首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first step in the infection of human T lymphocytes by human immunodeficiency virus type 1 (HIV-1) is attachment to the target cell receptor, the CD4 antigen. This step may be vulnerable to attack by antibodies, chemicals, or small peptides. Dextran sulfate (molecular weight approximately 8000), which has been given to patients as an anticoagulant or antilipemic agent for more than two decades, was found to block the binding of virions to various target T lymphocytes, inhibit syncytia formation, and exert a potent inhibitory effect against HIV-1 in vitro at concentrations that may be clinically attainable in human beings. This drug also suppressed the replication of HIV-2 in vitro. These observations could have theoretical and clinical implications in the strategy to develop drugs against HIV types 1 and 2.  相似文献   

2.
Identification of the fusion peptide of primate immunodeficiency viruses   总被引:48,自引:0,他引:48  
Membrane fusion induced by the envelope glycoproteins of human and simian immunodeficiency viruses (HIV and SIVmac) is a necessary step for the infection of CD4 cells and for the formation of syncytia after infection. Identification of the region in these molecules that mediates the fusion events is important for understanding and possibly interfering with HIV/SIVmac infection and pathogenesis. Amino acid substitutions were made in the 15 NH2-terminal residues of the SIVmac gp32 transmembrane glycoprotein, and the mutants were expressed in recombinant vaccinia viruses, which were then used to infect CD4-expressing T cell lines. Mutations that increased the overall hydrophobicity of the gp32 NH2-terminus increased the ability of the viral envelope to induce syncytia formation, whereas introduction of polar or charged amino acids in the same region abolished the fusogenic function of the viral envelope. Hydrophobicity in the NH2-terminal region of gp32 may therefore be an important correlate of viral virulence in vivo and could perhaps be exploited to generate a more effective animal model for the study of acquired immunodeficiency syndrome.  相似文献   

3.
Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response.  相似文献   

4.
Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein   总被引:28,自引:0,他引:28  
The human immunodeficiency virus type 1 (HIV-1) uses the CD4 protein as a receptor for infection of susceptible cells. A candidate structure for the HIV-1 binding site on the CD4 protein was identified by epitope mapping with a family of eight functionally distinct CD4-specific monoclonal antibodies in conjunction with a panel of large CD4-derived synthetic peptides. All of the seven epitopes that were located reside within two immunoglobulin-like disulfide loops situated between residues 1 and 168 of the CD4 protein. The CD4-specific monoclonal antibody OKT4A, a potent inhibitor of HIV-1 binding, recognized a site between residues 32 and 47 on the CD4 protein. By analogy to other members of the immunoglobulin superfamily of proteins, this particular region has been predicted to exist as a protruding loop. A synthetic analog of this loop (residues 25 to 58) showed a concentration-dependent inhibition of HIV-1-induced cell fusion. It is proposed that a loop extending from residues 37 to 53 of the CD4 protein is a binding site for the AIDS virus.  相似文献   

5.
Enhancement of SIV infection with soluble receptor molecules   总被引:27,自引:0,他引:27  
The CD4 receptor on human T cells has been shown to play an integral part in the human immunodeficiency virus type 1 (HIV-1) infection process. Recombinant soluble human CD4 (rCD4) was tested for its ability to inhibit SIVagm, an HIV-like virus that naturally infects African green monkeys, in order to define T cell surface receptors critical for SIVagm infection. The rCD4 was found to enhance SIVagm infection of a human T cell line by as much as 18-fold, whereas HIV-1 infection was blocked by rCD4. Induction of syncytium formation and de novo protein synthesis were observed within the first 24 hours after SIVagm infection, whereas this process took 4 to 6 days in the absence of rCD4. This enhancing effect could be inhibited by monoclonal antibodies directed to rCD4. The enhancing effect could be abrogated with antibodies from naturally infected African green monkeys with inhibitory titers of from 1:2,000 to 1:10,000; these antibodies did not neutralize SIVagm infection in the absence of rCD4. Viral enhancement of SIVagm infection by rCD4 may result from the modulation of the viral membrane through gp120-CD4 binding, thus facilitating secondary events involved in viral fusion and penetration.  相似文献   

