首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. R. Mackay 《Euphytica》1977,26(2):511-519
Summary Forage rape. B. napus, is self-compatible, the work described illustrates the introgression of functional incompatibility alleles into B. napus from turnips, B. campestris, in two generations. By grading seed, produced by backcrossing turnip/rape hybrids to rape, the frequency of 2n=38 semi articial B. napus recovered, amply justifies the cytological screening involved in such breeding programmes.  相似文献   

2.
Summary Meiosis in 14 interspecific F1 hybrids with three chromosomal levels (triploid, tetraploid, hexaploid; 2n=28, 37 and 55) between Brassica napus L. and 2x and 4x cabbage (B. oleracea var. capitata L.) was studied. The oleracea genome from B. napus maintained close homology with the c genome of cabbage while the campestris genome of B. napus showed partial homology with the c genome contained in the hybrids. Genotypic influence on chromosome pairing was indicated. Structural chromosome differences and spontaneous chromosome breakage and reunion were suggested as causes for the abnormalities which related to the unbalance of the genotypes. The divergence of the genomes of B. napus and B. oleracea and the need for the qualification of the term secondary association were discussed.Contribution No. J. 673, Research Station, Agriculture Canada, St. Jean, Québec.  相似文献   

3.
Synthesis and sterility of raphanobrassica   总被引:4,自引:0,他引:4  
Summary The synthesis of Raphanobrassica (2n=36, rrcc) from Raphanus sativus (2n=18, rr) and Brassica oleracea (2n=18, cc) is described a) by colchicine treatment of diploid hybrids; b) by crossing autotetraploid froms of the parent species.The variation within R. sativus and B. oleracea suggests that a range of morphologically distinct Raphanobrassica forms may be created, some of which may have agronomic potential and in particular, it is hoped, Plasmodiophora resistance.Inter-generic hybrids were readily obtained from crossing the parental species at both 2x and 4x chromosome levels, but only with R. sativus as female parent.Details are given of the morphology, fertility and chromosome behaviour of both diploid F1 R. sativus × B. oleracea hybrids and of the amphidiploid Raphanobrassica.Synthesized Raphanobrassica plants proved, in general, highly sterile. Some aneuploids resulted from 4x R. sativus × 4x B. oleracea crosses but most progeny were euploid and showed almost regular chromosome association. A number of stunted, deformed plants were obtained from both 2x and 4x crosses. Vigour, fertility and aneuploidy appeared unconnected in the amphidiploid.Previous work on Raphanobrassica is reviewed. It is concluded that the extremely low fertility encountered in the present study is more likely to be the result of genic imbalance than to cytological anomalies which appear to be of lesser significance.  相似文献   

4.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

5.
N. Inomata 《Plant Breeding》2002,121(2):174-176
In this cytogenetic study the progeny of all crosses were investigated in F1, F2 and backcross (BC1) hybrids. Brassica napus and F1 hybrids between B. napus and B. oleracea, and between B. napus and three wild relatives of B. oleracea (B. bourgeaui, B. cretica and B. montana). Each of the wild relatives has 18 somatic chromosomes. Interspecific F1 hybrids were obtained through ovary culture mean. These had 28 and 37 chromosomes and their mean pollen fertility was 10.7% and 93.0%, respectively. Many F2 and BC1 seeds were harvested from the F1 hybrids with 37 chromosomes after self‐pollination and open pollination of the F1 hybrids, and backcrossing with B. napus. Many aneuploids were obtained in the F2 and BC1 plants. It is evident from these investigations that the F1 hybrids may serve as bridge plants to improve B. napus and other Brassica crops.  相似文献   

