首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reforestation of degraded tropical sites is often hampered by soils of high acidity, high aluminum saturation, and low fertility. To evaluate the possibility of cultivating Acacia species on such soils, a study was conducted at Waiawa, HI, to test growth under conditions of (1) high acidity (primarily aluminum) and nutrient stress, and (2) no acidity stress and high nutrient availability. Twelve Acacia species, including the important native Hawaiian species Acacia koa, were established on a Ustic Kanhaplohumult soil. The experimental design was a split plot with two fertility treatments as the main plots and the 12 Acacia species as subplots. The treatments were: low fertility (F0; 143 kg ha−1 14-14-14 plus micronutrients) and high fertility (F1; 8 Mg ha−1 lime, 143 kg ha−1 14-14-14 plus micronutrients, 200 kg P ha−1, and 77 kg K ha−1). Acacia angustissima, Acacia aulacocarpa, Acacia auriculiformis, Acacia cincinnata, Acacia crassicarpa, Acacia implexa, Acacia koa, and Acacia mangium grew significantly faster under the high fertility treatment. Three species, A. cincinnata, A. crassicarpa, and A. mangium, are recommended for planting on infertile acid soils. The volume of A. koa was increased ten-fold by the high fertility treatment. Additional study on koa's nutritional requirements is suggested in order to identify the nutrients contributing to this increased growth.  相似文献   

2.
Two thinning and fertilization studies, the first in 1969 and the second in 1971, were established to evaluate the question of nutrient limitation to tree growth and the consequences of stand manipulation of soil moisture supply. Fertilizer was applied yearly for the first 5 years in both studies; growth response has been measured through 1987. Results indicate that thinning is necessary to obtain a growth response to fertilizer applied at the rate of 111 kg nitrogen ha−1. The response to fertilization after fertilization ended lasted for 4 years in plots thinned to 800 stems ha−1, while a significant response continued for only 2 years in plots thinned to 1600 stems ha−1.

A soil water-balance model was calibrated for the control and treatment plots of these two studies. Soil water-deficits were estimated and correlated with yearly average basal-area growth per tree. Results indicated that there is a correlation between seasonal soil-moisture deficit and growth during the years when soil moisture was measured for the unthinned control plots (r2 = −0.787, P = 0.002) but not for the thinned and fertilized plots (r2 = −0.652, P = 0.057).  相似文献   


3.
In the Murray-Darling basin, irrigation of tree crops is being evaluated as an alternative method for the disposal of municipal effluent. A study was carried out at Wodonga in which seven tree species were irrigated with effluent for a period of 4 years. Irrigation was calculated weekly on the basis of pan evaporation and rainfall during the preceding week. Annual irrigation varied between 1190 mm and 1750 mm with a total input over the 4-year-period of 4940 mm.

Height and diameter growth varied significantly between species. At age 4, mean dominant height of Eucalyptus grandis, E. saligna and Populus deltoides × P. nigra ranged from 14.3 to 15.0 m compared with 6.6 to 9.8 m for Casuarina cunninghamiana, E. camaldulensis, P. deltoides and Pinus radiata. Wood production of the faster-growing species (E. grandis and E. saligna) was approximately 130 m3 ha−1, or around 32 m3 ha−1 year−1 over a 4-year period. This was nearly three-fold the production of the other native species and twice that of Pi. radiata. Volume growth of P. deltoides × P. nigra (85 m3 ha−1) was significantly greater than that of P. deltoides (42 m3 ha−1).

Accumulation of nutrients in the above-ground biomass varied significantly between species and ranged from 24 to 41 g m−2 for N, 2.6 to 5.9 g m−2 for P, 0.5 to 9.2 g m−2 for Na, 12 to 27 g m−2 for K, 7 to 52 g m−2 for Ca and 3.1 to 7.9 g m−2 for Mg. Nutrient accumulation was generally greater in species with a comparatively large crown biomass relative to stem size such as C. cunninghamiana and E. camadulensis. Average nutrient accumulation by trees as a percentage of input from effluent was estimated at 19% for N, 9% for P, 1% for Na, 14% for K, 52% for Ca and 32% for Mg.