6.
A strategy, termed homolog-scanning mutagenesis, was used to identify the epitopes on human growth hormone (hGH) for binding to its cloned liver receptor and eight different monoclonal antibodies (Mab's). Segments of sequences (7 to 30 residues long) that were derived from homologous hormones known not to bind to the hGH receptor or Mab's, were systematically substituted throughout the hGH gene to produce a set of 17 chimeric hormones. Each Mab or receptor was categorized by a particular subset of mutant hormones was categorized by a particular subset of mutant hormones that disrupted binding. Each subset of the disruptive mutations mapped within close proximity on a three-dimensional model of hGH, even though the residues changed within each subset were usually distant in the primary sequence. The mapping analysis correctly predicted those Mab's which could or could not block binding of the receptor to hGH and further suggested (along with other data) that the folding of these chimeric hormones is like that of HGH. By this analysis, three discontinuous polypeptide determinants in hGH--the loop between residues 54 and 74, the central portion of helix 4 to the carboxyl terminus, and to a lesser extent the amino-terminal region of helix 1--modulate binding to the liver receptor. Homolog-scanning mutagenesis should be of general use in identifying sequences that cause functional variation among homologous proteins.  相似文献   

7.
Human T-lymphotropic virus type III (HTLV-III) or lymphadenopathy-associated virus (LAV) is tropic for human T cells with the helper-inducer phenotype, as defined by reactivity with monoclonal antibodies specific for the T4 molecule. Treatment of T4+ T cells with monoclonal antibodies to T4 antigen blocks HTLV-III/LAV binding, syncytia formation, and infectivity. Thus, it has been inferred that the T4 molecule itself is a virus receptor. In the present studies, the surfaces of T4+ T cells were labeled radioactively, and then the cells were exposed to virus. After the cells were lysed, HTLV-III/LAV antibodies were found to precipitate a surface protein with a molecular weight of 58,000 (58K). By blocking and absorption experiments, this 58K protein was identified as the T4 molecule. No cell-surface structures other than the T4 molecule were involved in the antibody-antigen complex formation. Two monoclonal antibodies, each reactive with a separate epitope of the T4 molecule, were tested for their binding capacities in the presence of HTLV-III/LAV. When HTLV-III/LAV was bound to T4+ T cells, the virus blocked the binding of one of the monoclonal antibodies, T4A (OKT4A), but not of the other, T4 (OKT4). When HTLV-III/LAV was internally radiolabeled and bound to T4+ T cells which were then lysed, a viral glycoprotein of 110K (gp110) coprecipitated with the T4 molecule. The binding of gp110 to the T4 molecule may thus be a major factor in HTLV-III/LAV tropism and may prove useful in developing therapeutic or preventive measures for the acquired immune deficiency syndrome.  相似文献   

8.
Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.  相似文献   

9.
The human immunodeficiency virus: infectivity and mechanisms of pathogenesis   总被引:204,自引:0,他引:204  
Infection with the human immunodeficiency virus (HIV) results in a profound immunosuppression due predominantly to a selective depletion of helper/inducer T lymphocytes that express the receptor for the virus (the CD4 molecule). HIV also has tropism for the brain leading to neuropsychiatric abnormalities. Besides inducing cell death, HIV can interfere with T4 cell function by various mechanisms. The monocyte serves as a reservoir for HIV and is relatively refractory to its cytopathic effects. HIV can exist in a latent or chronic form which can be converted to a productive infection by a variety of inductive signals.  相似文献   

10.
Chemokine receptors serve as portals of entry for certain intracellular pathogens, most notably human immunodeficiency virus (HIV). Myxoma virus is a member of the poxvirus family that induces a lethal systemic disease in rabbits, but no poxvirus receptor has ever been defined. Rodent fibroblasts (3T3) that cannot be infected with myxoma virus could be made fully permissive for myxoma virus infection by expression of any one of several human chemokine receptors, including CCR1, CCR5, and CXCR4. Conversely, infection of 3T3-CCR5 cells can be inhibited by RANTES, anti-CCR5 polyclonal antibody, or herbimycin A but not by monoclonal antibodies that block HIV-1 infection or by pertussis toxin. These findings suggest that poxviruses, like HIV, are able to use chemokine receptors to infect specific cell subtypes, notably migratory leukocytes, but that their mechanisms of receptor interactions are distinct.  相似文献   

