首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A series of peptides, derived from an ACE inhibitory peptide (VTVNPYKWLP) found in our previous work, were synthesized. Their half maximal inhibition concentrations (IC(50)) for ACE inhibition have been determined. The effect of amino acid sequence on ACE inhibition was discussed on the basis of IC(50) of the synthetic peptides, and the following characteristics of the ACE inhibitory peptide have been clarified. First, the active portion of this peptide for ACE inhibition is KW. Second, the amino acid sequences near this dipeptide (KW) have a strong effect on the inhibitory activity. Especially, the proline residue in the C-terminal end strongly enhanced ACE inhibition. It should be noted that the IC(50) value of KWLP (5.5 μM) is the same as the ACE inhibitory peptide (VTVNPYKWLP) and that the IC(50) value of KW is 7.8 μM. The stability and absorption efficiency in vivo would be significantly improved by shortening the peptide length from 10 amino acids to four amino acids or two amino acids.  相似文献   

2.
On the basis of numerous studies on the mechanism of formation of acrylamide (AA) from asparagine and reducing sugars, the decarboxylated Schiff base [ N-( d-glucos-1-yl)-3'-aminopropionamide] and its corresponding Amadori product [ N-(1-deoxy- d-fructos-1-yl)-3'-aminopropionamide) are considered to be possible direct precursors in addition to 3-aminopropionamide (AP). Furthermore, the mechanism of decarboxylation of the initially formed N-( d-glucos-1-yl)asparagine to generate the above-mentioned precursors also remains to be confirmed. To identify the relative importance of AA precursors, the decarboxylated Amadori product (AP ARP) and the corresponding Schiff base were synthesized and their relative abilities to generate AA under dry and wet heating conditions were studied. Under both conditions, the N-( d-glucos-1-yl)-3'-aminopropionamide had the highest intrinsic ability to be converted into AA. In the dry model system, the increase was almost 4-fold higher than the corresponding AP ARP or AP; however, in the wet system, the increase was 2-fold higher relative to AP ARP but >20-fold higher relative to AP. In addition, to gain further insight into the decarboxylation step, the amino acid/sugar reactions were analyzed by FTIR to monitor the formation of the previously proposed 5-oxazolidinone intermediate known to exhibit a peak in the range of 1770-1810 cm (-1). Spectroscopic studies clearly indicated the formation of an intense peak in the indicated range, the precise wavelength being dependent on the amino acid and the sugar used. The identity of the peak was verified by observing a 40 cm (-1) shift when [(13)C-1]-labeled amino acid was used.  相似文献   

3.
Twenty-three phenolic compounds were isolated from a butanol extract of Canadian maple syrup (MS-BuOH) using chromatographic methods. The compounds were identified from their nuclear magnetic resonance and mass spectral data as 7 lignans [lyoniresinol (1), secoisolariciresinol (2), dehydroconiferyl alcohol (3), 5'-methoxy-dehydroconiferyl alcohol (4), erythro-guaiacylglycerol-β-O-4'-coniferyl alcohol (5), erythro-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol (6), and [3-[4-[(6-deoxy-α-l-mannopyranosyl)oxy]-3-methoxyphenyl]methyl]-5-(3,4-dimethoxyphenyl)dihydro-3-hydroxy-4-(hydroxymethyl)-2(3H)-furanone (7)], 2 coumarins [scopoletin (8) and fraxetin (9)], a stilbene [(E)-3,3'-dimethoxy-4,4'-dihydroxystilbene (10)], and 13 phenolic derivatives [2-hydroxy-3',4'-dihydroxyacetophenone (11), 1-(2,3,4-trihydroxy-5-methylphenyl)ethanone (12), 2,4,5-trihydroxyacetophenone (13), catechaldehyde (14), vanillin (15), syringaldehyde (16), gallic acid (17), trimethyl gallic acid methyl ester (18), syringic acid (19), syringenin (20), (E)-coniferol (21), C-veratroylglycol (22), and catechol (23)]. The antioxidant activities of MS-BuOH (IC50>1000 μg/mL), pure compounds, vitamin C (IC50=58 μM), and a synthetic commercial antioxidant, butylated hydroxytoluene (IC50=2651 μM), were evaluated in the diphenylpicrylhydrazyl (DPPH) radical scavenging assay. Among the isolates, the phenolic derivatives and coumarins showed superior antioxidant activity (IC50<100 μM) compared to the lignans and stilbene (IC50>100 μM). Also, this is the first report of 16 of these 23 phenolics, that is, compounds 1, 2, 4-14, 18, 20, and 22, in maple syrup.  相似文献   

