首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT Pseudomonas fluorescens B5 and Bacillus subtilis MBI 600 colonized sugar beet seedlings at matric potentials of -7 x 10(3), -140 x 10(3), and -330 x 10(3) Pa and under five temperature regimes ranging from 7 to 35 degrees C, with diurnal fluctuations of 5 to 22 degrees C. No interaction between matric potential and temperature was observed. In situ bioluminescence indicated physiological activity of Pseudomonas fluorescens B5. Colonization of the root at >/=4 cm below the seed decreased at very low matric potential (-330 x 10(3) Pa). Total population size of Pseudomonas fluorescens B5 per seedling was significantly increased at -140 x 10(3) Pa. However, matric potential had no significant effect on the population density of Pseudomonas fluorescens per gram of root fresh weight and did not affect the distribution of the population down the root. Total population size per seedling and downward colonization by Pseudomonas fluorescens B5 were significantly reduced at high temperatures (25 to 35 degrees C). Maximum colonization down the root occurred at intermediate temperature (15 degrees C) at both matric potentials (-7 x 10(3) and -140 x 10(3) Pa). Addition of B. subtilis MBI 600 to the seed had no effect on rhizosphere populations of Pseudomonas fluorescens B5. Populations of B. subtilis MBI 600, which consisted largely of spores, were slightly reduced at lower matric potentials and were not affected by temperature. Survival and dry weight of plants in soils infested with Pythium spp. decreased with increasing soil temperature and matric potential, indicating an increase in disease pressure. However, there was no significant interaction between the two factors. At -330 x 10(3) Pa, soil dryness but not Pythium infection was the limiting factor for plant emergence. At temperatures of 7 to 25 degrees C and matric potentials of -7 x 10(3) to 120 x 10(3) Pa, treatment with Pseudomonas fluorescens B5 increased plant survival and dry weight. At 7 degrees C and -120 x 10(3) Pa, there was almost complete emergence of seeds treated with Pseudomonas fluorescens B5. Antagonistic activity of Pseudomonas fluorescens B5 decreased with increasing soil temperature and decreasing matric potential. At 25 to 35 degrees C and -7 x 10(3) Pa, no effect was observed. In regimes with different day and night temperatures, the maximum (day) temperature was decisive for disease development and antagonistic activity. B. subtilis MBI 600 displayed no significant antagonistic effect against Pythium ultimum and did not influence the performance of Pseudomonas fluorescens B5 in combined inocula.  相似文献   

2.
为探讨枯草芽胞杆菌Bacillus subtilis菌株B1409对番茄早疫病和辣椒疫霉病的防效和生防机制,采用平板对峙法和盆栽法测定了该菌株对番茄早疫病菌和辣椒疫霉病菌菌丝生长的抑制作用、对2种病害的盆栽防效以及对番茄和辣椒植株促生长效果和防御酶活性的影响。结果表明:菌株B1409能明显抑制番茄早疫病菌和辣椒疫霉病菌菌丝生长,且导致菌丝发生畸变。10~8CFU/mL菌株B1409菌液对番茄早疫病和辣椒疫霉病的预防效果分别为67.82%和61.22%,治疗效果分别为41.22%和56.43%。不同浓度B1409菌液均能促进番茄和辣椒植株生长,并能增强其体内超氧化物歧化酶、过氧化物酶和过氧化氢酶活性,且浓度越高促进效果越明显。番茄和辣椒植株的平均干重分别在10~2CFU/mL和10~4CFU/mL B1409菌液处理后显著高于对照,增长率分别为42.35%和4.87%。番茄和辣椒植株经10~2CFU/mL B1409菌液处理后,体内超氧化物歧化酶活性比对照显著增加,增长率分别为91.23%和19.58%。研究表明枯草芽胞杆菌B1409菌株可通过直接抑制菌丝生长及诱导植物体自身抗病性等方式来有效防治番茄早疫病和辣椒疫霉病。  相似文献   

