首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sera from male mule deer (Odocoileus hemionus) collected in November 1977 in Otero County, New Mexico were tested fro antibodies to bovine virus diarrhea virus (BVDV), bluetongue virus (BTV), and epizootic hemorrhagic disease virus (EHDV). Neutralizing antibodies were detected in 26 of 76 (34%) sera tested for BVDV (titer greater than or equal to 1:16). Of 46 sera tested for antibodies to BTV and EHDV, 10 (22%) and 3 (7%), respectively, were positive. Three (7%) of 46 sera were suspect (titer < 1:20) for BTV, and 18 (38%) sera were suspect (titer < 1:20) for EHDV.  相似文献   

2.
A virus was isolated from the spleen of a white-tailed deer (Odocoileus virginianus) that had died during an epizootic in Washington state in 1967. Inoculation of a 10% spleen suspension from the deer caused hemorrhagic disease in normal white-tailed deer. Studies were conducted on the biological, physicochemical, and serologic properties of the Washington isolate. An in vitro assay system, utilizing a cultured primary of white-tailed deer fetal cells from an entire fetus, was employed for isolation and propagation of the virus. Cytopathic effect was characterized by focal development of rounded and clumped cells. Propagation was unsuccessful in suckling mice, BHK-21, and Vero cell cultures. The virus was resistant to treatment with ether, sodium deoxycholate, trypsin, oxytetracycline hydrochloride, and was sensitive to chloroform. Virus yield was not affected when infected cultures were treated with 5-iodo-2'-deoxyuridine, but dactinomycin (actinomycin D) treatment of infected cultures reduced virus yield. The virus was inactivated when heated at 70 C for 5 minutes or when exposed to pH 5 for 18 hours at 4 C. The virus was completely excluded from the filtrate by a 0.10- micronm (APD) membrane filter. Staining of infected cells with acridine orange indicated the presence of double-standard nucleic acid in the cytoplasm. Serum-neutralization tests with antiserums against the homologous virus and the New Jersey and Alberta strains of epizootic hemorrhagic disease virus resulted in neutralization of the Washington isolate. The Washington virus was not neutralized by bluetongue virus antiserum. Cells infected with the Washington isolate exhibited intracytoplasmic fluorescence by the indirect fluorescent antibody method with New Jersey and Alberta epizootic hemorrhagic disease antiserums but not with bluetongue antiserum.  相似文献   

3.
Bluetongue was first reported in the United States in 1948 in sheep in Texas. The virus has now been isolated from sheep in 19 States. When the disease first occurs in a flock, the morbidity may reach 50 to 75% and mortality 20 to 50%. In subsequent years, the morbidity may be only 1 to 2% with very few deaths. Difference in breed susceptibility has not been observed. Natural bluetongue infection has not been observed in Angora or dairy goats. Bluetongue virus was first isolated from cattle, in Oregon, in 1959. The virus has now been isolated from cattle in 13 States. In cattle, the disease is usually inapparent but can cause mild to severe clinical disease and neonatal losses. Natural clinical bluetongue has also been reported in bighorn sheep, exotic ruminants in a zoo, mule deer, and white-tailed deer. Serological evidence of exposure to the virus has also been found in other species of ruminants in the wild. Inoculation of virulent bluetongue virus, vaccine virus, or natural disease can cause congenital deformities and neonatal losses in calves, lambs, and white-tailed deer fawns. Culicoides is considered the important insect vector of bluetongue. The virus has also been isolated from sheep keds and cattle lice. U.S. field strains of the virus fit into four serologic groups. No cross reactions were found between bluetongue and epizootic haemorrhagic disease of deer viruses. Cattle are considered significant virus reservoirs. It is necessary to use washed erythrocytes, rather than whole blood, and to inoculate susceptible sheep, rather than embryonated chicken eggs, to detect longer-term viraemia in cattle.  相似文献   

