首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
该文就氨气对环境的影响和猪舍氨气排放机制进行了简要的叙述,详细综述了氨气排放的机理模型和基于不同因素建立的经验模型。从中可以看出,国外对氨气排放的模型做了大量的研究,也取得了一定的研究成果,但是不同的研究结果有一定的差异。最后针对中国的实际情况,对中国氨气排放需进一步研究的问题进行了探讨。  相似文献   

2.
在北京选择一典型猪场,对不同季节妊娠舍的氨气及氧化亚氮浓度进行了为期1年的试验测定,并根据二氧化碳平衡原理,对猪场不同生长阶段的妊娠猪含氮气体的排放通量进行了估算。结果表明:冬季2004年11月氨气和氧化亚氮的平均浓度分别为(11.64±4.36),(1.17±0.2)mg/m~3,夏季7月舍内氨气和氧化亚氮的平均浓度分别为(3.31±2.67),(0.6±0.02)mg/m~3;妊娠猪饲养期间的氨气排放通量为每头(185.2~500.8)mg/h,氧化亚氮为(3.85~35.93)mg/h。  相似文献   

3.
妊娠猪舍氨气及氧化亚氮浓度测定与排放通量的估算   总被引:1,自引:2,他引:1  
在北京选择一典型猪场,对不同季节妊娠舍的氨气及氧化亚氮浓度进行了为期1年的试验测定,并根据二氧化碳平衡原理,对猪场不同生长阶段的妊娠猪含氮气体的排放通量进行了估算。结果表明:冬季2004年11月氨气和氧化亚氮的平均浓度分别为11.64±4.36,(1.17±0.2)mg/m3,夏季7月舍内氨气和氧化亚氮的平均浓度分别为3.31±2.67,(0.6±0.02)mg/m3;妊娠猪饲养期间的氨气排放通量为每头(185.2~500.8)mg/h,氧化亚氮为(3.85~35.93)mg/h。  相似文献   

4.
垫料型猪舍春夏育肥季节的氨气和温室气体状况测试   总被引:2,自引:0,他引:2  
在规模化猪场内选择垫料育肥猪舍作为试验舍,以传统水泥地面育肥猪舍作为对照,利用多气体分析仪对试验舍和对照舍春夏两个育肥季节的NH3、CO2、CH4和N2O含量进行了连续3d的监测。结果表明:试验舍NH3、CO2和N2O的平均含量分别只有对照舍的40%、70%和77%,存在显著性差异(P〈0.05);夏季由于温度高,垫料易于厌氧发酵,加大了CH4排放,试验舍CH4平均含量高于对照舍,但两者之间无显著差异(P=0.089),春季试验舍的CH4平均含量低于对照舍,两者之间差异显著(P〈0.05);试验舍中NH3含量变化在春季和夏季无显著差异(P=0.072),CO2、CH4和N2O则存在显著性差异(P〈0.05),夏季试验舍CO2含量低于春季,但NH3、CH4和N2O含量高于春季试验舍。说明垫料型猪舍能够改善舍内环境,减少有害气体排放。  相似文献   

5.
该文简述了零污水排放育肥猪舍建筑结构,零污水排放育肥猪舍与规模化猪舍饲养育肥猪的生产性能、舍内卫生和环境状况比较,以及零污水排放育肥猪舍的垫料管理。分析表明:与规范化猪舍饲养育肥猪的生产相比.除了一些指标稍差外,基本能满足生产要求。该种猪舍对节省水资源并减少养猪生产中的环境污染,实现养猪业的可持续发展,具有重要意义。  相似文献   

6.
该文简述了零污水排放育肥猪舍建筑结构,零污水排放育肥猪舍与规模化猪舍饲养育肥猪的生产性能、舍内卫生和环境状况比较,以及零污水排放育肥猪舍的垫料管理。分析表明:与规范化猪舍饲养育肥猪的生产相比,除了一些指标稍差外,基本能满足生产要求。该种猪舍对节省水资源并减少养猪生产中的环境污染,实现养猪业的可持续发展,具有重要意义。  相似文献   