3.
A semi-selective medium for isolation of Xanthomonas axonopodis pv. vignicola from cowpea (Vigna unguiculata) plant and soil samples was developed. Twelve carbon and five nitrogen sources were tested with four strains of X. axonopodispv.vignicola, and 25 antibiotics were screened against saprophytes. -cellobiose (10g) was selected as the optimal carbon source. Among the antibiotics, cefazoline inhibited growth of most of the saprophytes with little effect on strains of the pathogen. ,-methionine enhanced growth of X. axonopodispv.vignicola. Boric acid along with ammonium chloride suppressed growth of Pseudomonas fluorescens. The semi-selective medium designated as cefazoline-cellobiose-methionine (CCM) medium contained K2HPO4 1.34g, KH2PO4 0.4g, MgSO4 0.3g, H3BO3 0.2g, NH4Cl 1.0g, -cellobiose 10g, cycloheximide 0.2g, ,-methionine 1.0g, cefazoline 10mg and agar 14g per l of water (pH 7.2). Colonies of X. axonopodispv.vignicola on CCM medium were whitish, round, raised and 0.2–1.8mm in diameter 96h after incubation. CCM medium generally inhibited growth of Pantoea agglomerans, Bacillus subtilis and saprophytes isolated from cowpea leaves. Colonies of Pseudomonas fluorescens and a saprophytic bacterium, which were not completely suppressed by CCM, could be differentiated from X. axonopodispv.vignicola by their smaller size and different color. The CCM medium proved useful for isolation of X. axonopodispv.vignicola from cowpea plant and soil samples. This is the first report of a semi-selective medium developed for detection of X. axonopodispv.vignicola.  相似文献   

4.
Rhizoctonia solani root-rot is a major soilborne disease causing growth and yield depression. The ability of Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI to suppress this soilborne disease in tomato was assessed by comparing the shoot and root growth of plants infested with R. solani 1556 when protected or not by these beneficial strains. The epiphytic and parasitic growth of the pathogenic R. solani 1556 was compared in the presence and absence of the biocontrol agents by microscopical observations allowing the quantification of roots with hyphae appressed to epidermal cells (epiphytic growth) and of roots with intraradical infection (parasitic growth). The root architecture of the tomato plants under the different experimental conditions was further characterized by measuring total root length, mean root diameter, number of root tips and by calculating degree of root branching. G. mosseae BEG12 and P. fluorescens A6RI fully overcame the growth depression caused by R. solani 1556. This disease suppression was associated with a significant decrease of the epiphytic and parasitic growth of the pathogen together with an increase of root length and of the number of root tips of inoculated tomato plants. The combined effects of G. mosseae BEG12 and P. fluorescens A6RI on pathogen growth and on root morphogenesis are suggested to be involved in the efficient disease suppression.  相似文献   

5.
Potential antagonists ofFusarium solani f. sp.pisi (Fsp) were selected from soil samples with varying degrees of receptivity to this pathogen. They were tested against Fsp isolate 48 (Fs48), in increasingly complex systems. Most species testedin vitro were able to antagonize Fs48. No relation could be establishedin vitro between the receptivity of the soil from which an isolate originated and its antagonism to Fs48. In soils naturally infested with pea root rot pathogens, which were stored humid at 4°C for a period longer than a year, various isolates ofFusarium, Gliocladium andPenicillium spp. were able to reduce root rot. After sterilization of these soils, onlyGliocladium roseum isolates, added at 105 conidia g–1 dry soil, significantly reduced disease severity and prevented root weight losses caused by Fs48 at 104 conidia g–1 dry soil. In soils in which the biota were activated by growing peas before the assays, doses of 106 and 107 ofG. roseum were required to reduce root rot. In these soils, the antagonistic effects of fluorescent pseudomonad strains from soil of low receptivity to Fsp were variable. Some strains of fluorescent pseudomonads, from soil moderately receptive to Fsp and from highly infested soils, were also able to reduce root rot. Disease suppression by pseudomonad strains was more evident in the absence than in the presence ofAphanomyces euteiches in the root rot pathogen complex. The role of receptiveness of the soil with regard to potential antagonists is discussed.  相似文献   

