首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 578 毫秒
1.
侧柏抗病单株对叶枯病抗性机制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文比较测定了对叶枯病具有高度抗性的侧柏单株叶片中木质素和纤维素含量、苯丙氨酸解氨酶(PAL)和超氧化物歧化酶(SOD)、以及细胞含水量和肉质化程度。结果表明,抗病单株叶片细胞中木质素和纤维素的含量显著地高于普通的感病侧柏;抗病单株的PAL活性和SOD活性也明显高于感病株。并且发现PAL活性和木质素含量之间具有高度相关性。抗病单株的细胞含水量和肉质化程度则显著地低于感病株。综上指标说明,抗病单株在生理生化和遗传上,明显地区别于普通感病株。  相似文献   

2.
Pitch canker, caused by Gibberella circinata, was discovered in California in 1986. Although initially quite damaging to Monterey pines (Pinus radiata), the severity of pitch canker has moderated in areas where the disease was first observed and some trees appear to have recovered completely. The absence of symptoms on trees that were once severely affected implies they have become more resistant to the disease. Experimental work has shown that P. radiata can manifest systemic induced resistance (SIR) in response to infection by the pitch canker pathogen and observations of disease remission may indicate that SIR is operative under natural conditions as well. As a test of this hypothesis, the susceptibility of trees in remission was assessed by inoculating them with G. circinata and recording the extent of lesion development. In addition, randomly selected trees in areas that differed in residence time of pitch canker were inoculated to determine if trees with a longer period of exposure to the pathogen were more resistant to the disease. The results of these tests showed that 89% of trees observed to be in remission sustained very limited lesion development, consistent with resistance to pitch canker. Furthermore, trees in areas where pitch canker was well established tended to be more resistant than trees in areas where the disease was of more recent occurrence. In sum, these findings support the view that SIR occurs in P. radiata and is contributing to a moderation of the impact of pitch canker under natural conditions.  相似文献   

3.
Dutch elm disease (DED) spread across Europe and North America in the 20th century killing most natural elm populations. Today, breeding programmes aim at identifying, propagating and studying elm clones resistant to DED. Here, we have compared the physiology and biochemistry of six genotypes of Ulmus minor of variable DED resistance. Leaf gas exchange, water potential, stem hydraulic conductivity and biochemical status were studied in 5‐year‐old trees of AB‐AM2.4, M‐DV2.3, M‐DV2 × M‐CC1.5 and M‐DV1 and 6‐year‐old trees of VA‐AP38 and BU‐FL7 before and after inoculation with Ophiostoma novo‐ulmi. Leaf water potential and net photosynthesis rates declined, while the percentage loss of hydraulic conductivity (PLC) increased after the inoculation in susceptible trees. By the 21st day, leaf predawn and midday water potential, stomatal conductance to water vapour and net photosynthesis rates were lower, and PLC was higher in trees of susceptible (S) genotypes inoculated with the pathogen than in control trees inoculated with water, whereas no significant treatment effect was observed on these variables in the resistant (R) genotypes. Fourier transform infrared spectroscopy analyses revealed a different biochemical profile for branches of R and S clones. R clones showed higher absorption peaks that could be assigned to phenolic compounds, saturated hydrocarbons, cellulose and hemicellulose than S clones. The differences were more marked at the end of the experiment than at the beginning, suggesting that R and S clones responded differently to the inevitable wounding from inoculation and repeated sampling over the experimental course. We hypothesize that a weak activation of the defence system in response to experimental wounding can contribute to the susceptibility of some genotypes to O. novo‐ulmi. In turn, the decline in shoot hydraulic conductivity and leaf carbon uptake caused by the infection further exacerbates tree susceptibility to the fungus.  相似文献   

4.
Several Aegean (Greece) and Anatolian (Turkey) cypress provenances were studied for resistance variability to bark canker, a disease caused by the fungal pathogen Seiridium cardinale. The investigation also examined whether the low disease rate within the natural area of cypress was due to genetic or geographic‐climatic reasons. Results demonstrated strong variability for the ‘bark canker resistance’ character, in particular for trees within families. As trees from the provenances studied were not found to have genetic superiority for bark canker resistance, the above‐mentioned low disease rate could be due to geographic‐climatic barriers that inhibit the development of the fungus or its ability to infect the host. Several half‐sib progenies exhibited high resistance, suggesting that this character is totally inherited through the maternal line. Should this finding be confirmed by further research, it would facilitate the task of genetic improvement for resistance, allowing progenies of resistant trees to be obtained.  相似文献   

5.
Sudden oak death, caused by Phytophthora ramorum, has resulted in high levels of coast live oak (CLO) mortality. However, some CLO survive in areas with high disease pressure and may thus be resistant. We tested the hypothesis that such field‐resistant trees contain constitutively higher levels of phenolics than susceptible trees. Phloem was sampled from the trunks of two groups of trees (one previously inoculated, one naturally infected with P. ramorum) categorized over the course of several years as putatively resistant (PR, no symptoms), in remission (IR, showed symptoms but then recovered) and symptomatic (S). Individual and total soluble phenolics from these trees were quantified. There were no significant differences in individual or total soluble phenolics between groups of naturally infected trees. However, inoculated PR and IR trees were characterized by higher constitutive levels of ellagic acid, a tyrosol derivative, and an unidentified phenolic than S trees. Ellagic acid and tyrosol‐like compounds in CLO phloem are promising resistance biomarker candidates.  相似文献   