4.
5.
The reaction of the Nalpha-hippuryllysine (BzGK) with fructose was investigated in two model systems to obtain an insight in fructose-induced modification of lysine in bakery products. After BzGK and fructose had been heated in a buffered low-moisture model system (80 degrees C, 60 min, aW = 0.86, pH 7.4), formation of epimeric Heyns compounds Nalpha-hippuryl-Nepsilon-glucosyl-lysine (BzGGlcK) and Nalpha-hippuryl-Nepsilon-mannosyl-lysine (BzGManK) was clearly demonstrated using RP-HPLC with UV as well as MS detection. The Amadori compound Nalpha-hippuryl-Nepsilon-fructosyl-lysine (BzGFruK) was formed in glucose-containing samples. When BzGK was added to the dough of fructose-containing biscuits, the Heyns compounds were detectable after baking at 175 degrees C for 7 min. The yields of the Heyns compounds in the fructose-containing biscuits and the yield of the Amadori compound in the glucose-containing biscuits were determined to 33 and 63%, pointing to the fact that formation of substantial amounts of Heyns products is very likely in fructose-containing bakery products.  相似文献   

6.
Glycation of bovine serum albumin by D-glucose and D-fructose under dry-heating conditions was studied. The reactivities of D-glucose and D-fructose, with respect to their ability to utilize primary amino groups of proteins, to cross-link proteins, to develop Maillard fluorescence, and to reduce protein solubility in the presence and absence of air (molecular oxygen) were investigated. D-Glucose showed a higher initial rate of utilization of primary amino groups than D-fructose, both in the presence and in the absence of oxygen. Subsequent reactions of the Amadori and Heyns rearrangement products, cross-linking, development of Maillard fluorescence, oxidation, and fragmentation, indicated that the alpha-hydroxy carbonyl group of Amadori products is more reactive than the aldehydo group of Heyns products. D-Fructose showed a greater sensitivity than D-glucose toward the presence of oxygen at the initial stages of the Maillard reaction. The presence or absence of oxygen in the glycation mixture did not seem to have an influence on the nature of products generated in the glycation mixtures during the advanced stages of the Maillard reaction.  相似文献   

7.
To isolate and characterize novel angiotensin I-converting enzyme (ACE) inhibitory peptide from loach (Misgurnus anguillicaudatus), six proteases, pepsin, α-chymotrypsin, bromelain, papain, alcalase, and Neutrase, were used to hydrolyze loach protein. The hydrolysate (LPH) generated by bromelain [ratio of enzyme to substrate, 3:1000 (w/w)] was found to have the highest ACE inhibitory activity (IC(50), 613.2 ± 8.3 μg/mL). Therefore, it was treated by ultrafiltration to afford fraction of LPH-IV (MW < 2.5 kDa) with an IC(50) of 231.2 ± 3.8 μg/mL, having higher activity than the other fractions. Then, LPH-IV was isolated and purified by consecutive purification steps of gel filtration chromatography and reverse-phase high-performance liquid chromatography to afford a purified peptide with an IC(50) of 18.2 ± 0.9 μg/mL, an increase of 33.7-fold in ACE inhibitory activity as compared with that of LPH. The purified peptide was identified as Ala-His-Leu-Leu (452 Da) by Q-TOF mass spectrometry and amino acid analyzer. An antihypertensive effect in spontaneously hypertensive rats revealed that oral administration of LPH-IV could decrease systolic blood pressure significantly.  相似文献   