6.
Y. W. Hua    Z. Y. Li 《Plant Breeding》2006,125(2):144-149
To further utilize the valuable germplasm Orychophragmus violaceus for Brassica genetics and breeding, a B. napus × O. violaceus cross was repeated with embryo rescue. All F1 plants except one B. napus haploid were mixoploids (2n = 17–39 in ovaries) with 2n = 31, 37, 38 and 39 as the maximal chromosome numbers in individuals, but the higher numbers mostly appeared in pollen mother cells (PMCs) with a preponderance of 2n = 30, 37 and 38. Only one chromosome and one chromosome segment of O. violaceus were detected at a low frequency in some ovary cells and PMCs with 2n = 37, 38 and 39 as determined by genomic in situ hybridization analysis. The fatty acid profiles of seeds from the majority of the F1 and F2 plants were similar to those of female B. napus cv. ‘Oro’, but some were obviously different in the percentages of oleic, linoleic and erucic acids, and some F2 plants (2n = 38) with good seed set had high percentages of oleic (>70.0%) or linoleic (to 38.3%) acids and low erucic acid (<1%). Subsequently, many kinds of B. napus aneuploids (2n = 28, 30, 34, 36, 37, 39 and 42), without O. violaceus chromosomes, were derived from F2 progeny and microspores of partial F1 plants. Finally, the cytological mechanisms behind the variations in chromosome numbers were discussed together with the implications of these aneuploids for Brassica genome research and of the plants with altered fatty acid profiles for improving the oil quality of B. napus.  相似文献   

7.
W. Qian  R. Liu  J. Meng 《Euphytica》2003,134(1):9-15
This study was conducted to estimate the genetic effects on biomass yield in the interspecific hybrids between Brassica napus and B. rapa, and to evaluate the relationship between parental genetic diversity and its effect on biomass yield of interspecific hybrids. Six cultivars and lines of oilseed B. napus and 20 cultivars of oilseed B. rapa from different regions of the world were chosen to produce interspecific hybrids using NC design II. Obvious genetic differences between B. rapa and B. napus were detected by RFLP. In addition, Chinese B. rapa and European B. rapa were shown genetically differences. Plant biomass yield from these interspecific hybrids were measured at the end of flowering period. Significant differences were detected among general combining ability (GCA) effects over two years and specific combining ability (SCA) effects differences were detected in 2000. The ratios of mean squares, (σ2 GCA(f) + σ2 GCA(m)) / (σ2 GCA(f) + σ2 GCA(m) + σ2 SCA), were 89% and 88% in 1999 and 2000, respectively. This indicates that both additive effects and non-additive effects contributed to the biomass yield of interspecific hybrids and the former played more important role. Some European B. rapa had significant negative GCA effects while many of Chinese B. rapa had significant positive GCA effects, indicating that Chinese B. rapa may be a valuable source for transferring favorable genes of biomass yield to B. napus. Significant positive correlation between parental genetic distance and biomass yield of interspecific hybrids implies that larger genetic distance results in higher biomass yield for the interspecific hybrids. A way to utilize interspecific heterosis for seed yield was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Crossability and cytology were examined in F1, F2, B1 and hybridsplants of F1 hybrids of Brassica campestris and three wild relatives of B. oleracea, B. bourgeaui, B. cretica and B. montana, respectively. The F2 plants were obtained after self-and open pollination of the F1 hybrids. The B1 and hybrid plants were produced after the F1 hybrids backcrosses with B. campestris and crossed with B. napus, respectively. After crossing the F1 hybrids, many seeds of the F2, B1 and hybrid plants were harvested. Multivalent formation was high in the chromsome configuration for the PMCs of F2, B1 and hybrid plants, suggesting that crossing over might occur between them. Many different types of aneuploids were obtained in the progenies of the F2, B1 and hybrid plants. It is suggested that different types of normal egg cells may be produced by one-by-one or little-by-little chromosome addition. The possibility is discussed of gene transfer from B. bourgeaui, B. cretica and B. montana, to cultivated plants, B. campestris and B. napus.  相似文献   