4.
An enzyme-linked immunosorbent assay has been developed to detect antibodies to epizootic hemorrhagic disease of deer virus (EHDV). The assay incorporates a monoclonal antibody to EHDV serotype 2 (EHDV-2) that demonstrates specificity for the viral structural protein, VP7. The assay was evaluated with sequential sera collected from cattle experimentally infected with EHDV serotype 1 (EHDV-1) and EHDV-2, as well as the four serotypes of bluetongue virus (BTV), BTV-10, BTV-11, BTV-13, and BTV-17, that currently circulate in the US. A competitive and a blocking format as well as the use of antigen produced from both EHDV-1- and EHDV-2-infected cells were evaluated. The assay was able to detect specific antibody as early as 7 days after infection and could differentiate animals experimentally infected with EHDV from those experimentally infected with BTV. The diagnostic potential of this assay was demonstrated with field-collected serum samples from cattle, deer, and buffalo.  相似文献   

5.
In 1987 a serological survey of cattle for antibodies (Ab) to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) was undertaken in British Columbia and southwestern Alberta after infection with the viruses was diagnosed in wild and domestic ruminants in the Okanagan Valley. Of 4610 cattle tested, five had Ab only to BTV, 125 had antibodies only to EHDV and 16 had Ab to both viruses. The Ab were identified as specific for BTV type 11 (BT-11) or EHDV type 2 (EHDV-2). All but one of the seropositive cattle originated in the Okanagan Valley of British Columbia. The remaining one seropositive animal which had Ab to EHDV-2 was pastured with a bull purchased from the Okanagan Valley.  相似文献   

6.
为建立鹿流行性出血病病毒(EHDV)病原学检测方法,用纯化的抗EHDV特异性单克隆抗体包被ELISA板,用兔抗EHDV IgG作为夹心抗体,IgG作为夹心抗体建立EHDV双抗夹心ELISA方法,并对该方法的特异性和敏感性进行了试验.用ELISA分别检测EHDV、蓝舌病病毒(BTV)、水疱性口炎病毒(VSV)、赤羽病病毒...  相似文献   

7.
Naturally occurring cutaneous fibromas affecting white-tailed deer (Odocoileus virginianus) and mule deer (O hemionus), and cutaneous fibropapillomas of domestic cattle were tested for papillomavirus using indirect immunofluorescence (IF), peroxidase-antiperoxidase (PAP), and negative-stain electron microscopic techniques. Papillomavirus was consistently detected using rabbit antiserum against papillomavirus group-specific antigen in all mule deer fibromas and bovine fibropapillomas; only 16 of 28 white-tailed deer fibromas tested by IF and 9 of 15 tested by PAP were detected. Normal skin from white-tailed deer or cattle was consistently negative for virus. Similar results were obtained by negative-stain electron microscopic examination of partially purified tumor homogenates. Using deer fibroma virus or bovine papillomavirus type 1-specific antisera, viruses were typed by IF, PAP, and immunoelectron microscopy.  相似文献   

8.
Blood samples were collected from 194 white-tailed deer from 27 locations in Oklahoma from 1977 through 1984. Sixty-eight (35%) of the deer had antibody against bluetongue virus (BTV) and 78 (40%) had antibody against epizootic hemorrhagic disease virus. Seropositive deer were detected in each of the 4 geographic quadrants of the state. Virus isolation was attempted in 40 deer from the northeast quadrant of Oklahoma (1983 through 1984); BTV was isolated from 11 deer, but epizootic hemorrhagic disease virus was not isolated. The isolation of BTV serotype 11 from these deer from 1983 through 1984 coincided with reported isolations of this serotype in other ruminants in Oklahoma during this time.  相似文献   

9.
Blood samples were obtained from sentinel beef cattle at monthly intervals, and the sera were tested for antibodies, using a bluetongue virus (BTV) immunodiffusion test (IDT) and virus-neutralization test (VNT), for 5 BTV serotypes (2, 10, 11, 13, and 17) and 2 epizootic hemorrhagic disease virus (EHDV) serotypes (1 and 2). The cattle tested were transported from Tennessee to Texas in 1984 and 1985. All cattle were seronegative by the BTV IDT at the initial bleeding in Texas in 1984 and 1985. In 1984, 16 of 40 (40%) cattle seroconverted as assessed by results of the BTV IDT. In the 16 seropositive cattle in 1984, neutralizing antibodies were detected to BTV serotypes 10 (n = 7), 11 (n = 3), and 17 (n = 11), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1984, no cattle seroconverted to BTV-2 or BTV-13. In 1985, 10 of 36 (27.8%) cattle seroconverted as assessed by results of the IDT. Of the 10 seropositive cattle in 1985, neutralizing antibodies were detected to BTV serotypes 10 (n = 10), 11 (n = 10), 13 (n = 7), and 17 (n = 5), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1985, no cattle seroconverted to BTV-2. Clinical diseases attributable to BTV or EHDV was not detected in these cattle in 1984 or 1985.  相似文献   