8.
Angiotensin-I-converting enzyme (ACE) inhibitory activity was identified in milk proteins fermented with Lactobacillus (Lb.) helveticus NCC 2765 (Nestle Culture Collection, Vers-chez-les-Blanc, Switzerland). Hydrolyzing sodium caseinate for 1 and 2 h inhibited ACE activity, as measured by an in vitro ACE inhibition test. The hydrolysates with the highest ACE inhibitory potential were fractionated by gel permeation chromatography and their low molecular weight fractions collected. These fractions were subsequently subfractionated by reverse-phase high-pressure liquid chromatography. Several hydrophobic subfractions showed high ACE inhibitory potential, and their peptide composition was determined using an ion trap mass spectrometer equipped with an elctrospray ionization source. Analysis of the low molecular weight fraction identified 14 peptides with known antihypertensive activity and 1 with previously described opioid activity. On the basis of the peptide composition of active subfractions, two potentially active novel sequences were defined, and the following synthetic peptides were synthesized: FVAPFPEVFG (alphaS1 39-48), ENLLRFFVAPFPEVFG (alphaS1 33-48), NENLLRFFVAPFPEVFG (alphaS1 32-48), LNENLLRFFVAPFPEVFG (alphaS1 31-48), NLHLPLPLL (beta 147-155), ENLHLPLPLL (beta 146-155), and VENLHLPLPLL (beta 145-155). The ACE inhibitory potential of these synthetic peptides was assessed, and IC50 values were determined. NLHLPLPLL (beta 147-155), which was the only synthetic peptide also present in the sodium caseinate hydrolysates, and NENLLRFFVAPFPEVFG (alphaS1 32-48) showed the highest inhibition of ACE activity, with IC50 values of 15 and 55 microM, respectively. Furthermore, the stability of all synthetic peptides was assessed using an in vitro model simulating gastric digestion. The beta-casein-derived peptides remained intact following the successive hydrolysis by pepsin and pancreatin, whereas alphaS1-casein-derived peptides were degraded by pepsin.  相似文献   

9.
Incubation of fumonisin B(1) and D-glucose in aqueous solutions resulted in the formation of N-(1-deoxy-D-fructos-1-yl) fumonisin B(1) in addition to the previously reported N-(carboxymethyl) fumonisin B(1). N-(1-Deoxy-D-fructos-1-yl) fumonisin B(1) is the first stable product formed after the Amadori rearrangement of the Schiff base formed by the reaction of the primary amine of fumonisin B(1) and the aldehyde group of D-glucose. N-(1-Deoxy-D-fructos-1-yl) fumonisin B(1) was synthesized by reacting fumonisin B(1) with an excess of D-glucose in methanol and heating for 6 h at 64 degrees C. It was purified using C(18) and strong cation exchange solid-phase extraction cartridges and characterized by nuclear magnetic resonance and liquid chromatography-mass spectrometry. Subsequently, N,N-dimethylformamide was found to be a better reaction solvent, requiring reaction for only 2-3 h at 64 degrees C and eliminating the formation of methyl esters. Alkaline hydrolysis of N-(1-deoxy-D-fructos-1-yl) fumonisin B(1) gave a mixture of hydrolyzed fumonisin B(1) and hydrolyzed N-(carboxymethyl) fumonisin B(1).  相似文献   

