首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tree growth and health status appear to be related to foliar nutrient contents. Foliar nutrient concentration might be the result of a complex interaction between soil nutrients and effective availability caused by climate, water and other site and treatment effects. This study examines foliar macronutrient (N, P, K, Ca, Mg) and organic C concentrations in Aleppo pine (Pinus halepensis) needles (between 5 and 18 months old), as well as time course variability (nine dates, from July 1999 to November 2001). Variability was assessed depending on quality site (two sites, Yeste and Calasparra; SE Spain) and seven silvicultural treatments including thinning, scrubbing, pruning and particular combinations of them. Foliar macronutrient concentrations for Aleppo pine in South-eastern Spain were slightly lower (N, P, K,) or higher (Mg, Ca) than the considered as adequate ranges for Aleppo pine and Pinus genera. However, our results agree well with other normal ranges reported for Aleppo pine in Spain and for other North American Pinus species such as P. elliottii, P. taeda and P. palustris. Site, treatment and date (season) affected significantly the foliar macronutrient and C concentration, although the most important was the date, likely due to the two growth periods per year that Aleppo pine has in Mediterranean sites. Silvicultural treatments affected foliar nutrient concentration, so that the concentrations of N, P and K were higher when treatments included thinning than those that did not. The contrary was true for Mg and Ca. However, treatments did not affect the time course of the concentration, i.e., seasonality was not broken due to treatments. Moreover, the effect of the treatments was markedly high along the first year after they were applied but the differences were attenuate 2 years later. Site affected the time course of N, K, Mg and C in a different way: while for N, K and C, at the end of study period, they were higher in Calasparra than in Yeste, for Mg the contrary was true. Nutrient ratios had a different behaviour regarding to single nutrient: although date was significant, we did not appreciate seasonality. In addition, some nutrient ratios were not affected by treatments (N/P, N/K, Ca/Mg,) or by site (N/Ca, K/Ca). Average foliar N concentration and Ca/Mg ratio explained significantly the mean diameter and height growth, so that higher is the foliar N concentration and lower is Ca/Mg, higher is the growth.  相似文献   

2.
We investigated how multiple-crop forestry has influenced the magnitude and variability of soil and plant phosphorus (P) fertility and site disturbance. Kinleith Forest, on Mamaku Plateau, covers >100,000 ha and comprises mainly plantation Pinus radiata. Three study areas in the forest were chosen to represent natural state (native forest), first crop of P. radiata (24 years growth), and second crop of P. radiata (4 years growth of second crop). The adjacent areas have similar relief and climate, and the soils are all the same age, being predominantly Andic Haplohumods developed in 1770 calendar-year-old non-welded tephra (Taupo Ignimbrite, ca. 0.5–0.8 m in thickness) and overlying a buried paleosol on earlier tephric material.

Soil properties were compared using a random geometric sampling scheme stratified in a 40-m grid. Soil samples (0–20 cm) were taken at 1.5, 4.5 and 13 m spatial intervals in random directions away from each primary node, providing 192 sample sites for each study area. Additionally at selected sites, samples of the current year's foliage from the upper crowns were collected, the thickness of Taupo Ignimbrite (i.e. depth to buried paleosol) was recorded by augering, and site disturbance was assessed using a new six-point scale based on change relative to a modal soil profile. Geostatistics and geographical information systems (GIS) were used to assess variability and effects of forest management on the measured properties. Soil Bray-2 P concentrations were below guidelines for satisfactory growth (12 mg kg−1) at all sites, and no differences were recorded between the different management areas. However, the amount of within-site variability in Bray-2 P increased with the number of crops. Foliar P concentrations were only marginally deficient in both the first and second crops, indicating that P is currently not significantly limiting growth. The lack of difference in foliar P between first and second crops indicates no crop-to-crop decline in foliar P status and suggests that no site P fertility decline has occurred. The soils have an unusual ability to continue releasing P through successive sequential extractions in the Bray-2 P test, indicating a strong buffering capacity, and this may explain the apparent lack of deficiency even with Bray-2 P values of <12 mg kg−1. The site disturbance index increased and the spatial distribution of P data became increasingly variable with crop rotation.

GIS, inverse-distance weighting and kriging proved useful in illustrating the trends between crops. The spatial variability of results indicated that there was no obvious pattern to the variability and that more site-specific forest management in the region would be difficult. However, there was some evidence that less disturbance during harvesting may minimise variability of soil P supply.  相似文献   


3.
Nutritional surveys in New South Wales Pinus radiata plantations have shown differences in both foliage and soil boron status, particularly as a result of variations in soil parent materials. Plantations on acid igneous parent materials are particularly susceptible to the development of B deficiency, which appears to be further exacerbated bu soil/landscape relationships, water stress and certain management practices.