11.
Cell fusion (syncytium formation) is a major cytopathic effect of infection by human immunodeficiency virus (HIV) and may also represent an important mechanism of CD4+ T-cell depletion in individuals infected with HIV. Syncytium formation requires the interaction of CD4 on the surface of uninfected cells with HIV envelope glycoprotein gp120 expressed on HIV-infected cells. However, several observations suggest that molecules other than CD4 play a role in HIV-induced cell fusion. The leukocyte adhesion receptor LFA-1 is involved in a broad range of leukocyte interactions mediated by diverse receptor-ligand systems including CD4-class II major histocompatibility complex (MHC) molecules. Possible mimicry of class II MHC molecules by gp120 in its interaction with CD4 prompted an examination of the role of LFA-1 in HIV-induced cell fusion. A monoclonal antibody against LFA-1 completely inhibited HIV-induced syncytium formation. The antibody did not block binding of gp120 to CD4. This demonstrates that a molecule other than CD4 is also involved in cell fusion mediated by HIV.  相似文献   

12.
The envelope of the human immunodeficiency virus type 1 (HIV-1) plays a central role in the process of virus entry into the host cell and in the cytopathicity of the virus for lymphocytes bearing the CD4 molecule. Mutations that affect the ability of the envelope glycoprotein to form syncytia in CD4+ cells can be divided into five groups: those that decrease the binding of the envelope protein to the CD4 molecule, those that prevent a post-binding fusion reaction, those that disrupt the anchorage of the envelope glycoprotein in the membrane, those that affect the association of the two subunits of the envelope glycoprotein, and those that affect post-translational proteolytic processing of the envelope precursor protein. These findings provide a functional model of the HIV envelope glycoprotein.  相似文献   

13.
Human CD4 binds immunoglobulins   总被引:5,自引:0,他引:5  
T cell glycoprotein CD4 binds to class II major histocompatibility molecules and to the human immunodeficiency virus (HIV) envelope protein gp120. Recombinant CD4 (rCD4) bound to polyclonal immunoglobulin (Ig) and 39 of 50 (78%) human myeloma proteins. This binding depended on the Fab and not the Fc portion of Ig and was independent of the light chain. Soluble rCD4, HIV gp120, and sulfated dextrans inhibited the CD4-Ig interaction. With the use of a panel of synthetic peptides, the region critical for binding to Ig was localized to amino acids 21 to 38 of the first extracellular domain of CD4. CD4-bound antibody (Ab) complexed with antigen approximately 100 times better than Ab alone. This activity may contribute to the Ab-mediated enhancement of cellular HIV interaction that appears to depend on a trimolecular complex of HIV, antibodies to gp120, and CD4.  相似文献   

14.
Immunization with either an Escherichia coli recombinant segment of the human T-cell lymphotropic virus (HTLV-III/LAV) envelope protein (gp 120) or with deglycosylated gp 120 envelope protein produced antibodies that neutralize HTLV-III/LAV infection in vitro. Virus neutralization titers of these antisera were equivalent to those obtained with purified native gp120 as immunogen. This localizes at least one class of neutralizing epitopes to the carboxyl-terminal half of the molecule. In addition, native gp120 prevented HTLV-III/LAV--mediated cell fusion, whereas the recombinant gp120 fragment did not. This shows that although glycosylation is not required for induction of neutralizing antibodies, it may be important for interaction with CD4, the virus receptor. A segment of the HTLV-III/LAV envelope produced in E. coli may be an important ingredient of a vaccine for acquired immune deficiency syndrome.  相似文献   