10.
A 30 kDa antifungal protein was purified from red cabbage ( Brassica oleracea ) seeds. It exhibited a molecular mass and N-terminal amino acid sequence disinct from those of previously isolated Brassica antifungal proteins. The protocol used entailed ion exchange chromatography on Q-Sepharose and SP-Sepharose followed by fast protein liquid chromatography on Mono S. The protein hindered mycelial growth in Mycosphaerella arachidicola (with an IC50=5 μM), Setospaeria turcica, and Bipolaris maydis. It also inhibited the yeast Candida albicans with an IC50=96 μM. It exerted its antifungal action by permeabilizing the fungal membrane as evidenced by staining with Sytox green. The antifungal activity was stable from pH 3 to 11 and from 0 to 65 °C. It manifested antibacterial activity against Pseudomonas aeruginosa (IC50=53 μM). Furthermore, after 48 h of culture, it suppressed proliferation of nasopharyngeal cancer and hepatoma cells with IC50=50 and 90 μM, respectively.  相似文献   

11.
Electrochemical properties of beta-alanine/carbohydrate Maillard reaction products were measured using a combination platinum/Ag-AgCl (Cl(-)) redox electrode. Changes toward more negative voltages were observed, which were consistent with reductone formation during the course of the Maillard reaction. Using voltage change as a guide, the propensity for reductone formation among various sugars was ribose > xylose approximately arabinose > glucose approximately rhamnose approximately mannose approximately lactose > fructose. Similar electrochemical behavior indicative of reductone formation was observed in the decomposition products of a model Amadori compound, N-(1-deoxyfructos-1-yl)piperidine (1).  相似文献   

12.
Two monohydroxamates of l-aspartic acid beta-hydroxamate (AAH) and l-glutamic acid gamma-hydroxamate (GAH) were used for testing antioxidant and angiotensin converting enzyme (ACE) inhibitory activities in comparison with those of asparagine and glutamine, respectively. The half-inhibition concentrations, IC(50), of scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) were 36 and 48 microM and against superoxide radicals were 18.99 and 6.33 mM, respectively, for AAH and GAH. However, no activities of asparagine and glutamine were found. AAH and GAH also exhibited activities against peroxynitrite-mediated dihydrorhodamine 123 oxidations and hydroxyl radical-mediated DNA damage. For ACE inhibitory activities, the IC(50) values were 4.92 and 6.56 mM, respectively, for AAH and GAH. The ACE hydrolyzed products on the TLC chromatogram also confirmed the inhibitory activities of the two amino acid hydroxamates on ACE. When 1.23 mM AAH was added, AAH showed competitive inhibitions against ACE, and the apparent inhibition constant (K(i)) was 2.20 mM.  相似文献   

13.
Soybean leaves are eaten as seasonal edible greens in Korea. Analysis of the ethyl acetate extract of these leaves showed that it exhibited potent and selective neuraminidase inhibition, which began at the R3 stage and peaked at R7. Ten pterocarpans, including the new 6a-hydroxypterocarpan 10, were isolated from soybean leaves and their inhibition activities tested against a range of glycosidases. The relationship between structure and enzyme inhibition was investigated: 6a-hydroxypterocarpans exhibited much higher inhibition against neuraminidase (IC(50) = 2.4-89.4 μM) than α-glucosidase (IC(50) = 90.4-?>100 μM). Glyceollin VII (7) displayed 40-fold greater activity (IC(50) = 2.4 μM) against neuraminidase than α-glucosidase (IC(50) = 90.4 μM). On the other hand, coumestanes (1-3) were good α-glucosidase inhibitors (IC(50) = 6.0-42.6 μM). In kinetic analysis, the most potent neuraminidase inhibitors (5-10) were noncompetitive. HPLC analysis indicated that most pterocarpan synthesis began from the R3 stage, and a rapid change of pterocarpan concentrations was observed between the R4 and R7 stages.  相似文献   