6.
Norway spruce (Picea abies (L.) Karst.) trees were preinoculated with a sublethal dose of the blue-stain fungus Ceratocystis polonica Siem. (C. Moreau) 1 to 52 weeks before they were mass inoculated with the same fungus. Trees pretreated 1 week before mass inoculation had similar, severe symptoms of fungal infection as the control trees. Pretreatment 3, 6 or 9 weeks before mass inoculation resulted in effective protection of the trees, reducing pathogenic symptoms by 63-90% relative to the control trees, whereas pretreatment 52 weeks before mass inoculation gave intermediate protection (44-71% reduction in symptoms). Thus, pretreatment induced resistance to the blue-stain fungus in Norway spruce by a process that requires more than 1 week to become activated and protects trees for at least one year after pretreatment. Pretreatment induced formation of traumatic resin ducts (TDs) in the sapwood and swelling and proliferation of polyphenolic parenchyma cells (PP cells) in the phloem. Trees pretreated 3-9 weeks before mass inoculation had more TDs and showed greater swelling of existing PP cells than control trees or trees pretreated 1 week before mass inoculation. We conclude that induced disease resistance in Norway spruce is probably associated with PP cell activation and TD induction, because resistance was enhanced within the same time frame as the induction of these defense responses.  相似文献   

7.
Abstract

Heterobasidion annosum (Fr.) Bref. is a fungal pathogen causing annosum root rot – one of the most economically important diseases in coniferous stands. The major aim of this study was to compare the resistance of the offspring of Scots pine trees (Pinus sylvestris L.) from seed orchards and the offspring of trees that were naturally reproduced in old foci of the disease. In experiments conducted in vitro, we used 960 seedlings which were grown from seeds collected from 60 trees in 6 old foci of the disease and 640 seedlings grown from seeds collected in 4 seed orchards. The offspring of trees from seed orchards after inoculation with H. annosum had nearly twofold higher mortality rate than the seedlings developed from the seeds collected in old foci of the disease. This suggests that the offspring of self-sown trees in old foci of the disease has a greater, genetically conditioned resistance to annosum root rot.  相似文献   

8.
Canker stain, caused by the ascomycete Ceratocystis fimbriata f. sp. platani, is a major threat to plane trees in Europe. The American plane tree (Platanus occidentalis) carries some genetic resistance, but this species is not adapted to the climatic conditions in Europe. Therefore, hybrids between susceptible oriental plane trees (Platanus orientalis) and resistant P. occidendalis were screened for disease resistance in France. Among 960 hybrids, we found 18 individuals which survived two successive inoculations. These putatively resistant trees were cut back and, after 18 months, on each tree 12 of the newly produced shoots as well as two roots, were inoculated again. From these trees, only one showed complete and another one partial resistance. This selection process resulting in the resistant clone ‘Vallis clausa’ is described in detail.  相似文献   

9.
We compared bark proteins from four contrasting (blister rust-resistant versus susceptible) half-sib seedling pairs of western white pine (Pinus monticola D. Don). Pooled proteins from resistant and susceptible groups (four trees per group) were separated by two-dimensional gel electrophoresis, silver stained, and analyzed with the aid of a laser scanner interfaced with a computerized gel documentation system. Qualitative and quantitative protein differences were observed between resistant and susceptible groups. The number of proteins unique to a group was greater in the susceptible category than in the resistant category. Biosynthesis of some common proteins was enhanced near lesioned areas of susceptible seedlings. Many proteins shared similar charge and mass characteristics with those of pathogenesis-related (PR) proteins. Two protein bands were isolated and partially characterized by N-terminal amino acid sequencing: a 10.6-kDa band that was selectively enriched in all resistant individuals, and a 26.0-kDa band that was enriched in some susceptible individuals. The significance of these protein differences and the possible use of selected proteins as disease or resistance markers are discussed.  相似文献   

10.
The traumatic wound response of families of white spruce, Picea glauca (Moench) Voss, resistant or susceptible to the white pine weevil, Pissodes strobi (Peck), were compared after simulated weevil damage. Leaders from 331 trees were wounded just below the apical bud in the spring, coinciding with the natural time of weevil oviposition. A portable 1-mm diameter drill was used to drill 24 holes per leader. Leaders were removed in the fall and examined for evidence of traumatic resin canal formation. Drilled trees had a traumatic wound response 8 times greater than that of undrilled trees; however, undrilled trees also formed some resin canals in response to unknown causes. In the drilled trees, the traumatic wound response extended into the lower part of the leader, where it could possibly affect older larvae. Trees from resistant families responded with greater intensity than trees from susceptible families, by producing multiple rings of traumatic resin canals. Trees from resistant families also responded more rapidly than trees from susceptible families based on number of cells to the first ring of traumatic resin canals. Trees from some resistant families exhibited no traumatic resin canal formation, showing considerable within-family variation and suggesting that other resistance mechanisms might be important. In the year after drilling, there was a reduction in tree diameter growth and trees suffered a reduction in constitutive resin canals in the bark, which suggests some energetic cost of traumatic resin production. There was no indication that the extent of constitutive defenses, as measured by density of cortical resin canals before wounding, was related to the ability to produce traumatic resin canals. Screening trees based on their capacity to produce traumatic resin canals may be useful in selecting genotypes resistant to white pine weevil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号