15.
Although the CD4 molecule is the principal cellular receptor for the human immunodeficiency virus (HIV), several CD4-negative cell lines are susceptible to infection with one or more HIV strains. These findings indicate that there are alternate modes of viral entry, perhaps involving one or more receptor molecules. Antibodies against galactosyl ceramide (galactocerebroside, or GalC) inhibited viral internalization and infection in two CD4-negative cell lines derived from the nervous system: U373-MG and SK-N-MC. Furthermore, recombinant HIV surface glycoprotein gp120 bound to GalC but not to other glycolipids. These results suggest a role for GalC or a highly related molecule in HIV entry into neural cells.  相似文献   

16.
Infection by human immunodeficiency virus type-1 (HIV-1) is initiated when its envelope protein, gp120, binds to its receptor, the cell surface glycoprotein CD4. Small molecules, termed N-carbomethoxycarbonyl-prolyl-phenylalanyl benzyl esters (CPFs), blocked this binding. CPFs interacted with gp120 and did not interfere with the binding of CD4 to class II major histocompatibility complex molecules. One CPF isomer, CPF(DD), preserved CD4-dependent T cell function while inhibiting HIV-1 infection of H9 tumor cells and human T cells. Although the production of viral proteins in infected T cells is unaltered by CPF(DD), this compound prevents the spread of infection in an in vitro model system.  相似文献   

17.
Cytolytic T lymphocyte (CTL) responses were evaluated in humans immunized with recombinant human immunodeficiency virus type 1 (HIV) envelope glycoprotein gp160. Some vaccinees had gp160-specific CTLs that were shown by cloning to be CD4+. Although induced by exogenous antigen, most gp160-specific CTL clones also recognized gp160 synthesized endogenously in target cells. These clones lysed autologous CD4+ T lymphoblasts infected with HIV. Of particular interest were certain vaccine-induced clones that lysed HIV-infected cells, recognized gp160 from diverse HIV isolates, and did not participate in "innocent bystander" killing of noninfected CD4+ T cells that had bound gp120.  相似文献   

18.
The MHC-binding and gp120-binding functions of CD4 are separable   总被引:18,自引:0,他引:18  
CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.  相似文献   

19.
A new isolate of the human immunodeficiency virus type 2, designated HIV-2UC1, was recovered from an Ivory Coast patient with normal lymphocyte numbers who died with neurologic symptoms. Like some HIV-1 isolates, HIV-2UC1 grows rapidly to high titers in human peripheral blood lymphocytes and macrophages and has a differential ability to productively infect established human cell lines of lymphocytic and monocytic origin. Moreover, infection with this isolate also appears to involve the CD4 antigen. However, unlike other HIV isolates, HIV-2UC1 does not cause cytopathic effects in susceptible T cells nor does it lead to loss of CD4 antigen expression on the cell surface. These results indicate that HIV-2 may be found in individuals with neurologic symptoms and that the biological characteristics of this heterogeneous subgroup can differ from those typical of HIV-1.  相似文献   

20.
Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV   总被引:75,自引:0,他引:75  
Cells infected with the human immunodeficiency virus (HIV) show decreased expression of the 58-kilodalton T4 (CD4) antigen on their surface. In this study, the effect of HIV infection on the synthesis of T4 messenger RNA (mRNA) and protein products was evaluated in T-cell lines. Metabolically labeled lysates from the T4+ cell line Sup-T1 were immunoprecipitated with monoclonal antibodies to T4. Compared with uninfected cells, HIV-infected Sup-T1 cells showed decreased amounts of T4 that coprecipitated with both the 120-kilodalton viral envelope and the 150-kilodalton envelope precursor molecules. In four of five HIV-producing T-cell lines studied, the steady-state levels of T4 mRNA were also reduced. Thus, the decreased T4 antigen on HIV-infected cells is due to at least three factors: reduced steady-state levels of T4-specific mRNA, reduced amounts of immunoprecipitable T4 antigen, and the complexing of available T4 antigen with viral envelope gene products. The data suggested that the T4 protein produced after infection may be complexed with viral envelope gene products within infected cells. Retroviral envelope-receptor complexes may thus participate in a general mechanism by which receptors for retroviruses are down-modulated and alterations in cellular function develop after infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号