14.
Discovery of protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors has been one of the hottest research areas in the field of herbicide development for many years. As a continuation of our research work on the development of new PPO-inhibiting herbicides, a series of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-diones (1a-p) and N-(benzothiazol-5-yl)isoindoline-1,3-diones (2a-h) were designed and synthesized according to the ring-closing strategy of two ortho-substituents. The bioassay results indicated that some newly synthesized compounds exhibited higher PPO inhibition activity than the control of sulfentrazone. Compound 1a, S-(5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl) O-methyl carbonothioate, was identified as the most potent inhibitor with k(i) value of 0.08 μM, about 9 times higher than that of sulfentrazone (k(i) = 0.72 μM). Further green house assay showed that compound 1b, methyl 2-((5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl)thio)acetate, exhibited herbicidal activity comparable to that of sulfentrazone even at a concentration of 37.5 g ai/ha. In addition, among six tested crops, wheat exhibited high tolerance to compound 1b even at a dosage of 300 g ai/ha. These results indicated that compound 1b might have the potential to be developed as a new herbicide for weed control of wheat field.  相似文献   

15.
Angiotensin I-converting enzyme (ACE), a dipeptidyl carboxypeptidase, catalyzes the conversion of Angiotensin I to the potent vasoconstrictor Angiotensin II and plays an important physiological role in regulating blood pressure. Inhibitors of angiotensin 1-converting enzyme derived from food proteins are utilized for pharmaceuticals and physiologically functional foods. ACE inhibitory properties of different enzymatic hydrolysates of glycinin, the major storage protein of soybean, have been demonstrated. The IC50 value for the different enzyme digests ranges from 4.5 to 35 microg of N2. The Protease P hydrolysate contained the most potent suite of ACE inhibitory peptides. The ACE inhibitory activity of the Protease P hydrolysate after fractionation by RP-HPLC and ion-pair chromatography was ascribed to a single peptide. The peptide was homogeneous as evidenced by MALDI-TOF and identified to be a pentapeptide. The sequence was Val-Leu-Ile-Val-Pro. This peptide was synthesized using solid-phase FMOC chemistry. The IC50 for ACE inhibition was 1.69 +/- 0.17 microM. The synthetic peptide was a potent competitive inhibitor of ACE with a Ki of 4.5 +/- 0.25 x 10(-6) M. This peptide was resistant to digestion by proteases of the gastrointestinal tract. The antihypertensive property of this peptide derived from glycinin might find importance in the development of therapeutic functional foods.  相似文献   

16.
As indicators of the early stage of the Maillard reaction in carrots, N-(furoylmethyl) amino acids (FMAAs) formed during acid hydrolysis of the corresponding Amadori products were analyzed using RP-HPLC with UV detection. N(ε)-FM-Lys (furosine), FM-Gly, FM-Ala, FM-Val, FM-Ile, FM-Leu, and FM-GABA were identified using synthesized standard material by means of mass spectrometry. Furthermore, N(ε)-carboxymethyllysine (CML) and pyrraline were analyzed as indicators for advanced stages of glycation. For commercial samples with high water content, the formation of Amadori compounds predominates, whereas the advanced stage of Maillard reaction plays only a minor part. Carrot juices, baby food, and tinned carrots showed quite low rates of amino acid modification up to 5%. For dehydrated carrots, significantly higher values for Amadori products were measured, corresponding to a lysine derivatization of up to 58% and nearly 100% derivatization of GABA. Drying experiments revealed great differences in reactivity between the amino acids studied. Whereas furosine reached constant values quite quickly, some FMAAs showed a continuous increase with heating time, indicating that selected FMAAs can be used as a hallmark for the early Maillard reaction to control processing conditions.  相似文献   

17.
Dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), was purified to homogeneity by DE-52 ion-exchange chromatography. This purified dioscorin was shown by spectrophotometric methods to inhibit angiotensin converting enzyme (ACE) in a dose-dependent manner (12.5-750 microg, respectively, 20.83-62.5% inhibitions) using N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly (FAPGG) as substrates. The 50% inhibition (IC(50)) of ACE activity was 6.404 microM dioscorin (250 microg corresponding to 7.81 nmol) compared to that of 0.00781 microM (0.0095 nmol) for captopril. The commercial bovine serum albumin and casein (bovine milk) showed less ACE inhibitory activity. The use of qualitative TLC also showed dioscorin as ACE inhibitors. Dioscorin showed mixed noncompetitive inhibitions against ACE; when 31.25 microg of dioscorin (0.8 microM) was added, the apparent inhibition constant (K(i)) was 2.738 microM. Pepsin was used for dioscorin hydrolysis at 37 degrees C for different times. It was found that the ACE inhibitory activity was increased from 51.32% to about 75% during 32 h hydrolysis. The smaller peptides were increased with increasing pepsin hydrolytic times. Dioscorin and its hydrolysates might be a potential for hypertension control when people consume yam tuber.  相似文献   