9.
This study was conducted to assess the cytoplasm effects of Brassica napus and B. juncea on the some characteristics of B. carinata, as well as the phylogenetic distances separating the three species. Alloplasmic lines of B. carinata were developed from B. napus × B. carinata and B. juncea × B. carinata hybrids by recurrent backcrossing to the BC7 generation. Sixteen populations from three generations were compared for a number of characteristics. Plants with the cytoplasm of B. napus flowered later, had shorter filaments and longer pistils, lower pollen amount, lower seed set, lower petal length and width and different petal color; plants with the cytoplasm of B. juncea had shorter pistils and filaments, and lower petal length and width than their corresponding euplasmic sibs, respectively. The results suggest that the cytoplasm is involved in the development of flower organs. The natural species, B. carinata showed a balance between the nucleus and cytoplasm. The cytoplasm from B. napus showed a stronger disturbing effect than that of B. juncea, suggesting that B. carinata might be genetically closer to B. juncea than to B. napus. The significant difference in the alloplasmic effect of the cytoplasms of B. napus and B. juncea also suggests that in B. carinata the B genome may play a greater role than the C genome. An erratum to this article can be found at  相似文献   

10.
Brassica napus is an important oil species with short history and narrow genetic background. Interspecific hybrids from crosses between B. oleracea and different B. rapa were obtained. We found the hybrids with white petal resembling B. oleracea, the flavonoid and phenolic content decreased in hybrids, agreeing with the expressional changes of flavonoid biosynthesis genes. Seed coat of hybrids resembled diploid parents, or partly resembled to each parent with a clear outline. The palisade layer in hybrids was thicker than parents, with similar pigment accumulation as B. oleracea but more than B. rapa. Differentially sized protein bodies (PBs) were found in hybrids. The radical and inner cotyledon of all hybrids were identified with larger but less PBs than parents. The average size of PBs in outer cotyledon of resynthesized B. napus was also larger than parents, but the number of PBs was not significantly reduced. The phenotypic and seed structural variations after polyploidization of B. napus would be interesting for genetic broadening and breeding of rapeseed.  相似文献   

11.
R. Delourme  F. Eber  A. M. Chevre 《Euphytica》1989,41(1-2):123-128
Summary Intergeneric hybrids (F1) Diplotaxis erucoides (DeDe) x Brassica napus (AACC) and the first backcross to B. napus (BC1) have been obtained through in vitro culture of excised ovaries. The chromosome numbers of F1 and BC1 plants proved the occurrence of unreduced gametes. The study of metaphase I chromosome pairing showed that autosyndesis in De genome and allosyndesis between De and A/C genomes might exist. The male fertility of the F1 plants was low. Some male-sterile plants were found in F1 and BC1 progeny. The possibilities of creating addition lines B. napus-D. erucoides and of obtaining a new cytoplasmic male sterility in B. napus are discussed.  相似文献   

12.
Brassica napus var. oleifera varieties have traditionally been developed as open‐pollinated varieties. The successful introduction of several high‐yielding hybrids based on cytoplasmic male sterility or transgenic pollination control systems has generated interest in the development of new hybrid systems. Self‐incompatibility could be an additional useful pollination control system for B. napus if a sufficient number of S‐alleles could be developed in this species. The S‐alleles, S2, S5, S13, S24 and S39, were identified in five hybrids of B. oleracea var. italica and subsequently transferred to B. napus. Doubled haploid lines were produced for the self‐incompatible (SI) lines in B. napus and intercrossed to produce SI heterozygotes in order to study allele interaction. There was a greater incidence of interallelic dominance in the stigmas and pollen of B. napus than was reported for the S‐alleles in B. oleracea. Allele S24 exhibited the greatest degree of dominance over the other alleles tested, while allele S2 was generally recessive or codominant with other alleles. Self‐incompatible expression was very similar in the SI homozygotes and heterozygotes, thus no weakening of the SI trait in the heterozygote was observed. The implications of S‐allele interaction for the use of SI in B. napus are discussed.  相似文献   