6.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

7.
Twenty isolates of fluorescent pseudomonads were evaluated for their ability to control damping-off in tomato (Lycopersicon esculentum) and hot pepper (Capsicum annuum). These isolates were characterized as Pseudomonas fluorescens and Pseudomonas putida. Two isolates, PFATR and KKM 1 belonged to P. putida and the remaining 18 isolates belonged to P. fluorescens. Among these isolates, P. fluorescens isolate Pf1 showed the maximum inhibition of mycelial growth of Pythium aphanidermatum and increased plant growth promotion in tomato and hot pepper. P. fluorescens isolate Pf1 was effective in reducing the damping-off incidence in tomato and hot pepper in greenhouse and field conditions. Isolate Pf1 was further tested for its ability to induce production of defense-related enzymes and chemicals in plants. Earlier and increased activities of phenylalanine ammonia lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) were observed in P. fluorescens Pf1 pretreated tomato and hot pepper plants challenged with Pythium aphanidermatum. Moreover, higher accumulation of phenolics was noticed in plants pretreated with P. fluorescens isolate Pf1 challenged with Pythium aphanidermatum. Thus, the present study shows that in addition to direct antagonism and plant growth-promotion, induction of defense-related enzymes involved in the phenyl propanoid pathway collectively contributed to enhance resistance against invasion of Pythium in tomato and hot pepper.  相似文献   

8.
To control rice blast effectively at the nursery stage, the absolute SiO2 content necessary for rice plants to resist blast disease was investigated using various rice cultivars and soils. Nine rice cultivars with different complete resistance genes and different degrees of partial resistance were grown on nursery soils amended with silica gel at different rates to change the SiO2 content of rice plant. The rice seedlings were then inoculated 28 days after sowing with Pyricularia grisea to estimate their blast resistance. In all rice cultivars, the number of lesions was significantly reduced when SiO2 content increased in the rice seedling; lesions were reduced to 5%–20% of the number on the seedlings grown in soil without silica gel when the seedling SiO2 content reached 5%. Additionally, the susceptibility to blast disease of rice seedlings grown on eight soils collected from different districts, with varying amounts of silica gel, was compared. The number of lesions decreased significantly when the SiO2 content in the seedlings reached 5%. These results suggest that SiO2 content of at least 5% in the rice plant can control this disease at the nursery stage under any conditions.  相似文献   

9.
Verticillium dahliae antagonistic endorhizosphere bacteria were selected from root tips of tomato plants grown in solarized soils. Fifty-three out of the 435 selected bacterial isolates were found to be antagonistic against V. dahliae and several other soilborne pathogens in dual cultures. Significant biocontrol activity against V. dahliae in glasshouse trials was demonstrated in three of 18 evaluated antagonistic isolates, provisionally identified as Bacillus sp. Although fluorescent pseudomonads were also isolated from root tips of tomato plants, none of the tested isolates exercised any significant antagonistic activity against V. dahliae in dual cultures. So these isolates were not tested in glasshouse trials in this study. Finally, two of the most effective bacterial isolates, designated as K-165 and 5-127, were shown to be rhizosphere colonizers, very efficient in inhibiting mycelial growth of V. dahliae in dual cultures and successfully controlling Verticillium wilt of solanaceous hosts. In glasshouse experiments, root dipping or soil drenching of eggplants with bacterial suspension of 107cfu ml–1 resulted in reduced disease severity expressed as percentage of diseased leaves (40–70%) compared to the untreated controls under high V. dahliae inoculum level (40 microsclerotia g–1 soil). In heavily Verticillium infested potato fields, experiments with potato seeds dusted with a bacterial talc formulation (108cfu g–1 formulation), showed a significant reduction in symptom development expressed as percentage of diseased potato plants and a 25% increase in yield over the untreated controls. As for their effectiveness in increasing plant height, both bacterial isolates K-165 and 5-127 produced indolebutyric, indolepyruvic and indole propionic acids. Both antagonists are considered as plant growth promoting rhizobacteria bacteria since significantly increased the height of treated plants compared with the untreated controls. Chitinolytic activity test showed that both isolates were able to produce chitinase. Testing rhizospheric and endophytic activity of the antagonists it was shown that although the bacteria are rhizosphere inhabitants they also preferentially colonize the endorhizosphere of tomatoes and eggplants. Fatty acid analysis showed that isolate K-165 could belong to Paenibacillus alvei while 5-127 to Bacillus amiloliquefaciens.  相似文献   