18.
A database consisting of 168 dipeptides and 140 tripeptides was constructed from published literature to study the quantitative structure--activity relationships of angiotensin I-converting enzyme (ACE) inhibitory peptides. Two models were computed using partial least squares regression based on the three z-scores of 20 coded amino acids and further validated by cross-validation and permutation tests. The two-component model could explain 73.2% of the Y-variance (inhibitor concentration that reduced enzyme activity by 50%, IC50) with the predictive ability of 71.1% for dipeptides, while the single-component model could explain 47.1% of the Y-variance with the predictive ability of 43.3% for tripeptides. Amino acid residues with bulky side chains as well as hydrophobic side chains were preferred for dipeptides. For tripeptides, the most favorable residues for the carboxyl terminus were aromatic amino acids, while positively charged amino acids were preferred for the middle position, and hydrophobic amino acids were preferred for the amino terminus. According to the models, the IC50 values of seven new peptides with matchable primary sequences within pea protein, bovine milk protein, and soybean were predicted. The predicted peptides were synthesized, and their IC50 values were validated through laboratory determination of inhibition of ACE activity.  相似文献   

19.
alpha-Dicarbonyls, generated by sugar degradation, catalyze the formation of the so-called Strecker aldehydes from alpha-amino acids. To check the effectiveness of Amadori compounds (suggested as important intermediates in alpha-dicarbonyl formation from carbohydrates) in Strecker aldehyde formation, the amounts of phenylacetaldehyde (PA) formed from either an aqueous solution of L-phenylalanine/glucose or the corresponding Amadori compound N-(1-deoxy-D-fructosyl-1-yl)-L-phenylalanine (ARP-Phe) were compared. The results revealed the ARP-Phe as a much more effective precursor in PA generation. On the contrary, a binary mixture of glucose/phenylalanine yielded preferentially phenylacetic acid, in particular, when reacted in the presence of oxygen and copper ions. Further model experiments gave evidence that a transition-metal-catalyzed oxidation of the ARP-Phe by air oxygen into the 2-hexosulose-(phenylalanine) imine is the key step responsible for the favored formation of phenylacetaldehyde from the Amadori compound. This mechanism might explain differences in the ratios of Strecker aldehydes and the corresponding acids depending on the structures of carbohydrate degradation products involved.  相似文献   

20.
In a previous study, we isolated the inhibitory peptide (P4 peptide, Gly-Phe-Hyp-Gly-Thr-Hyp-Gly-Leu-Hyp-Gly-Phe) for angiotensin I-converting enzyme (ACE) from chicken breast muscle extract possessing hypotensive activity for spontaneously hypertensive rats (SHRs). This study was performed to elucidate the peptide's action mechanisms of inhibiting ACE. Intravenous administration of synthetic P4 peptide resulted in significant drops in the blood pressures of SHRs. As Dixon plots indicate, the P4 peptide showed high affinity toward ACE (K(i) = 11.48 microM) and only 10% of the total amount of the P4 peptide was decomposed. The analyses of the relationship between the ACE inhibitory activity and structure of the P4 peptide clarified that Hyp-Gly-Leu-Hyp-Gly-Phe showed a stronger activity (IC50 = 10 microM) than the P4 peptide (IC50 = 46 microM). When Phe at the C-terminus of the P4 peptide was deleted, IC50 changed to 25000 microM, indicating that Phe at the C-terminus of the peptide is very important for ACE inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号