10.
The frequencies of precipitating antibodies to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in domestic ruminants and white-tailed deer (WTD) in Georgia were 36% and 32%, respectively (n = 2,200). The frequencies of seropositivity to BTV and EHDV were high among cattle (47% and 42%, respectively [n = 1,068]) and less so in WTD (36% and 34% [n = 414]). The frequencies among sheep were 34% for BTV and 29% for EHDV (n = 286), whereas among goats, seropositivity was 8% for BTV and 7% for EHDV (n = 433). Serum samples from northeastern Georgia (1 of the 4 regions in the survey) had the highest frequency of precipitating antibodies for BTV (45%) and EHDV (38%). The lowest frequency was in southeastern Georgia, with 29% seropositivity for BTV and 24% seropositivity for EHDV. Of the 175 farms or herds in the serosurvey, 70% included animals that had BTV-precipitating antibodies, and 67% included animals which had EHDV-precipitating antibodies. Seventeen viral isolates were obtained from individual animals on 9 different farms. Fifteen of the isolates were BTV--8 from cattle, 4 from sheep, and 3 from WTD; 8 of them were serotype 11, and 7 were serotype 17. Viral isolates from each of 2 WTD were identified as EHDV serotype 1 and serotype 2. Of the total 17 isolates, 11 were from clinically healthy ruminants, and 6 were from animals with clinical signs of BT or EHD. Five of the viral isolates originated from northeastern Georgia, 7 from the northwestern region, and 5 from the southwestern region; none was obtained from specimens from the southeastern region.  相似文献   

11.
Ibaraki virus, which causes a bluetongue-like disease of cattle in Japan, was compared antigenically with the four serotypes of bluetongue virus (BTV) found in the U.S. and with the two serotypes of epizootic hemorrhagic disease virus (EHDV). No antigenic relationship was found between Ibaraki virus and BTV serotypes 10, 11, 13, and 17 in tests for group or serotype-specific antigens. However, Ibaraki virus and EHDV were related antigenically. The agar gel precipitin and indirect fluorescent antibody tests for group antigens showed two-way cross relationships between Ibaraki virus and EHDV serotypes 1 and 2. The more restrictive serotype-specific neutralization test revealed that antigenic relatedness was stronger between Ibaraki virus and the serotype 2 (Alberta strain) of EHDV than between Ibaraki virus and the serotype 1 (New Jersey strain) of EHDV.  相似文献   

12.
Nine white-tailed deer and six sheep were experimentally exposed to the California BTV-8 strain of bluetongue virus. The infections were fatal for seven of the nine deer. An additional deer died from exposure to an isolate of bluetongue virus from bighorn sheep. Clinical signs and lesions of bluetongue in deer were described. The incubation period, signs and lesions of bluetongue and epizootic hemorrhagic disease of deer appear to be similar. Virus isolations were made from the blood and a variety of tissues of exposed deer and identified as bluetongue virus. Neutralizing antibodies were detected in all of the convalescent sera.  相似文献   

13.
In a diagnostic survey of diseases in wild white-tailed deer (62 cases) and mule deer (12 cases) the most common findings were traumatic injury (20%), nontraumatic hemorrhage (13%), polioencephalomalacia (11%), and bacterial infections (9%). Although epizootic hemorrhagic disease was suspected in several cases, the virus was isolated from only 1 white-tailed deer.  相似文献   