Results of this study indicate the importance of selecting species on the basis of not only growth but also nutrient accumulation to optimise renovation of wastewater by tree plantations.  相似文献   


4.
Periodic variations in the concentration, deposition and canopy impact of different forms of N on annual N deposition through rainfall, throughfall and stemflow in 5 and 8 year old stands of Casuarina equisetifolia were studied. Throughfall and stemflow ranged from 70 to 76% and 5–6% of annual precipitation respectively. The total N deposition by rainfall was 11.1 kg ha−1 year−1, and by throughfall was 13.6 kg ha−1 year−1 and 16.5 kg ha−1 year−1 in 5-year-old and 8-year old plantations, respectively. The quantities of N deposited through stemflow in the two plantations were nearly identical, accounting for 1.6 kg ha−1 year−1. Observations of the monthly deposition of NH4,N, NO3-N, Kjeldahl-N and organic-N revealed that maximum deposition occurred in July and the minimum in September. Organic-N deposition was 17% less (5-year) than the rainwater content. Net deposition of N, as an effect of canopy, was 7–8.7 kg ha−1 year−1, which was added directly to the available nutrient pool of soil.  相似文献   

5.
Tree vegetation and size structure was sampled in a miombo woodland area in E Tanzania and related to environmental factors, particularly soil and disturbance history. A total of 86 tree species was found. Four plant communities were distinguished through multivariate classification. Community 1 was dominated by Brachystegia boehmii, Brachystegia bussei and Julbernardia globiflora, and community 2 by B. boehmii and Brachystegia spiciformis. Community 1 was found on grey, eroded soil and community 2 on red, residual soil, a fact that opens up possibilities to use soil signals of satellite data for vegetation mapping. Community 3 is heavily disturbed miombo woodland near villages and community 4 was found on more clayey soil where miombo woodland is not expected.

At our 42 sampled sites, density ranged from 74 to 1041 individuals ha−1 and basal area from 3.9 to 16.7 m2 ha−1. Regeneration is generally good but large sized trees are less prominent in communities 3 and 4 due to harvesting. With reduced disturbance miombo species may rapidly resume dominance in community 3. A higher than expected representation by the size class 30–40 (−50) cm dbh in community 2 is probably related to disturbance history. Prevalence of certain species (Pseudolachnostylis maprouneifolia, Pterocarpus angolensis and Diplorhynchos condylocarpon) may be related to frequent fires. Selective logging will soon cause extinction of Dalbergia melanoxylon, whereas Pterocarpus angolensis still has good regeneration, possibly because individuals below logging size have a good seed set.

A way to get an easy overview of size classes in all species in an area using PCA is discussed.  相似文献   


6.
The accumulation of above-ground biomass and the seasonal patterns of leaf-area development, foliar nutrient concentrations and tree and soil water-status have been measured for fertilised, irrigated, and control stands of Pinus radiata D. Don growing on a low-productivity site, average annual precipitation of 790 mm, near Canberra in southeastern Australia. In the second growing-season after treatments commenced, projected leaf-area index reached peak values of 7 on the irrigated/fertilised stands compared with approximately 5 on the other stands. Average canopy nitrogen concentration (dry-weight basis) varied across the treatments from 9 to 17 mg g−1. Measurements of soil and tree water-status over a 2-year period indicated that stands which were not irrigated experienced summer droughts of up to 4 months duration.

Annual volume production measured over the 2-year period ranged from 17 to 45 m3 ha−1. The extent to which this variation could be attributed to differences in leaf area, rats of photosynthesis, duration of the period of positive net photosynthesis, and hence growth, was analysed in terms of a process-based model of stand growth dependent on climate and soil water-balance.