7.
育肥猪舍甲烷排放浓度和排放通量的测试与分析   总被引:11,自引:4,他引:7  
畜禽养殖是重要的温室气体排放源,畜禽养殖的甲烷排放量受动物生长特性、粪便收集方式和气候条件的影响。为了探讨中国特有的饲养管理方式下育肥猪舍温室气体排放规律,为减少甲烷排放提供依据,该研究在北京选择一典型猪场,对不同季节育肥舍的甲烷排放浓度进行了试验测定,从2004年5月至2005年3月,每2个月一次连续采集72~80 h甲烷浓度和相关数据,并根据二氧化碳平衡原理,对猪场的甲烷排放量进行了估算。结果表明:育肥猪舍内甲烷浓度有明显的季节性和日变化特性,2005年1月舍内甲烷的平均浓度为(22.98±10.52)mg/m3,7月舍内甲烷浓度为(2.68±0.68)mg/m3;每日最低甲烷浓度出现在9:00 am~17:00 pm时段;冬季舍内二氧化碳浓度明显偏高,夜间比允许浓度高1倍;每头育肥猪饲养期间的甲烷排放量为68.10~207.01 mg/h,折合每标准动物单位排放量:436~1185 mg/h·(500 kg),在IPCC推荐的发展中国家猪呼吸代谢甲烷排放1.0 kg/(a·头)范围内。  相似文献   

8.
规模化笼养蛋鸡舍冬季氨气和颗粒物排放特征研究   总被引:2,自引:2,他引:0  
畜禽养殖的氨气(NH3)和颗粒物(particulatematter,PM)排放已成为危害人畜健康,并可能造成环境风险的重大问题。该文选择北京郊区一典型规模化蛋鸡养殖舍,对典型冬季条件下蛋鸡舍的NH3和PM排放进行了连续8d的监测;并根据二氧化碳平衡原理,对NH3及PM的排放通量进行了估算。研究结果表明,蛋鸡舍出风口处NH3平均质量浓度为(4.58±3.29)mg/m3,每只鸡NH3排放通量为(32.2±12.5)mg/d。蛋鸡舍出风口处PM2.5、PM10和总悬浮颗粒物(total suspended particulates, TSP)质量浓度为(0.13±0.06)、(0.81±0.16)、(3.28±1.32)mg/m3,每只鸡PM2.5、PM10和TSP排放通量分别为(0.7±0.4)、(6.3±1.4)、(27.6±12.5)mg/d。氨气以及PM的排放均随着舍内1次/2 d的机械清粪频率呈现2 d的周期变化趋势。除清粪作业、鸡群日间活动等影响外,舍内PM2.5浓度一定程度上受舍外环境本底值影响。舍内PM2.5与PM10的比例在10.4%~20.4%之间。舍内PM2.5颗粒上所含的K+、Mg2+含量均显著高于舍外环境本底PM2.5(P0.05)。同时舍内及舍外PM2.5颗粒上解析出来的阳离子所带的电荷量均高于阴离子。研究结果可为畜禽养殖NH3和PM排放清单的编制提供基础参数;同时对畜禽舍PM的组分研究,可为后续开展二次无机气溶胶形成机理以及颗粒物源解析的研究提供支撑。  相似文献   

9.
反刍动物甲烷排放预测模型研究现状   总被引:3,自引:1,他引:3  
作为大气中一种重要的温室气体,甲烷产生的温室效应已日益引起人们的关注,而反刍动物是甲烷最大的人为排放源之一。该文就国内外对反刍动物甲烷排放预测模型的有关研究进行了分析和综述,主要对反刍动物甲烷排放预测的经验模型和机理模型进行了分析比较。最后,结合中国国内当前关于甲烷排放研究的实际情况,对中国反刍动物甲烷排放需进一步研究的问题进行了探讨。  相似文献   