14.
OBJECTIVE: To compare replication of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in pulmonary artery endothelial cells (ECs) obtained from juvenile cattle, sheep, white-tailed deer (WTD; Odocoileus virginianus), and black-tailed deer (BTD; O hemionus columbianus). SAMPLE POPULATION: Cultures of pulmonary artery ECs obtained from 3 cattle, 3 sheep, 3 WTD, and 1 BTD. PROCEDURE: Purified cultures of pulmonary artery ECs were established. Replication, incidence of infection, and cytopathic effects of prototype strains of BTV serotype 17 (BTV-17) and 2 serotypes of EHDV (EHDV-1), and (EHDV-2) were compared in replicate cultures of ECs from each of the 4 ruminant species by use of virus titration and flow cytometric analysis. RESULTS: All 3 viruses replicated in ECs from the 4 ruminant species; however, BTV-17 replicated more rapidly than did either serotype of EHDV. Each virus replicated to a high titer in all ECs, although titers of EHDV-1 were significantly lower in sheep ECs than in ECs of other species. Furthermore, all viruses caused extensive cytopathic effects and a high incidence of cellular infection; however, incidence of cellular infection and cytopathic effects were significantly lower in EHDV-1-infected sheep ECs and EHDV-2-infected BTD ECs. CONCLUSIONS AND CLINICAL RELEVANCE: There were only minor differences in replication, incidence of infection, and cytopathic effects for BTV-17, EHDV-1, or EHDV-2 in ECs of cattle, sheep, BTD, and WTD. It is not likely that differences in expression of disease in BTV- and EHDV-infected ruminants are attributable only to species-specific differences in the susceptibility of ECs to infection with the 2 orbiviruses.  相似文献   

15.
OBJECTIVE: To estimate seroprevalence of antibodies against the serogroup of epizootic hemorrhagic disease viruses (EHDVs) and describe spatial distribution of antibodies against EHDV among cattle herds in Illinois and western Indiana. SAMPLE POPULATION: 9,414 serum samples collected from cattle in 60 herds over 3 transmission seasons. PROCEDURES: Serum samples were tested for antibodies against EHDV by use of an ELISA. Seroprevalence for 4 zones covering the length of Illinois and parts of Indiana were estimated. A multivariable mixed-effects logistic regression model with a random effect for herd was used to estimate seropositive risk for zone (1 through 4), age (yearling, adult), herd type (beef, dairy), transmission season (2000 to 2002), and zone by year interaction. Isopleth maps of seroprevalence at the herd level were produced. RESULTS: Antibodies against EHDV were detected in 1,110 (11.8%) samples. Estimated seroprevalence in 2000, 2001, and 2002 was 15.3%, 13.4%, and 5.2%, respectively. Seroprevalence was highest in the southernmost zone and lowest in the northernmost zone, but risk of seropositivity for EHDV among and within zones varied by year. Clusters of high seroprevalence in the south, low seroprevalence in the north, and outliers of high and low seroprevalence were detected. Risk mapping revealed areas of higher seroprevalence extending northward along the western and eastern ends of the study region. CONCLUSIONS: Seroprevalence of antibodies against EHDV in cattle was higher in the south than north; however, local complexities existed that were not observed in a serosurvey of antibodies against bluetongue virus from the same cattle population.  相似文献   

16.
Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus. While not previously considered as an important disease in cattle, several EHDV serotypes (EHDV-6 and 7) have recently been implicated in disease outbreaks. The involvement of sheep in the epidemiology of EHDV is still not understood. In this study we compared the prevalence of antibodies to EHDV and bluetongue virus (BTV) in sheep to their prevalence in cattle after an outbreak of EHDV that occurred in Israel during 2006. Sixty-six sheep and lambs scattered in seven herds were compared to 114 cows and calves scattered in 13 dairy cattle herds, matched to the sheep herds by location. While antibody prevalence to EHDV was high in cattle (35.2% within the outbreak zone) no evidence of exposure to EHDV was found in sheep (p<0.0001). Antibodies to BTV were apparent in both cattle and sheep though in the former it was significantly higher (63.2%, 16.7% respectively, p<0.0001), suggesting higher exposure of cattle to biting Culicoides midges. Taken together, these results imply that sheep have a negligible role in the epidemiology of EHDV.  相似文献   

