. 14C incorporation into ent-kaur-16-ene was inhibited ca. 90% by 10?7 to 10?4M metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide]. [14C]Geranylgeraniol (GG) content increased. [14C]Farnesol content was not altered and [14C]geraniol content decreased. Total 14C incorporation was decreased by metolachlor. In the safener [α-(cyanomethoximino)benacetonitrile]-treated sorghum seed coleoptile cell-free system, total 14C incorporation increased, [14C]kaurene and relative kaurence content increased 4× up to 105M metolachlor, and [14C]farnesol, and [14C]GG contents increased while relative farnesol and relative GG contents were not influenced by metolachlor. Thus, the inhibition of kaurene synthesis by metolachlor was reversed by the safener. Since the biosynthetic processes are mevalonic acid → geraniol → farnesol → GG → copalylol → kaurene, these data corroborate a proposed gibberellic acid biosynthesis inhibition between GG and kaurene as well as a partial blockage between mevalonic acid and geraniol. Thus, a portion of metolachlor-induced growth inhibitions of sorghum could be explicable on the basis of gibberellic acid biosynthesis inhibitions.  相似文献   

8.
Rats and chickens were each given a single oral dose (10 or 100 mg/kg body wt) of 1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl-14C(U)]methanesulfonamide ([14C]perfluidone). Depending on the size of the dose, from 8.4 to 36.2% of the [14C] was eliminated in the urine and from 36.4 to 85.4% was eliminated in the feces within 48 hr after dosing. Less than 1% of the [14C] given to laying hens as [14C]perfluidone was present in the eggs produced during the first 96 hr after dosing. The percentage of the administered [14C] that remained in these animals (body with G.I. tract and contents removed) varied from 0.34 (96 hr after dosing) to 1.68% (48 hr after dosing). 14C-labeled compunds in the urine and feces from the rats and chickens were purified by solvent extraction, column chromatography, and gas-liquid chromatography, and then identified by infrared and mass spectrometry. The parent compound was the major 14C-labeled component in the urine and feces of both animals. 1,1,1-Trifluoro-N-[2-methyl-4-(3-hydroxyphenylsulfonyl)phenyl]methanesulfonamide was present in the feces of both animals. The proposed structures of other metabolites were 1,1,1-trifluoro-N-hydroxy-N-[2-methyl-4-(phenylsulfonyl)phenyl]methanesulfonamide (rat urine) and 1,1,1-trifluoro-N-{2-methyl-4-[(methylsulfonyl)-phenylsulfonyl]phenyl}methanesulfonamide (chicken urine).  相似文献   

9.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

10.
Isolated rat hepatocytes were incubated for 4 hr with [phenyl-U-14C]2,4,5-trimethyl-N-phenyl-3-furancarboxamide ([14C]methfuroxam). 14C-Labeled metabolites were isolated by solvent extraction, column chromatography, and high-pressure liquid chromatography, and were then characterized by analysis of infrared and mass spectra. Metabolism of [14C]methfuroxam by isolated hepatocytes included: (1) hydroxylation of the 2-, 4-, and 5-methyl groups on the furan ring; (2) hydroxylation at the para position of the benzene ring; (3) combinations of 1 and 2; (4) the addition of a sulfur-containing adjunct to the methylfuran moiety; and (5) conjugation of 1–4. Rats given a single intragastric dose of [14C]methfuroxam excreted 56% of the 14C in the urine and 42% in the feces within 54 hr. Metabolism of [14C]methfuroxam by the intact rats included: (1) hydroxylation of the methylfuran moiety; (2) hydroxylation of the benzene ring; (3) the addition of S-methyl, methyl sulfoxide, and other sulfur-containing groups to methfuroxam; (4) combinations of 1–3; and (5) conjugation of 1–4.  相似文献   

11.
Seedlings of Solanum scabrum Mill. and Solanum ptycanthum Dun. were treated with [14C]ethalfluralin (N-ethyl-α,α,α-trifluoro-N-(methylallyl)-2,6-dinitro-p-toluidine) and [14C]trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) supplied in nutrient solution to determine the basis for differences in response by these two species to these two herbicides. Plants of S. scabrum absorbed more [14C]ethalfluralin and [14C]trifluralin than plants of S. ptycanthum. During the first 24 h, S. scabrum seedlings, but not S. ptycanthum seedlings absorbed more [14C]ethalfluralin than did plants treated with [14C]trifluralin. More [14C]ethalfluralin than [14C]trifluralin was found in the shoots of plants of both species. Seventy-two hours after treatment with [14C]herbicides, the conversion to water-soluble metabolites was greater for [14C]ethalfluralin than for [14C]trifluralin. In the shoots of plants from both species an average of nearly 55% of the 14C recovered was found in the water-soluble fraction following [14C]ethalfluralin treatment whereas an average of only 40% was found in the water-soluble fraction following [14C]trifluralin treatment.  相似文献   