13.
Summary The possibilities to transfer important traits and in particular resistance to the beet cyst nematode (Heterodera schachtii, abbrev. BCN) from Raphanus sativus to Brassica napus were investigated. For these studies B. napus, R. sativus, the bridging hybrid ×Brassicoraphanus (Raparadish) as well as offspring of the cross ×Brassicoraphanus (Raparadish) ×B. napus were used. Reciprocal crosses between B. napus and R. sativus were unsuccessful, also with the use of embryo rescue. Crosses between ×Brassicoraphanus as female parent and B. napus resulted in a large number of F1 hybrids, whereas the reciprocal cross yielded mainly matromorphic plants. BC1, BC2 and BC3 plants were obtained from backcrosses with B. napus, which was used as the male parent. F1 hybrids and BC plants showed a large variation for morphology and male and female fertility. Cuttings of some F1 and BC1 plants, obtained from crosses involving resistant plants of ×Brassicoraphanus, were found to possess a level of resistance similar to that of the resistant parent. These results and indications for meiotic pairing between chromosomes of genome R with those of the genomes A and/or C suggest that introgression of the BCN-resistance of Raphanus into B. napus may be achieved.  相似文献   

14.
Summary Interspecific hybridization between Brassica napus L. (2n=38, a1a1c1c1) and B. oleracea var. capitata L. (2x- and 4x-cabbage; 2n=2x=18, cc and 2n=4x=36, cccc) was carried out for the purpose of transferring clubroot disease resistance from the amphidiploid species to cabbage. Nineteen hybrids with three different chromosome levels (2n=28, a1c1c; 2n=37, a1c1cc and 2n=55, a1c1cccc) were obtained. The F1 plants were mostly intermediate between the two parents but as the number of c genomes in the hybrids increased, the more closely the hybrids resembled the cabbage parent. All F1 hybrids were resistant when tested against race 2 of Plasmodiophora brassicae wor. The complete dominance of resistance over susceptibility suggested that the gene(s) controlling resistance to this particular race of the clubroot pathogen is probably located on a chromosome of the a genome in Brassica.Contribution No. J654.  相似文献   

15.
Sexual and somatic Brassica napus hybrids produced from the same parental plants were compared. Sexual crosses between a white-flowered, self-compatible broccoli selection (B. oleracea var. italica, cc genome) as the maternal parent and a flowering pak choi accession (B. chinensis, aa genome) yielded one unique spontaneous hybrid and four hybrids through embryo rescue. Thirty-nine somatic hybrids were recovered from a protoplast fusion experiment. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Sexual and somatic hybrids exhibited differences in leaf morphology, flower colour, flowering habit, and organellar inheritance. Sexual hybrids were all fertile amphidiploids (2n = 38, aacc) following spontaneous chromosome doubling. All somatic hybrids had high nuclear DNA contents; most were probably hexaploids (aaaacc or aacccc) from the fusion of three portoplasts. Two initially sterile hexaploid (aaaacc) regenerates eventually set selfed seed after the loss of the putative extra aa genome following regrowth from axillary buds. A bias toward inheritance of B. chinensis chloroplasts was observed with somatic hybrids.  相似文献   

16.
Summary Colchicine induced tetraploid (2n=4x=36) Brachiaria ruziziensis were used as female parent in crosses with apomictic tetraploid species (2n=4x=36) Brachiaria decumbens and Brachiaria brizantha. Tetraploid B. ruziziensis pollinated with B. decumbens set significantly more seed than selfed or crossed with B. brizantha. The crossability between B. ruziziensis and B. decumbens is also better than between B. ruziziensis and B. brizantha. In addition, hybrid seedlings obtained in crosses involving B. brizantha are more frequently lethal. All the viable F1 hybrids are tetraploid with 36 chromosomes. Meiotic chromosome behaviour suggest that the three species belong to the same genomic group and therefore the same agamic complex. Chromosome associations at metaphase I do not allow to identify fertile and sterile hybrids. The interspecific hybrids averaged a lower fertility than their female parent, but some hybrids were more fertile than their apomictic male parent.  相似文献   