10.
Isolates of different endophytic bacteria were recovered from surface-disinfected seeds obtained from commercial companies, plants in the field and tissue culture. The bacteria were isolated from seeds after stringent surfacedisinfection.Pseudomonas fluorescens (isolate no. 14) from bean inhibited growth of all fungi tested and was fluorescent on King B medium.Bacillus cereus fromSinapis (isolate no. 65) inhibited growth ofRhizoctonia solani, Pythium ultimum andSclerotium rolfsii and also exhibited chitinase activity.Bacillus subtilis from onion tissue culture (isolate no. 72) inhibitedR. solani andP. ultimum growth.B. cereus from cauliflower (isolate no. 78) inhibited growth ofR. solani. B. pumilus from sunflower (isolate no. 85) inhibited growth ofR. solani andS. rolfsii. B. cereus (isolate no. 65) was introduced into cotton, and by using radioactive labelling we found that it was present for 16 days in the root-stem junction. It is most likely that these bacteria were still found 72 days after their introduction in the root and stem, at levels of 2.8·105 and 5·104 cfu g–1 fresh weight, respectively, when selective medium was used. There was no difference between control and treated plants in their height or in the fresh weight of roots, stems and leaves.When cotton seedlings were inoculated withB. cereus (isolate no. 65),B. subtilis (isolate no. 72) orB. pumilus (isolate no. 85), disease incidence caused byRhizoctonia solani was reduced in the greenhouse by 51%, 46% and 56%, respectively. In bean seedlings inoculated withB. subtilis (isolate no. 72),B. cereus (isolate no. 78) orB. pumilus (isolate no. 65), disease incidence caused bySclerotium rolfsii was reduced by 72%, 79% and 26%, respectively, as compared to control. In both cotton and bean seedlings, these endophytes reduced the disease index more than 50%. These results indicate that endophytic bacteria can survive inside cotton plants and are efficient agents for biological control against plant pathogens under greenhouse conditions.  相似文献   

11.
Organic management of soils is generally considered to reduce the incidence and severity of plant diseases caused by soil-borne pathogens. In this study, take-all severity on roots of barley and wheat, caused by Gaeumannomyces graminis var. tritici, was significantly lower in organically-managed than in conventionally-managed soils. This effect was more pronounced on roots of barley and wheat plants grown in a sandy soil compared to a loamy organically-managed soil. Fluorescent Pseudomonas spp. and in particular phlD+ pseudomonads, key factors in the take-all decline phenomenon, were represented at lower population densities in organically-managed soils compared to conventionally-managed soils. Furthermore, organic management adversely affected the initial establishment of introduced phlD+ P. fluorescens strain Pf32-gfp, but not its survival. In spite of its equal survival rate in organically- and conventionally-managed soils, the efficacy of biocontrol of take-all disease by introduced strain Pf32-gfp was significantly stronger in conventionally-managed soils than in organically-managed soils. Collectively, these results suggest that phlD+ Pseudomonas spp. do not play a critical role in the take-all suppressiveness of the soils included in this study. Consequently, the role of more general mechanisms involved in take-all suppressiveness in the organically-managed soils was investigated. The higher microbial activity found in the organically-managed sandy soil combined with the significantly lower take-all severity suggest that microbial activity plays, at least in part, a role in the take-all suppressiveness in the organically-managed sandy soil. The significantly different bacterial composition, determined by DGGE analysis, in organically-managed sandy soils compared to the conventionally-managed sandy soils, point to a possible additional role of specific bacterial genera that limit the growth or activity of the take-all pathogen.  相似文献   