12.
The tissue distribution and excretion of 14C-labeled propham and chlorpropham were investigated in the adult female rat after a single oral dosage. The average 3-day urinary excretions of radioactivity were 55.9%, 82.6%, 79.5%, and 85.4% of an oral dose of chain [14C] chlorpropham, ring [14C] chlorpropham, chain [14C] propham, and ring [14C] propham, respectively. With chain [14C] chlorpropham 35.4 ± 7.5% of the administered radioactivity appeared in the respired air, whereas only 5.0 ± 0.8% was found in CO2 from chain [14C] propham. There was no significant difference in the rate of excretion or the route of elimination among rats receiving different oral dosages, ranging from less than 4 mg/kg to 200 mg/kg. The radioactivity was distributed in all tissues with highest concentration found in the kidney. The average biological half-life of 14C from chlorpropham and propham in most organs was short, ranging between 3 and 8 hr; however, in brain, fat, and muscle, the half-life was about twice the value for other organs.Both compounds were metabolized by hydrolytic and oxidative mechanisms and the resulting metabolites were excreted either as free forms or as conjugates.Subcellular distribution of 14C in the rat liver and kidney after an oral administration of chlorpropham and propham was investigated. The percentage distribution of 14C in the particulate and soluble fractions was dependent on the elapsed time after dosing.  相似文献   

13.
Alfalfa was root-treated with [14C]propham (isopropyl carbanilate[14C-phenyl(U)]) for 7 days and then harvested and freeze-dried. Rats and sheep were orally given either 14C-labeled alfalfa roots ([14C]root) or 14C-labeled alfalfa shoots ([14C]shoot). When the [14C]root was given, 6.5–11.0% of the 14C was excreted in the urine and 84.6–89.4% was excreted in the feces within 96 h after treatment. Less than 3% of the 14C remained in the carcass (total body—gastrointestinal tract and contents) 96 h after treatment. When [14C]shoot was given, 53.2–55.2% of the 14C was excreted in the urine, 32.1–43.4% was excreted in the feces, and the carcass contained 0.2–1.1% of the 14C 96 h after treatment. When the insoluble fraction (not extracted by a mixture of CHCl3, CH3OH, and H2O) of both alfalfa roots and shoots was fed to rats, more than 86% of the 14C was excreted in the feces and less than 3% remained in the carcass 96 h after treatment. The major radiolabeled metabolites in the urine of the sheep fed 14C shoot were purified by chromatography and identified as the sulfate ester and the glucuronic acid conjugates of isopropyl 4-hydroxycarbanilate. Metabolites in the urine of the sheep treated with [14C]root were tentatively identified as conjugated forms of isopropyl 4-hydroxycarbanilate, isopropyl 2-hydroxycarbanilate, and 4-hydroxyaniline. The combined urine of rats dosed with [14C]shoot and [14C]root contained metabolites tentatively identified as conjugated forms of isopropyl 4-hydroxycarbanilate, isopropyl 2-hydroxycarbanilate, and 4-hydroxyaniline.  相似文献   

14.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   

15.
Intact mitochondria, isolated from red coxal muscle of the American cockroach (Periplaneta americana L.), were incubated in the presence of 1,1,1-trichloro-2,2-bis(4-chloro[14C]phenyl)ethane ([14C]DDT) to isolate a suspected binding site for DDT in the membrane sector of the mitochondrial ATPase. The requirements for the binding of DDT were compared with those for the binding of dicyclohexyl[14C]carbodi-imide([14C]DCCD), a potent inhibitory probe of mitochondrial ATPase activity. [14C]DDT appeared to bind to a proteolipid of the membrane sector, which also binds [14C]DCCD. Exchange experiments, with [14C]DCCD, [14C]DDT and unlabelled DDT at different concentrations, indicated that DDT and DCCD may be acting on a similar protein. This protein may act as the energy transducing protonophore required for the synthesis and hydrolysis of ATP in coupled mitochondria. Inhibition of mitochondrial ATPase activity may be a consequence of DDT and DCCD binding to this proteolipid protonophore, resulting in the disruption of energy transduction in muscle and nerve.  相似文献   

16.
The mineralization and formation of metabolites and nonextractable residues of the herbicide [14C]bromoxyniloctanoate ([14C]3,5-dibromo-4-octanoylbenzonitrile) and the corresponding agent substance [14C]bromoxynil ([14C]3,5-dibromo-4-hydroxybenzonitrile) was investigated in a soil from an agricultural site in a model experiment. The mineralization of maize cell wall bound bromoxynil residues was also investigated in the agricultural soil material. The mineralization of [14C]bromoxynil and [14C]bromoxyniloctanoate in soil within 60 days amounted up to 42 and 49%, respectively. After the experiments, 52% of the originally applied [14C]bromoxynil and 44% of the [14C]bromoxyniloctanoate formed nonextractable residues in soil. Plant cell wall bound [14C]bromoxynil residues were also mineralized to an extent of about 21% within 70 days; the main portion of 76% persisted as nonextractable residues in the soil. In bacterial enrichment cultures and in soil two polar metabolites were observed; one of it could be identified as 3,5-dibromo-4-hydroxybenzoate and the other could be described tentatively as 3,5-dibromo-4-hydroxybenzamide.  相似文献   