Annual canopy net photosynthesis simulated by the model ranged from 18 t carbon ha−1 for the control stand to 38 t ha−1 for the irrigated/fertilised stands. Simulations indicated that 67% of this difference could be attributed to the role of irrigation in extending the period of active growth. The additional leaf area carried by the irrigated/fertilised stands contributed a further 23%, while differences in rates of photosynthesis, related to nitrogen nutrition, explained the remaining 10%.  相似文献   


7.
Geochemical processes in central European oak ecosystems (Quercus petraea and Quercus robur) suffering stand decline were studied in two oak stands of the Weinviertel, Lower Austria, about 30 km north of Vienna. Stores of chemical elements were determined by soil and biomass inventories. Deposition input was monitored over a 2 year period by bulk sampling of throughfall. Soil solution chemistry was studied by tension lysimetry over a 1 year period. Mineral nutrition of oak was judged by foliar analysis. Bulk deposition rates were 10–12 kg N ha−1 year−1, and 15–20 kg S ha−1 year−1. Total annual nitrogen gain is high. Both systems lose calcium and magnesium. Foliar nutrient levels indicate sufficient nutrition with main mineral nutrients, except for magnesium, which is in moderately low supply. Based on these findings, the hypothesis that pollutant deposition has been the cause of a sudden and severe appearance of decline symptoms in the second half of the 1980s must be dismissed. The data on deposition rates and ecosystem nutrient status, however, indicate that the soil of both systems is acidifying, nitrogen stores are increasing, and magnesium pools are depleted. If deposition of pollutants continues at current rates, a slow but steady degradation of many oak ecosystems in the Austrian Weinviertel is inevitable.  相似文献   

8.
Annual litter fall of Acacia mangium in the period of September 1995 to August 1996 was estimated at 5939 kg ha−1 year−1 and from September 1995 to August 1996 at 6048 kg ha−1 year−1, with the highest seasonal production in the dry season. The litter fall was dominated mainly by leaves, 4446 kg (75%) and 4137 kg (68%), respectively. Seed production in the litter fall was estimated at 42.4 kg ha−1 year−1 (4.1 million seeds ha−1) and 39 kg ha−1 year−1 (3.8 million seeds ha−1), with the highest in the dry season from June to October. The accumulated litter fall in the forest floor together with shrubs and grass provide a high fuel load, increasing fire risk.  相似文献   

9.
The avifaunas of a 30–40-year-old secondary forest and a 25–30-year-old Lophostemon confertus plantation were compared using the point count method over 1 year. Similar total numbers of bird species were recorded in the secondary forest (44 spp.) and the plantation (46 spp.) but many of those in the plantation were typical of non-forest habitats in Hong Kong and the number of forest-associated species was higher in the secondary forest. The mean total bird density in the secondary forest (44.5 ha−1) was much higher than in the plantation (12.4 ha−1). The Great Tit Parus major, Light-vented Bulbul Pycnonotus chinensis and Japanese White-eye Zosterops japonica were the three most abundant species at both the sites but their mean annual densities were all much higher in the secondary forest. There were relatively more granivores and insectivores and fewer insectivore-frugivores in the plantation. Twelve species were confirmed breeding in the secondary forest and none in the plantation.  相似文献   

10.
A model to project forest growth in the Terra Firme forests of the eastern Amazon is described. It is based on 12–17 years measurements from experimental plots at Jarí and Tapajós. Forest stands are represented by cohorts of species group, diameter, and defect. There are 54 species groups, with a robust diameter increment function fitted to each, tables of mortality by crown and defect status, and recruit lists by disturbance level and locality. Stand level functions partition trees by crown status, and modify growth for stand density. Recruitment is a function of basal-area losses. Evaluation compares model performance with two experiments involving heavy felling in Tapajos State Forest. At one site, total bole volume growth of all species over 45 cm DBH was 2.56 m3 ha−1 year−1 over 17 years, whereas the model projected 3.13 m3 ha−1 year−1. At the other site, actual growth over 12 years was 0.39 m3 ha−1 year−1, with the model giving an identical result. Both felled and control plots are compared in the study and accurately simulated. Some weaknesses in the model are discussed.  相似文献   

11.
Management scenarios with rotation lengths of 20 and 30 years were developed for different site qualities (high, medium and low) under two different management options (high individual tree growth versus high stand growth) for teak (Tectona grandis L.f.) in Costa Rica. The scenarios are based on data collected in different regions in Costa Rica, representing different site conditions, offering a variety of possible management options for high-quality teak yield.