12.
The employment of formulateBacillus subtilis as a biocontrol agent successfully controlledFusarium oxysporum f.sp.lycopersici within tomato seedlings (in vivo). B. subtilis was able to proted cortex and vascular tissues of tomato against progression of the wilt pathogen. No changes were observed in tomato tissues due to application ofB. subtilis except for hypertrophy and elongation of cortex tissues, which indicates the production of plant growth hormones byB. subtilis.  相似文献   

13.
A biocontrol agent (Pseudomonas fluorescens) and a phytostimulator (Rhizobium) have been shown to have beneficial effects on plant growth and health. The study of plants inoculated withPseudomonas andRhizobium requires special attention because of the possibility that these agents may influence each other. Our study was conducted to test the effect of these inoculants on co-inoculation in peanut to control root rot, a severe soilborne disease caused byMacrophomina phaseolina. One fluorescent pseudomonad strain, Pf 1, which effectively inhibited the mycelial growth ofM. phaseolina underin vitro conditions, was studied for its compatibility with the biofertilizer bacterial strainRhizobium TNAU 14. Dual culture and colorimetric studies indicated the existence of a positive interaction between the microbial inoculants. However, glasshouse and field studies showed seed treatment and soil application ofPseudomonas fluorescens Pf 1 to be the most effective treatment in reducing root rot incidence and improving the crop vigor index, in comparison with treatments in which both inoculants were applied. http://www.phytoparasitica.org posting Feb. 11, 2002.  相似文献   

14.
The efficacy of biological control and two types of modified atmosphere packaging (MAP) alone and in combinations was evaluated under cold storage as well as simulated market-shelf conditions to control decay and pericarp browning on litchi cv. ‘McLean’s Red’. Fruits were dipped for 2 min at 15°C inBacillus subtilis or prochloraz separately, packed in MAP [low density polyethylene (LDPE) or polypropylene (PP)], heat sealed and stored at 2°C and 90% r.h. for 18 days followed by 2 days at 14°C and 75% r.h. to simulate market-shelf conditions. A commercially adopted sulfur dioxide treatment was included as a comparative control. Fruits treated withB. subtilis + PP or prochloraz + PP and stand-alone PP treatment did not show decay or browning at 2°C. Decay and browning were controlled significantly after 2 days at 14°C inB. subtilis + PP or prochloraz + PP treatments. However, the prochloraz + PP affected the natural pinkish-red color of the pericarp and gave higher h° (hue angle) values. The stand-alone PP treatment (∼14% O2, ∼5% CO2) showed 11.3% decay due mainly toAlternaria alternata andCladosporium spp. at 14°C. The effectiveness of the MAP was improved at 14°C whenB. subtilis was combined with PP, controlling decay and pericarp browning and retaining the fruit color and quality.B. subtilis survived in PP at 2° and 14°C, but not in LDPE. Stand-alone LDPE (∼3% O2, ∼10% CO2) and combination treatmentsB. subtilis + LDPE or prochloraz + LDPE failed to control decay and pericarp browning. Higher yeast populations were observed in LDPE orB. subtilis + LDPE at both 2° and 14°C.Candida, Cryptococcus andZygosaccharomyces spp. were the predominant yeasts in all LDPE treatments. Reprints ofS. Afr. Litchi Growers’ Assoc. Yearb. references can be obtained from D. Sivakumar.  相似文献   