17.
Metabolism of [phenyl-14C] and [(2,5) pyrrolidine-14C] cisanilide was investigated in vitro with microsomal preparations from rat liver. Microsomal activity was associated with a mixed-function oxidase system that required O2 and NADPH and was inhibited by CO. Two major ether-soluble metabolites were isolated. They were identified as primary oxidation products: 2-hydroxy-2,5-dimethyl-1-pyrrolidinecarboxanilide (A) and 4′-hydroxy-2,5-dimethyl-1-pyrrolidinecarboxanilide (B). Minor ether-soluble metabolites were also isolated. Precursor product studies and qualitative thin layer chromatography analysis of [pyrrolidine-14C] and methylated [phenyl-14C] hydrolysis products suggested that these metabolites were secondary oxidation products formed from metabolites A or B. One of these metabolites appeared to be the dihydroxy product 2,4′-dihydroxy-2,5-dimethyl-1-pyrrolidinecarboxanilide. Crude microsomal preparations (postmitochondrial supernatant fractions) also formed small quantities (<10%) of polar metabolites. Enzyme hydrolysis with β-glucuronidase (Escherichia coli) indicated that approximately 50% of these metabolites were glucuronides. Similarities and differences in cisanilide oxidation in vivo in plants and in vitro with rat liver microsomal preparations were discussed.  相似文献   

18.
Uptake, movement, and metabolism of unformulated ioxynil and bromoxynil salts were investigated in Matricaria inodora and Viola arvensis. The morphology of these two species did not give rise to different spray retention and contact angles. After 7 days, uptake of [14C]ioxynil-Na reached 8.26% of applied 14C activity in M. inodora and 16.77% of that in V. arvensis compared with 1.54 and 3.83%, respectively, for [14C]bromoxynil-K. Over 98% of the 14C activity detected in the plant after 7 days remained in the treated leaves of V. arvensis following [14C]ioxynil-Na treatment. However, 8.7% of the 14C activity detected in [14C]ioxynil-Na-treated M. inodora was recovered from the apex and developing leaves reflecting a greater translocation. [14C]Bromoxynil-K was more mobile in both species and after 7 days 87.5 and 91.39% were detected in the treated leaves of M. inodora and V. arvensis, respectively. In both species the majority of translocated 14C activity was recovered from the apex and developing leaves. Up to 20% of the applied [14C]ioxynil-Na and [14C]bromoxynil-K was not detected within the treated plant. Extraction of treated plants revealed no detectable metabolic breakdown of ioxynil-Na to halogenated derivatives in either species. However, metabolic breakdown of bromoxynil-K was apparent in V. arvensis. No significant root exudation was detected when [14C]ioxynil-Na and [14C]bromoxynil-K were applied to hydroponically grown S. media and V. arvensis. Losses of 14C activity were due to herbicide volatility or degradation to volatile products on the leaf surface.  相似文献   

19.
The effects of application rate, volume, solvent and soil moisture content on the kinetics of mineralization and degradation, of [14C] permethrin have been studied in a sandy loam soil under standard laboratory conditions. During the incubation period, up to 32 days, the temperature and moisture level of the soil were controlled. Apart from the effects of application rate, which have been widely reported, application volume had the most significant effect on mineralization rate and T1/2. [14C]Permethrin, at a level of a 1 mg kg?1 in the soil, applied in 100 μl of methanol, resulted in the evolution of 14% of the applied radiochemical as [14C] carbon dioxide over 30 days. The same level applied in 1000 μl mineralized at a faster rate, with 30% [14C]carbon dioxide evolved over 30 days. The test chemical applied to soil in methanol mineralized at a significantly faster rate than a similar concentration applied in ethanol. There was no significant difference when comparing applications made using acetonitrile with those using methanol or ethanol. The addition of formulation ingredients resulted in little or no variation in mineralisation rate compared to an equivalent application volume of methanol/water.  相似文献   