Three competition indices were used for modeling the competition and for the definition of intensities and the plantation age at thinning. The maximum site occupation (MSO) and the Reineke density index (RDI) provide conservative stand density management limits, resulting in the need to execute several thinning frequently. The competition factor (CF) matches the field observations and seems to be more appropriate for the growth characteristics of the species.

Final stand densities varied between 120 and 447 trees ha−1, with mean diameter at breast height (dbh) of 24.9–47.8 cm, and mean total heights between 23.0 and 32.4 m, depending on rotation length and site quality. The mean annual increment of total volume (MAIVol) at the end of the rotation varied from 11.3 to 24.9 m3 ha−1 year−1, accumulating a total volume over rotation of 268–524 m3 ha−1.

The most suitable scenario for teak plantations for high-quality sites is the 30-year-rotation scenario with five thinnings of intensities between 20 and 50% (of the standing trees) at the ages of 4, 8, 12, 18 and 24 years. After the sectioning of the merchantable stem in 4-m length logs, the merchantable volume varied between 145 and 386 m3 ha−1, with an estimated heartwood volume of 45–195 m3 ha−1, both depending on rotation length and site quality.  相似文献   


12.
A field experiment was conducted to investigate the influence of various rain water harvesting and conservation techniques on soil moisture storage, growth and biomass production of Azadirachta indica (neem) in the Indian desert. The treatments were as follows: control; weed removal; weed removal plus soil working; saucers of 1.0 m diameter; saucers of 1.5 m diameter; saucers of 1.5 m diameter covered with mulch around the trees; bunding around each tree in a checkerboard design; inter-row slopes of 20%. The treatment with inter-row slopes of 20% produced the highest amount of soil moisture storage, a four times increase in total biomass of a 26-month-old neem plantation (from 1.69 to 6.39 t ha−1), a 4.5 times increase in root mass (from 0.43 to 1.92 t ha−1) and a 70% increase in tree height, as well as an appreciable enhancement in all the growth parameters. The treatment with larger saucers (1.5 m diameter) combined with a surface mulch was equally effective. Growth increases owing to the other water harvesting treatments were lower, though significantly better when compared with the control. The various treatments significantly improved the water use efficiency of neem.  相似文献   

13.
A process-based model is described and applied to a range of Pinus radiata D. Don stands, aged 9–12 years, growing on stabilised sand dunes in a stocking × fertiliser experiment in Woodhill State Forest, New Zealand. The model requires inputs of daily weather data (maximum and minimum air temperatures and rainfall), physical characteristics of the site (longitude, latitude, rootzone depth and relationship between root-zone soil matric potential and volumetric water-content) and crop (stocking, crown dimensions and leaf-area index) and crop physiological parameters (e.g., maximum stomatal conductance). The model was used to simulate components of the forest water-balance and annual net photosynthesis for a defined crop canopy architecture. Simulated daily root-zone water storage in both open and closed canopy stands generally agreed with monthly measurements made over a complete year. Simulated net annual photosynthesis ranged from 23 to 33 t C ha−1 year−1 and comparison with measured stem-volume increments of 12–38 m3 ha−1 year−1 over the same time periods resulted in a strong positive correlation. Ratios of stem-volume increment to net photosynthesis suggested that fertilised and unfertilised stands had a 26 and 14%, respetively, allocation of C to stem growth. Simulations using weather data for a dry year with 941 mm year−1 rainfall indicated that annual net photosynthesis and transpiration of fully stocked stands were reduced by 41 and 45%, respectively, compared to those in a wet year with 153 mm year−1 rainfall. Operational applications of the model to forest management in quantifying environmental requirements for stand growth and examining silvicultural alternatives are discussed.  相似文献   