15.
The aims of this study were to select bacterial isolates from the non-rhizophere of maize soil and to examine their antagonistic activity against Aspergillus section Flavi strains. The first selection was made through ecophysiological responses of bacterial isolates to water activity (aw) and temperature stress. Subsequently, an Index of Dominance test (ID), ecological similarity and inhibition of the lag phase prior to growth, growth rate and aflatoxin B1 accumulation were used as criteria. From the first assay nine bacterial strains were selected. They grew well at 25 and 30 °C, with growth optima between 0.982 and 0.955 aW using 48 h of incubation. There was ecological similarity between the bacterial strains Bacillus subtilis (RCB 3, RCB 6), Pseudomonas solanacearum RCB 5, Amphibacillus xylanus RCB 27 and aflatoxigenic Aspergillus section Flavi strains at 0.982 at 25 °C. The predominant interaction between all selected bacteria and fungi in dual culture was mutual intermingling at 0.982. Mutual inhibition on contact and mutual inhibition at a distance was observed at 0.955 aw, between only four bacteria and some Aspergillus strains. Bacillus subtilis RCB 55 showed antifungal activity against Aspergillus section Flavi strains. Amphibacillus xylanus RCB 27, B.␣subtilis RCB 90 and Sporolactobacillus inulinus RCB 196 increased the lag phase prior to growth and decreased the growth rate of Aspergillus section Flavi strains. Bacillus subtilis strains (RCB 6, RCB 55, RCB 90) and P. solanacearum RCB 110 inhibited aflatoxin accumulation. Bacillus subtilis RCB 90 completely inhibited aflatoxin B1 accumulation at 0.982 aW. These results show that the bacterial strains selected have potential for controlling Aspergillus section Flavi over a wide range of relevant environmental conditions in the stored maize ecosystem.  相似文献   

16.
The effect of ammonium nitrate broadcast as a soil or through irrigation, urea applied as a foliar spray, and monoammonium phosphate applied as a planting hole treatment on the incidence ofPhytophthora crown and root rot of apple trees was determined under orchard conditions in the Okanagan Valley of British Columbia, Canada. Results from the eight year study showed that ammonium nitrate applied as a single dose in spring at 240 g tree–1 year–1, as a split dose at 120 g tree–1 each in spring and early autumn, and in irrigation water (fertigation) at 7.5 g tree–1 wk–1 for 10 wk year–1 significantly increasedPhytophthora crown and root rot of Macspur on MM106 rootstock. There was no significant difference inP. cactorum infection between the unfertilized control and treatments with urea applied as a foliar spray at 1.0 kg 100 l–1 of water in spring and early autumn, and monoammonium phosphate applied as a planting hole treatment at 1 g l–1 of soil at planting time.  相似文献   

17.
植物内生枯草芽孢杆菌Em7菌株对葡萄灰霉病菌的抑菌活性   总被引:2,自引:0,他引:2  
通过室内皿内对峙抑菌试验、分生孢子萌发抑制试验、离体果实接种试验以及电镜技术,研究测定了分离自小麦根部的植物内生枯草芽孢杆菌Em7菌液对葡萄灰霉病菌Botrytiscinerea Pers.的抑制作用及抑菌机理。结果表明:用Em7菌液处理葡萄灰霉病菌后,在PDA培养基上形成了明显的抑菌圈,直径达2.81 cm;菌液对分生孢子萌发的抑制率达到88.65%;经Em7菌液处理后,离体果实病情指数明显低于空白对照,相对防治效果达到78.92%。电镜观察发现,处理组菌丝生长异常,体表凹凸不平,局部膨大成结或缢缩,分枝变多,菌丝体内液泡增多,细胞壁增厚,细胞膜透性发生变化。表明植物内生枯草芽孢杆菌Em7菌株对葡萄灰霉病菌有良好的抑制作用,并且可以有效控制葡萄灰霉病的发生。  相似文献   