20.
The antagonism of haloxyfop-ethoxyethyl (HE) by selected phenoxy herbicides was evaluated through studies of the foliar absorption and translocation of 14C]HE in oat (Avena sativa L.). Uptake of [14C]HE, from simultaneous application in mixture with a phenoxy herbicide, was inhibited by the latter in the order MCPB MCPA2,4-D. In mixtures, the foliar absorption of [14C]HE was reduced more by salts of the phenoxy herbicides than by the corresponding butyl esters. 2,4-D-butyl enhanced uptake of [14C]HE. The application rate of phenoxy herbicides (from 0.5 to 1.5 kg a.e. ha?1) did not affect the uptake of [14]HE, but did influence translocation. Movement of [14C]herbicide out of the treated leaf was less than 5% of the total 14C applied; translocation was significantly reduced by all phenoxy herbicides and was antagonized most by 2,4-D-salt and least by MCPB-butyl. Phenoxy salts invariably reduced [14C]HE translocation more than the corresponding butyl esters. Prior application of phenoxy salts reduced uptake of [14C]HE, but this antagonism was reduced as the time interval between spray applications increased. Translocation of 14C out of the treated leaf was antagonized most by prior application of 2,4-D, and by phenoxy salt formulations. When applied up to 2 days after HE, phenoxy salts reduced uptake, but translocation of 14C was generally unaffected. Les effets antagonistes du 2,4-D, du MCPA et du MCPB sur la pénétration et la migration de l'haloxyfop-éthoxyéthyl dans l'avoine (Avena sativa L.) L'effet antagoniste de plusieurs herbicides de type phénoxy à l'égard de l'haloxyfopéthoxyéthyl (HE) a étéétudié dans des études de pénétration foliaire et de migration du [14C]HE chez l'avoine (Avena sativa L.) Lorsqu'il est appliqué en mélange avec un herbicide phénoxy, la pénétration du [14C]HE est inhibée dans l'ordre suivant: MCPB MCPA 2,4-D. La pénétration foliaire du [14C]HE était davantage réduite par les sels d'herbicides phénoxys que par les esters butyles correspondants. Le 2,4-D butyle augmentait la pénétration du [14C]HE. La dose d'herbicides phénoxys (de 0,5 à 1,5 kg m.a. ha?1) n'affectait pas la pénétration de [14C]HE mais modifiait sa migration. La migration d'herbicide 14C hors de la feuille traitée était inférieure à 5 % de la radioactivité appliquée. Elle était significativement réduite par tous les herbicides phénoxys, le plus par le sel de 2,4-D et le moins par le MCPB-butyle. Les phénoxys sous forme de sels diminuaient toujours la migration du [14C]HE davantage que les esters butyles correspondants. Si l'application de phénoxys sous forme de sel précédait celle de [14C]HE, sa pénétration était réduite mais cet antagonisme était réduit lorsque l'intervalle de temps entre les deux applications était augmenté. La migration de 14C hors de la feuille traitée était le plus diminuée par le 2,4-D et par les phénoxys sous forme de sels. Quand ils étaient appliqués jusqu'à deux jours après [14C]HE, les phénoxys sous forme de sel réduisaient sa pénétration, mais la migration de 14C n'était généralement pas affectée. Antagonistische Wirkung von 2,4-D, MCPA und MCPB auf die Aufnahme und Translokation von Haloxyfop-ethoxyethyl in Hafer (Avena sativa L.) Die antagonistische Beeinflussung von Haloxyfop-ethoxyethyl (HE) durch ausgewählte Phenoxy-Herbizide wurde anhand der Blattaufnahme und Translokation von [14C]HE in Hafer (Avena sativa L.) untersucht. Die Aufnahme von [14C]HE bei gleichzeitiger Anwendung in Mischung mit einem Phenoxy-Herbizid wurde durch die letztgenannten Stoffe in der Reihenfolge MCPB MCPA 2,4-D gehemmt, wobei die Salz-Verbindungen stärker wirkten als die entsprechenden Butylester. 2,4-D-butyl förderte die Aufnahme von [14C]HE. Die Aufwandmenge der Phenoxy-Herbizide (0,5 bis 1,5 kg AS ha?1) blieb ohne Einflus auf die Aufnahme von [14C]HE, beeinflußte aber die Translokation. Aus den behandelten Blättern wurde weniger als 5 % der gesamten [14C]Menge transloziert; die Translokation wurde durch alle PhenoxyHerbizide signifikant reduziert, am meisten durch 2,4-D-Salz, am wenigsten durch MCPB-butyl. Die Salz-Verbindungen verminderten die [14C]HE-Translokation mehr als die entsprechenden Butylester. Eine vorausgehende Behandlung mit den Salz-Verbindungen senkte die Aufnahme von [14C]HE, aber mit zunehmender Zeit zwischen den Anwendungen nahm dieser Antagonis mus ab. Hierbei war der Einfluß von 2,4-D und von den Salz-Verbindungen am stärksten. Wurden diese Stoffe bis zu 2 Tagen nach HE ausgebracht, beeinträchtigten sie die Aufnahme, jedoch im allgemeinen nicht die Translokation von 14C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号