17.
Six calves were inoculated with 1 of 2 North American serotypes of epizootic hemorrhagic disease virus (EHDV) and then inoculated with the second serotype 16 weeks later. One calf did not develop an immune response to EHDV after primary inoculation and was removed from the study. Viremia after primary inoculation was transient. Although each infected calf developed a high serum neutralizing antibody titer to EHDV, at no time after inoculation with one or both viruses was antibody detected that neutralized any US serotypes of bluetongue virus. After exposure to both serotypes of EHDV, 4 of 5 calves developed antibodies that cross-reacted with group-specific bluetongue virus antigens.  相似文献   

18.
A serogroup-specific polymerase chain reaction (PCR) assay and isolate identification strategies (restriction endonuclease analysis (REA) and nucleotide sequencing) were developed for the detection of North American isolates of epizootic haemorrhagic disease virus (EHDV). PCR primers (EHDV-pr4, EHDV-pr5) were designed to hybridize to the L3 gene of a North American isolate of EHDV serotype 1. Total nucleic acid was extracted from preparations of infected tissue culture and PCR was performed using a cDNA-PCR kit, according to the manufacturer's specifications. The PCR assay generated a 459 base pair product from North American isolates of EHDV serotypes 1 and 2, while bluetongue virus (BTV) serotypes 10, 11, 13, and 17, and cell controls, failed to demonstrate PCR products. Slight modifications allowed for the PCR detection of EHDV-1 and -2 in white-tailed deer blood (Odocoileus virginiatus); PCR fragments were not amplified from uninfected deer blood. A number of restriction endonucleases and sequencing primers were evaluated for their utility in isolate identification experiments. Specifically, REA employing HincII and cycle sequencing with an internal primer (EHDV-1-pr3) proved most successful for identifying isolate-specific genome markers. The techniques presented are expected to prove valuable for rapid and specific detection of possible future EHDV incursions in wild and domestic animal species.  相似文献   

19.
Mass screening ELISA methods were developed for testing cattle serum for antibodies against 14 common livestock diseases simultaneously. The absorbance values were transformed to a %ELISA (spectrophotometric antibody end point) by a computer interfaced with a microplate reader. A histogram indicating a cutoff point and a report for the veterinarian also was generated. The computer program produced a print-out of the antibody profile for each animal tested, the antibody concentration against each disease, and a histogram (antibody profile) showing the prevalence of each disease in the herd. Serum samples were obtained from 1,953 cattle, including 880 dairy cattle from 10 herds and 1,073 beef cattle from 20 herds. These samples were obtained from June 1988 through June 1989. The highest antibody prevalence was against bluetongue virus. Of the 1,953 cattle tested, 1,223 (63%) were seropositive for bluetongue virus, including 502 (57%) of the dairy cattle and 721 (67%) beef cattle. Other antibody prevalences, in descending order, were: rotavirus (44%), Pasteurella spp (25%), Leptospira spp and Haemophilus spp (22%), Mycoplasma spp (18%), parainfluenza virus (17%), Campylobacter spp (16%), Anaplasma marginale (15%), bovine leukosis virus (13%), Brucella spp (8%), Mycobacterium paratuberculosis (8%), bovine viral diarrhea virus (3%), and infectious bovine rhinotracheitis virus (3%). Major differences in antibody prevalence between dairy and beef cattle were that only 4% of the dairy cattle were seropositive for A marginale, compared with 25% of the beef cattle, and conversely, 29% of the dairy cattle were seropositive for bovine leukosis virus, compared with 1% of the beef cattle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pathologic effects and host response were evaluated in seven white-tailed deer (Odocoileus virginianus) and six mule deer (O. hemionus hemionus) each exposed per os to 300 or 1000 third-stage larvae of Parelaphostrongylus odocoilei. Pathologic effects in mule deer consisted of hemorrhagic myositis throughout skeletal muscles, severe verminous pneumonia, and moderate lymphadenitis. The major host response was a granulomatous inflammation associated with nematode eggs and larvae. Granulomas obliterated the normal architecture of affected tissues. Pathologic effects and host response were minimal in white-tailed deer. P. odocoilei is considered a potential direct or indirect pathogen in mule deer but an insignificant parasite in white-tailed deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号