Boron deficiency in P. radiata on acid igneous soils at Sunny Corner State Forest, N.S.W., was particularly noticeable on lower slopes which usually have relatively high available moisture. These lower-slope soils had severely leached surface horizons, less extractable B, and fewer B-sorption characteristics than the upper sections of the soil catena. These soil properties also adversely affect the capacity of these soils to retain either Na-borate or Ca-borate fertilizers (borax and colemanite, respectively). For equal amounts of B, up to 95% of the borax applied to in-situ soil columns rapidly moved beyond the top 0.3 m of the soil profiles within 21 months, while less than 16% of the colemanite had moved beyond the columns. Leached surface soils of the lower-slope site retained lesser amounts of either B-fertilizer.

Colemanite offers the most cost-effective means of maintaining adequate levels of soil-B in these soil types due to its lower solubility. Management of B deficiency in P. radiata involves appropriate site selection, forest management practices and fertilizers usage.  相似文献   


4.
In the Murray-Darling basin, irrigation of tree crops is being evaluated as an alternative method for the disposal of municipal effluent. A study was carried out at Wodonga in which seven tree species were irrigated with effluent for a period of 4 years. Irrigation was calculated weekly on the basis of pan evaporation and rainfall during the preceding week. Annual irrigation varied between 1190 mm and 1750 mm with a total input over the 4-year-period of 4940 mm.

Height and diameter growth varied significantly between species. At age 4, mean dominant height of Eucalyptus grandis, E. saligna and Populus deltoides × P. nigra ranged from 14.3 to 15.0 m compared with 6.6 to 9.8 m for Casuarina cunninghamiana, E. camaldulensis, P. deltoides and Pinus radiata. Wood production of the faster-growing species (E. grandis and E. saligna) was approximately 130 m3 ha−1, or around 32 m3 ha−1 year−1 over a 4-year period. This was nearly three-fold the production of the other native species and twice that of Pi. radiata. Volume growth of P. deltoides × P. nigra (85 m3 ha−1) was significantly greater than that of P. deltoides (42 m3 ha−1).

Accumulation of nutrients in the above-ground biomass varied significantly between species and ranged from 24 to 41 g m−2 for N, 2.6 to 5.9 g m−2 for P, 0.5 to 9.2 g m−2 for Na, 12 to 27 g m−2 for K, 7 to 52 g m−2 for Ca and 3.1 to 7.9 g m−2 for Mg. Nutrient accumulation was generally greater in species with a comparatively large crown biomass relative to stem size such as C. cunninghamiana and E. camadulensis. Average nutrient accumulation by trees as a percentage of input from effluent was estimated at 19% for N, 9% for P, 1% for Na, 14% for K, 52% for Ca and 32% for Mg.

Results of this study indicate the importance of selecting species on the basis of not only growth but also nutrient accumulation to optimise renovation of wastewater by tree plantations.  相似文献   


5.
Nutrient inputs in rainfall, and streamwater chemistry and quality, were measured from May 1976 to April 1982 at three forested catchments in Victoria. Streamwater chemistry was influenced by the strong seasonal fluctuations in streamflow. Yearly input-export balances for Na, K, Ca, Mg and Cl varied substantially and were highly correlated with runoff. This underlines the importance of sampling a wide range of climatic variation to derive meaningful balances.

Calibration relationships between catchments were used to evaluate the impact of clearing native eucalypt forest for the establishment of P. radiata on streamwater chemistry and quality and on nutrient exports. Clearing was found to have little effect on streamwater quality, thus demonstrating the effectiveness of a 30-m wide buffer strip retained on both sides of the stream channel. Only minor changes in streamwater chemistry were observed; however, exports of nutrients and suspended solids were significantly higher because of increased discharge following clearing.

Exports of most nutrients returned to pre-treatment levels within 18 months after clearing. Nutrient losses in streamwater were small when compared with losses due to burning the cleared vegetation. Balances for Na were used to estimate nutrient inputs from geological weathering. It was concluded that inputs of Ca are probably too low to ensure adequate supply of Ca for successive rotations of P. radiata, and future management practices should aim at conserving this nutrient.  相似文献   