14.
Shoot biomass production was estimated in two Estonian short rotation forest (SRF) plantations during the first rotation cycle (1994–1997). The plantations were established with six clones of Salix viminalis and one clone of Salix dasyclados in 1993. The plantation, located on well-composed organic soil, was characterised by higher productivity (6.2 t DM ha−1 per year) compared with the plantation on poor mineral soil (5.2 t DM ha−1 per year). Fertilisation of the latter plantation increased its productivity to 11.0 t DM ha−1 per year, which is the value close to a predicted maximum for Swedish climatic conditions. In fertilised plots, clone 81090 of S. dasyclados was characterised by the highest productivity among all clones, but also by high stool mortality. Clones 78021 and 78183 of S. viminalis had the most stable and relatively high productivity and can therefore be recommended as promising planting material for SRF in Estonia.

When estimating production, the use of proper allometric relations between shoot dry weight and diameter is of crucial importance. Additional measurements on 1-year-old shoots in 1998 showed that besides shoot age also clone and fertilisation are significant factors influencing allometric relations. The dry weight of fertilised shoots was about 10% lower than that of non-fertilised shoots of the same height and diameter. Older shoots were heavier than younger shoots with a similar diameter.  相似文献   


15.
Clonal plantations of Eucalyptus have been introduced since 1978 on savanna soils of the coastal plains of Congo. Atmospheric deposition, canopy exchange and transfer through the soil were estimated on the whole rooting depth (6 m) over 3 years, in an experimental design installed in a native savanna and an adjacent 6-year-old Eucalyptus plantation. Complementary measurements after planting the experimental savanna made it possible to establish input–output budgets of nutrients for the whole Eucalyptus rotation and to compare them with the native savanna ecosystem.

In this highly-weathered soil, atmospheric deposits and symbiotic N fixation by a legume species balanced the nutrient budgets in savanna, despite large losses during annual burnings. After afforestation, weeding in the Eucalyptus stands eliminated the leguminous species responsible for a N input by symbiotic fixation of about 20 kg ha−1 year−1. Whereas the budgets of P, K, Ca and Mg were roughly balanced, the current silviculture led to a deficit of about 140 kg N ha−1 in the soil, throughout a 7-year rotation. This deficit was large relative to the pool of total N in the upper soil layer (0–50 cm), which was about 2 t ha−1. Therefore, the sustainability of Congolese plantations will require an increase in N fertilizer inputs over successive rotations to balance the N budget. These results were consistent with field trials of fertilization. Practical consequences of these budgets were identified, in order to: (i) direct field trials of fertilization, (ii) select appropriate methods of soil preparation, weed control and harvest, (iii) highlight the importance of fire prevention in this area, and (iv) support the implementation of field trials aiming at introducing a biological nitrogen fixing understorey in Eucalyptus stands.  相似文献   