18.
Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation for four days at 22 °C, yielded a better percentage of diseased plants than a microconidial suspension drench, an injection of a microconidial suspension into the hypocotyl, or a talcum inoculum.Pseudomonas fluorescens strain WCS374 applied in talcum or peat, but not as a suspension drench, induced systemic resistance. A minimal initial bacterial inoculum density of 105 CFU WCS374 root–1 was required to significantly reduce the percentage diseased plants. At least one day was necessary between bacterization of strain WCS374 in talcum on the root tips and inoculation of the pathogen in peat on the root base, for an optimal induction of systemic resistance. Strain WCS374 induced systemic resistance in six radish cultivars differing in their susceptibility toF. oxysporum f. sp.raphani. Significant suppression of disease by bacterial treatments was generally observed when disease incidence in the control treatment, depending on pathogen inoculum density, ranged between approximately 40 to 80%. Strains WCS374 and WCS417 ofPseudomonas fluorescens induced systemic resistance against fusarium wilt, whereasP. putida WCS358 did not. This suggests that the induction of systemic resistance byPseudomonas spp. is dependent on strain-specific traits.Abbreviations CFU colony forming units - IFC immunofluorescence colony-staining - ISR induced systemic resistance - PBS phosphate buffered saline - SAR systemic acquired resistance  相似文献   

19.
When lower leaves of rice plants were inoculated with powder formulation of a saprophytic strain ofPseudomonas fluorescens, Pfl, upper leaves, in addition to the inoculated lower leaves, showed resistance to the rice bacterial blight pathogenXanthomonas oryzae pv.oryzae. When the leaves were challenge-inoculated withX. oryzae pv.oryzae 4 days afterP. fluorescens application on lower leaves, the disease intensity in upper leaves decreased from 6.7 to 1.1. When rice seeds were treated with the formulation ofP. fluorescens Pfl and sown, 30-day-old seedlings showed resistance toX. oryzae pv.oryzae and the disease intensity decreased from 6.8 to 1.2. The induced resistance was transient; leaves sprayed withP. fluorescens Pfl at 30 days after treatment and leaves of 60-day-old seedlings fromP. fluorescens-treated seeds did not show resistance to the pathogen. In field trials, seed treatment followed by foliar application of the powder formulation ofP. fluorescens Pfl effectively controlled rice bacterial blight and increased the yield. In the induced resistant leaves a sharp increase in lignification and activities of peroxidase, phenylalanine ammonia-lyase and 4-coumarate: CoA ligase was observed when the leaves were challenge-inoculated withX. oryzae pv.oryzae. An approximately threefold increase in lignin content, peroxidase activity and phenylalanine ammonia-lyase activity and a fivefold increase in 4-coumarate: CoA ligase activity were observed 5 days after challenge inoculation withX. oryzae pv.oryzae in rice leaves pretreated withP. fluorescens for 5 days. A similar increase in defense-related activities was not observed in susceptible interactions or inP. fluorescens-treated plants at later stages of interactions when no resistance to the pathogen was observed.  相似文献   

20.
In view of the inconsistent performance of single or mixtures of plant growth-promoting rhizobacteria (PGPR) strains formulated for commercial use, and the high cost of regulatory approval for either a proprietary strain intended for disease control or a crop plant transformed to express a disease-suppressive or other growth-promoting PGPR trait, management of resident PGPR with the cropping system remains the most practical and affordable strategy available for use of these beneficial rhizosphere microorganisms in agriculture. A cropping system is defined as the integration of management (agricultural) practices and plant genotypes (species and varieties) to produce crops for particular end-uses and environmental benefits. The build-up in response to monoculture cereals of specific genotypes of Pseudomonas fluorescens with ability to inhibit Gaeumannomyces graminis var. tritici by production of 2,4-diacetylphoroglucinol (DAPG), accounting for take-all decline in the US Pacific Northwest, illustrates what is possible but apparently not unique globally. Other crops or cropping systems enrich for populations of the same or other genotypes of DAPG-producing P. fluorescens or, possibly and logically, genotypes with ability to produce one or more of the five other antibiotic or antibiotic-like substances inhibitory to other soilborne plant pathogens. In the U.S Pacific Northwest, maintenance of threshold populations of resident PGPR inhibitory to G. graminis var. tritici is the centerpiece of an integrated system used by growers to augment take-all decline while also limiting damage caused by pythium and rhizoctonia root rot and fusarium root and crown rot in the direct-seed (no-till) cereal-intensive cropping systems while growing varieties of these cereals (winter and spring wheat, barley and triticale) fully susceptible to all four root diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号