10.
准确获取肉鸡养殖过程中氨气(NH3)排放规律及排放系数是评估其排放量的基础,并可为NH3减排提供依据。为了研究肉鸡模拟养殖环境条件下肉鸡质量、排泄量、采食量和饮水量等参数对NH3排放情况的影响,该文设计了由肉鸡养殖箱、气体采样管路和红外光声谱气体监测仪构成的肉鸡养殖箱NH3浓度检测装置,对养殖箱的静态气密性、检测装置的性能和肉鸡短期养殖NH3排放情况进行了研究。研究结果表明:静态试验时,养殖箱内NH3质量浓度的平均变化率为-4.40%,气密性能良好;动态试验时,将质量浓度为37.95 mg/m3 NH3通入养殖箱,检测NH3质量浓度最大值36.75 mg/m3,最小值35.22 mg/m3,平均值为35.65 mg/m3,准确度达到93.94%,检测装置性能稳定,能够较精确检测到养殖箱内标准气体的质量浓度。肉鸡短期养殖试验结果表明:在非光照时期(22:00-次日06:00)养殖箱内NH3质量浓度大于光照时期(06:00-22:00)质量浓度;养殖前期肉鸡排泄量与NH3浓度变化趋势呈正相关,养殖后期排泄量与NH3浓度变化趋势呈负相关;箱内粪便累积到第4天,NH3质量浓度急剧上升。该检测装置为后期进一步研究肉鸡养殖生长过程中NH3排放特征提供了前期研究设施基础。  相似文献   

11.
基于可调谐吸收光谱的畜禽舍氨气浓度检测   总被引:2,自引:1,他引:1  
为开发一种基于可调谐吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)技术的畜禽舍NH3浓度实时在线监测装置,以满足畜禽舍环境监测与控制的需要。该研究基于TDLAS技术,采用气室式封闭光程,搭建了一套畜禽舍NH3浓度检测系统。该系统采用波长为1 512 nm蝶形激光器作为光源,根据分子吸收光谱理论,采用波长调制技术,实现了对畜禽舍NH3浓度检测。为优化检测系统性能,通过改变锯齿扫描信号、调制正弦信号的幅值与频率以及输入信号与参考信号相位差,确定了系统最佳的调制参数,并通过系统优化试验确定了系统最佳的气室加热温度、系统响应时间与二次谐波平均次数等关键参数。最后,通过浓度标定试验与性能试验对检测系统进行了测试。试验结果表明,检测系统调制参数在正弦调制信号频率为9 kHz、正弦调制信号幅值为30 mV、锯齿扫描信号频率为1 Hz、锯齿扫描范围为170~215 mV、谐波分析中输入信号与参考信号相位差为50°参数下对应的二次谐波形状与幅值最佳;不同浓度NH3与二次谐波幅值之间具有良好的线性关系(拟合方程相关系数r=0.995 8);检测系统的进气响应时间约为42 s(气室自充气达到目标浓度99%);气室加热温度为403 K时,NH3在气室吸附作用最小;Allan方差分析表明,检测系统在积分时间为10 s时达到探测限,探测限为0.038 mg/m3。在最优系统参数下对系统进行性能试验,得到检测系统综合线性误差为1.00%,定量测量综合重复误差为0.51%,可满足畜禽舍内NH3浓度长期持续监测的需求。  相似文献   

12.
为促进奶牛养殖场的大气氨排放控制,形成奶牛养殖场粪便中氨排放的阻控体系,该文在冬季和夏季对内蒙古呼和浩特地区奶牛养殖场A和奶牛养殖场B的大气、牛粪和牛尿进行了采样试验分析,研究了2种奶牛养殖场不同处理工艺的氨排放特征。静态试验结果表明,奶牛养殖场A和奶牛养殖场B氨气排放浓度最高的是氧化塘处理工艺、预处理工艺,分别为冬季0.862,3.169 mg/m3,夏季2.785,2.130 mg/m3。动态试验结果表明,牛粪的氨排放系数要高于牛尿1.85倍,奶牛养殖场A和奶牛养殖场B平均排放系数分别为29.23%、49.36%。奶牛养殖场A和奶牛养殖场B总大气氨排放量分别为冬季172.69,1 101.00 kg/d,夏季284.70、1 395.32 kg/d。2种处理工艺冬季和夏季大气氨含量均满足畜禽场环境质量标准,但超过人居空气质量标准。  相似文献   