16.
Fast growth tree plantations and secondary forests are considered highly efficient carbon sinks. In northwest Patagonia, more than 2 million ha of rangelands are suitable for forestry, and tree plantation or native forest restoration could largely contribute to climate change mitigation. The commonest baseline is the heavily grazed gramineous steppe of Festuca pallescens (St. Yves) Parodi. To assess the carbon sequestration potential of ponderosa pine (Pinus ponderosa (Dougl.) Laws) plantations and native cypress (Austrocedrus chilensis (Don) Flor. et Boutl.), individual above and below ground biomass models were developed, and scaled to stand level in forests between 600 and 1500 annual rainfall. To calculate the carbon sequestration baseline, the pasture biomass was simulated. Also, soil carbon at two depths was assessed in paired pine-cypress-pasture sample plots, the same as the litter carbon content of both forest types. Individual stem, foliage, branch and root log linear equations adjusted for pine and cypress trees presented similar slopes (P>0.05), although some differed in the elevations. Biomass carbon was 52.3 Mg ha−1 (S.D.=30.6) for pine stands and 73.2 Mg ha−1 (S.D.=95.4) for cypress forests, given stand volumes of 148.1 and 168.4 m3 ha−1, respectively. Soil carbon (litter included) was 86.3 Mg ha−1 (S.D.=46.5) for pine stands and 116.5 Mg ha−1 (S.D.=38.5) for cypress. Root/shoot ratio was 19.5 and 11.4%, respectively. The low r/s value for cypress may account for differences in nutrient cycling and water uptake potential. At stand level, differences in foliage, taproot and soil carbon compartments were highly significative (P<0.01) between both forest types. In pine stands, both biomass and soil carbon were highly explained by the rainfall gradient (r2=0.94). Nevertheless, such a relationship was not found for cypress, possibly due to stand and soil disturbances in sample plots. The carbon baseline estimated in pasture biomass, including litter, was 2.6 Mg ha−1 (S.D.=0.8). Since no differences in soil carbon were found between pasture and both forest types, additionality should be accounted only by biomass. However, the replacement of pasture by pine plantations may decrease the soil carbon storage, at least during the first years. On the other hand, the soil may be a more relevant compartment of sequestered carbon in cypress forests, and if pine plantation replaces cypress forests, soil carbon losses could cause a negative balance.  相似文献   

17.
The aim of this study was to quantify 5-year growth, yield and mortality responses of 9- to 13-year-old naturally regenerated, even-aged paper birch (Betula papyrifera Marsh.) stands to pre-commercial thinning in interior British Columbia. The study included four residual densities (9902–21,807 stems ha−1 (unthinned control), 3000, 1000 and 400 stems ha−1) and four sites with 3-fold within-site replication in a randomised block design. The largest, straightest, undamaged trees were selected to leave during thinning. Thinning reduced stand basal area from 5.90 m2 ha−1 in the control to 2.50, 1.53 and 0.85 m2 ha−1 in the three thinning treatments, representing 42, 26 and 15% of control basal area, respectively. After 5 years, total stand volume per plot remained lower in the three thinning treatments than the control (50.20, 30.07, 18.99 and 11.86 m3 in the control, 3000, 1000 and 400 stems ha−1 treatments), whereas mean stand diameter, diameter increment, height, and height increment were increased by thinning, and top height (tallest 100 trees ha−1) was unaffected. When a select group of crop trees (largest 250 trees ha−1) in the thinning treatments was compared with the equivalent group in the control, there was a significant increase in mean diameter, diameter increment, basal area, basal area increment, and volume increment. Mean height, height increment, top height, and total volume were unaffected by thinning. Crop tree diameter increment was the greatest following thinning to 400 stems ha−1 for all diameter classes. Thinning to 1000 stems ha−1 resulted in lower diameter increment than thinning to 400 stems ha−1 but tended to have higher volume increment. Dominant trees responded similarly to subdominant trees at 400 stems ha−1, but showed the greatest response at 3000 stems ha−1. Results suggest that pre-commercial thinning of 9–13-year-old stands to 1000 stems ha−1 would improve growth of individual trees without seriously under-utilising site resources.  相似文献   