17.
C. Dixelius 《Plant Breeding》1999,118(2):151-156
The inheritance of resistance to Leptosphaeria maculans was studied in near-isogenic lines derived from asymmetric somatic hybrids between Brassica napus+Brassica nigra and Brassica napus+Brassica juncea, respectively. The hybrids had been backcrossed to B. napus for seven generations before the genetic segregation of the blackleg resistance was determined. The results of the inheritance studies suggested that one single dominant allele controls the resistance in the Brassica napojuncea line, whereas two independent dominant loci were found in the Brassica naponigra line. Total leaf DNA from the near-isogenic lines was isolated and 89 loci were detected by hybridization to 66 restriction fragment length polymorphism (RFLP) markers previously mapped in the B. nigra genome. Out of the 89 loci, eight loci were detected in the B. naponigra line and six were found in the B. napojuncea line. RFLP markers co-segregating with blackleg resistance in adult leaves were also found. Two markers associated with linkage group 5 and 8, respectively, of the B genome were found in the B. naponigra line and one marker was associated with linkage group 2 in the B. napojuncea line.  相似文献   

18.
Brassica napus is a leading oilseed crop throughout many parts of the world. It is well adapted to long day photoperiods, however, it does not adapt well to short day subtropical regions. Short duration B. napus plants were resynthesized through ovary culture from interspecific crosses in which B. rapa cultivars were reciprocally crossed with B. oleracea. From five different combinations, 17 hybrid plants were obtained in both directions. By self-pollinating the F1 hybrids or introgressing them with cultivated B. napus, resynthesized (RS) F3 and semi-resynthesized (SRS) F2 generations were produced, respectively. In field trial in Bangladesh, the RS B. napus plants demonstrated variation in days to first flowering ranging from 29 to 73 days; some of which were similar to cultivated short duration B. napus, but not cultivated short duration B. rapa. The RS and SRS B. napus lines produced 2–4.6 and 1.6–3.7 times higher yields, respectively, as compared to cultivated short duration B. napus. Our developed RS lines may be useful for rapeseed breeding not only for subtropical regions, but also for areas such as Canada and Europe where spring rapeseed production can suffer from late spring frosts. Yield and earliness in RS lines are discussed.  相似文献   

19.
Resistance responses of resynthesized Brassica napus lines to infection with Plasmodiophora brassicae were investigated. Lines that were derived from interspecific crosses between clubroot-resistant B. rapa and resistant B. oleracea exhibited very broad and effective resistance in both greenhouse and field tests. When clubroot resistance was introduced into resynthesized lines from the B. oleracea parent only, the plants were mainly susceptible. Interspecific hybrids from the most resistant parental genotypes, i.e. B. campestris ECD-04 and the B. oleracea cultivars ECD-15 or ‘Bohmerwaldkohf’, were used to initiate a B. napus resistance-breeding programme. These artificial rapeseed lines were resistant to isolates that were virulent on all B. napus differential lines and/or parental lines. Preliminary segregation analysis suggests that their resistance is due to at least two dominant and unlinked genes. In some cases progenies from selfed resynthesized plants exhibited resistance reactions that differed from those of the parental hybrid plant; this may have been the result of cytological instability.  相似文献   

20.
Hybridization of Sinapis alba L. and Brassica napus L. via Embryo Rescue   总被引:1,自引:0,他引:1  
Embryo rescue techniques were used to obtain hybrids between Sinapis alba L. (white mustard) and Brassica napus L. (oilseed rape) with the goal of improving the disease tolerance of oilseed rape. Hybrid plants with 31 or 43 chromosomes were only recovered, when S. alba, was used as the female parent. One hybrid was obtained from the cross S. alba L. cv. ‘Kirby’×B. napus L. cv. ‘Topas’, while 26 hybrids were obtained, when various S. alba L. cultivars were pollinated with the rapid cycling B. napus line CrGC 5006. All F1, hybrid plants were male sterile; however, the first generation backcross to B. napus L., also obtained by embryo rescue, produced plants with 50 chromosomes and 61–84 % pollen viability. Second backcross generation seed was produced by normal sexual crossing. Preliminary cytological analyses of pollen mother cells of hybrid plants suggests the possibility of genetic exchange between the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号