13.
生猪养殖业污水排放智慧监管系统的设计与实现   总被引:1,自引:0,他引:1  
为了对生猪养殖业污水的治理过程进行监控和违规排污预警,该文提出了养殖污水实时监管策略,设计并实现了生猪养殖污水治理智慧监管系统。该系统通过信息采集模块收集养殖污水排放的实时数据,实现养殖污水实时数据监测、预警分析等功能。其中集中治理的监管是根据安装在槽罐车上的GPS数据和污水集中处理厂的信息,判断污水是否被运送到指定地点排放;工业治理的监管是采用模糊推理理论,以监管因子的浓度偏差及偏差变化率为输入量,相应的污水预警等级作为输出量,对监管因子进行模糊化及逻辑推理,建立相应的模糊监管子系统,生成工业治理监管规则及策略;针对生态治理的监管,构建了相应的监管策略和Ecological数学模型,该模型以监管策略为依据,对实时数据进行定性与定量分析预测,实现对偷排漏排、满溢等违规排污现象的判断。试验结果表明,系统预警准确度为96.17%,平均误差时间为33.22 s,违规排污量平均值为15.77 L,能够满足养殖污水排放监管要求,对提高监管效率具有重要意义。  相似文献   

14.
北京市猪舍节能改造的节能及保温效果   总被引:4,自引:4,他引:0  
为了寻找北京市猪场节能的途径,对北京市既有供暖猪舍建筑围护结构保温性能进行了调查,并对370 mm厚墙、黏土瓦屋顶猪舍进行了墙体外贴保温板、黏土瓦屋顶上增加彩钢夹芯板保温层等节能改造,对节能潜力进行了估算,然后通过温度实测试验比较了节能改造舍与对照舍冬季的热环境状况。结果表明,北京市猪舍墙体、屋顶、窗户均不够节能;在假设供暖猪舍舍内冬季温度为20℃,供暖期为125 d的情况下,370 mm厚墙、黏土瓦屋顶猪舍1个采暖季的耗煤量为72 kg/m2,经过节能改造后,可节能69%。节能改造的投资回收期约为7.4 a。在舍外日平均温度为2.6~9.3℃情况下,试验节能改造舍舍内日平均温度较对照舍高1~3℃。舍外逐时温度越低,节能改造舍与对照舍内逐时温度差越大。试验期间,舍外逐时温度最低值为-2.3℃时,节能改造舍较对照舍逐时温度提高3.6℃。该文可为北京市既有供暖猪舍改造方案提供参考。  相似文献   

15.
规模化养猪场典型沼气工程各排放节点氨排放特征研究   总被引:1,自引:2,他引:1  
为了解典型规模化猪场沼气工程的氨排放特性,选取长三角地区某规模化养猪场的典型沼气工程为研究对象,在沼气工程设施的不同氨排放暴露节点(集粪池、调节池和沼液池)设置监测点对氨排放进行连续3d的同步监测,测定处理设施各排放节点氨浓度,核算各排放节点粪便氨排放速率,分析各排放节点氨排放特征。研究结果表明,集粪池、调节池和沼液池的氨日均排放速率分别为1.48、3.08和1.47 g/(d·m2);各节点氨排放具有明显的日变化过程,大致表现为早晨氨排放呈波动增大趋势,午后开始降低,至夜间保持低值排放;集粪池、调节池在粪污周转时段出现日排放峰值;沼液池、集粪池和调节池静置阶段氨小时排放速率与温度呈正相关,与湿度呈负相关;集粪池、调节池和沼液池日氨排放量分别为13.44、38.72和5 275.4 g/d。  相似文献   

16.
In the Netherlands, there is a vigorous debate on ammonia emissions, atmospheric concentrations and deposition between stakeholders and research institutions. In this article, we scrutinise some aspects of the ammonia discourse. In particular, we want to improve the understanding of the methodology for handling experimentally determined ammonia emissions. We show that uncertainty in published results is substantial. This uncertainty is under‐ or even unreported, and as a result, data in national emission inventories are overconfident by a wide margin. Next, we demonstrate that the statistical handling of data on atmospheric ammonia concentrations to produce national yearly atmospheric averages is oversimplified and consequently atmospheric concentrations are substantially overestimated. Finally, we show that the much‐discussed ‘ammonia gap’ – either the discrepancy between calculated and measured atmospheric ammonia concentrations or the difference observed between estimated NH3 emission levels and those indicated by atmospheric measurements – is an expression of the widespread overconfidence placed in atmospheric modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号