18.
Carapa guianensis Aublet. is a tropical tree with strong multiple-use characteristics, and is valued for both the high quality oil extracted from its seeds and as a timber resource. This study compares the population structure of this economically important rainforest tree in two contrasting forest types: occasionally inundated and terra firme forests. Main study objectives were (a) to assess the density, spatial distribution, and size class structure of C. guianensis in these two forest types and (b) to use patterns of abundance, distribution and demographic structure to help infer key demographic stages or ecological variables that merit special focus for management. Four 400 m × 400 m plots, two in each forest type, were established to determine distribution and density patterns of C. guianensis ≥10 cm diameter at breast height (dbh) at the landscape level, and 32 10 m × 10 m subplots were randomly nested within each of the larger plots to measure individuals <10 cm dbh. Larger individuals (≥10 cm dbh) were found at higher densities in occasionally inundated forest than in terra firme forest: 25.7 trees ha−1 and 14.6 trees ha−1, respectively. Mean density of C. guianensis individuals <10 cm dbh was also higher in occasionally inundated forests, but variation of regeneration density among the subplots was high. Spatial distribution methods revealed a tendency toward clumping in both forest types, and both had similar size class structures, suggesting that both environments are suitable for C. guianensis. This new finding illustrates the potential for C. guianensis management in terra firme forests. High densities and clumped distributions in both forest types are also indices favorable for sustainable species management. Finally, several ecological variables (tree density and reproductive potential) were sufficiently different between terra firme and occasionally inundated forests to recommend stratification by forest type when conducting further studies on key ecological and management variables of C. guianensis.  相似文献   

19.
We quantified structural features and the aboveground biomass of the deciduous conifer, Metasequoia glyptostroboides (Hu and Cheng) in six plantations in central Japan. In order to derive biomass estimates we dissected 14 M. glyptostroboides trees into three structural components (stem wood, branch wood and foliage) to develop allometric equations relating the mass of these components and of the whole tree to diameter at breast height (DBH). We found robust relationships at the branch and whole tree level that allow accurate prediction of component and whole tree biomass. Dominant tree height was similar within five older (>40 years) plantations (27–33 m) and shorter in a 20-year-old plantation (18 m). Average stem diameter varied from 12.8 cm in the youngest stand to greater than 35 cm in the oldest stand.

Metasequoia have relatively compact crowns distributed over the top 30% of the tree although the youngest stand had the deepest crown relative to tree height (up to 38%). At the individual tree level in older stands, 87% of the aboveground biomass was allocated to the stem, 9% to branch wood and 4% to foliage. We found little difference in the relative distribution of above ground biomass among the stands with the exception of lower foliage biomass in larger diameter trees. Total aboveground biomass of the older stands varied twofold, ranging from a maximum of 450 Mg ha−1 in a 42-year-old stand to a minimum of 196 Mg ha−1 in a 48-year-old stand. Total above ground biomass of the 20-year-old stand was 176 Mg ha−1.  相似文献   


20.
A 23 factorial experimental testing the effects of urea (N), superphosphate (P) and two thinning types (diagonal-line thinning and thinning from below) on the basal-are increment of 18-year-old Pinus radiata (D. Don) is described. Although the trees had received localized applications of superphosphate shortly after establishment they were considered at the age of 18 years to be phosphate-deficient because concentrations of phosphorus in the foliage were low (0.065% P). Application of superphosphate (200 kg P ha−1) increased concentrations in the foliage (0.132% P) and increased the 7-year basal-area increment by approximately 70%. No growth response was obtained when urea (476 kg N ha−1) was applied alone. When both fertilizers were applied there was a further increase in basal-area increment of 81% on line-thinned plots and 26% on plots which had been thinned from below. This interaction reversed the normal trend in which plots thinned from below, by virtue of their greater initial basal area, produced 11–16% more increment than those which had been line-thinned.

A model of tree growth using initial basal area and a competition index as independent variables was adequate to describe differences in basal-area growth between thinning types except where urea and superphosphate had both been applied. In the case of N + P-treated plots, the reciprocal of the competition index was required as an additional variable. Analysis of the development of the growth responses over time indicated that application of superphosphate had produced sustained improvement in growth rates but that the response to urea occurred only in some growing-seasons. In line-thinned plots the response to urea in addition to phosphate occurred in the 2nd, 3rd and 4th growing-seasons, but the response occurred only in the 2nd and 4th growing-seasons in plots thinned from below. It is argued that this differential response between thinning types can be attributed to differences in stand density and water availability. In order to maximise the growth response to added nitrogen it is important to reduce competition by paying particular attention to both tree spacing and residual basal area.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号