6.
不同年限毛竹-灵芝复合系统土壤质量评价   总被引:1,自引:1,他引:0  
研究以不同年限(0 a、1 a和2 a)毛竹—灵芝复合系统为对象,对比分析灵芝不同种植年限的毛竹林土壤理化性质、酶活性等17个土壤质量指标的差异,并基于主成分分析对其土壤质量进行评价,旨在为毛竹林下种植灵芝提供参考。结果表明:随着灵芝种植年限的延长,毛竹林土壤含水率、孔隙度和通气度呈先升高后降低的变化趋势,而土壤容重呈先降低后升高的变化趋势;土壤pH值随种植年限的延长逐渐升高,有利于缓解土壤酸化;土壤有机质、全氮、全磷、全钾、速效养分含量和土壤酶活性均随种植年限的延长呈逐渐升高的变化趋势,且种植2 a显著高于0 a (P<0.05)。综合分析土壤理化性质以及酶活性等指标,毛竹林下种植灵芝后,其土壤质量指数均显著高于未种植的毛竹林地,且随种植年限的延长逐渐升高,说明灵芝种植有利于提高毛竹林地土壤质量。  相似文献   

7.
8.
Nine hardwood species were planted at a 3 m by 3 m spacing on a Mississippi River front soil (Aeric Fluvaquents) in western Mississippi and subjected to three intensities of cultural treatments. Because of the death of yellow-poplar during a severe spring flood (1973) and severe iron deficiency in three oaks caused from high soil pH, only five species are discussed in this paper. Periodic disking substantially increased heights, diameters, and survival of trees through 4 years. Disked plots had significantly lower soil N than mowed and control, while Mg was considerably higher in disked than control plots. Cultural treatments did not affect other measured soil nutrient levels.Trees growing on disked plots had significantly higher N and significantly lower P, K, and Mg concentrations than those in control plots. Foliar concentrations of K and Mg in disked and mowed plots were similar. Cultural treatments did not affect foliar Ca concentrations. Sweetgum had the lowest nutrient concentrations and cottonwood or green ash the highest for most nutrient elements tested. Other species were intermediate, and no ranking was readily apparent.  相似文献   

9.
A split plot trial involving Ailanthus triphysa (ailanthus) at four spacings (3 m×1 m, 2 m×2 m, 3 m×2 m and 3 m×3 m) and four fertiliser regimes (0:0:0, 50:25:25, 100:50:50 and 150:75:75 kg ha−1 per year N, P2O5, K2O) was initiated in June 1991. Objectives included evaluating the growth and yield potential of ailanthus grown under differing density and fertiliser regimes and to estimate the nutrient export through harvest. Ninety-six randomly selected average-sized trees were felled at 8.8 years of age for assessment. Results show that height, diameter, stand leaf area index, biomass production and volume yield were greater in the 2 m×2 m spacing. Repeated application of fertilisers at 1.2, 2.25 and 5.25 years after planting had little effect on biomass and volume yields, presumably because of weed competition (despite periodic weed control), higher pest incidence (in the heavily fertilised plots) and/or moderately adequate soil nutrient levels. Regarding partitioning of tree biomass, stem wood represented the principal component (>70%), while foliage contributed the least (<7%). Conversely, foliar N, P and K concentrations were the highest, followed by branch wood, coarse roots and stem wood. Denser stands showed greater accumulation of N, P and K with higher potential for nutrient export through harvest. However, as the bole fraction accounted for only about 56–64% of the total nutrients removed, leaving other biomass components (foliage and branches) at the site will reduce the associated nutrient export. Wider spacings (3 m×2 m and 3 m×3 m) were more efficient in N and K use, but P use efficiency was higher in 2 m×2 m. Likewise, trees in the no fertiliser plots exhibited greatest N, P and K use efficiencies. Available soil P, K and organic C levels declined with increasing tree density, while repeated fertilisation increased nutrient concentrations. Soil pH and available P levels declined in comparison to the pre-treatment values.  相似文献   

10.
Residual effects, after 5 years, of four site preparation treatments: (1) cut and leave; (2) cut, leave and burn; (3) chop and burn; (4) shear, pile, burn and disk; originally applied in regenerating Pinus taeda L. plantations on three soils in eastern Texas; were evaluated by determining soil bulk density, organic matter, total nitrogen and extractable P, K, Mg, Ca and foliar P, K, Ca and Mg concentrations. By the fifth growing season, surface soil (0–8 cm) properties did not vary significantly except for N and Ca concentrations which were lowest for soils on the shear, pile, burn and disk treatments. Increased N and Ca concentrations for the shear, pile, burn and disk treatment below the 0–8 cm depth indicated the lower surface concentrations were a residual effect of disking. Foliar nutrient concentrations did not differ significantly except for foliar N concentrations which were lower for trees on the shear, pile, burn and disk plots.Residual treatment effects on stand development were evaluated by measuring fifth year stand density, stem diameter at breast height (1.4 m) and total height. Although the parameters were not significantly different, stands on the shear, pile, burn and disk treatment tended to have more stems of larger size than the other treatments.  相似文献   

11.
Long-term (40 years) effects of two soil amelioration techniques [NPKMgCa fertilization + liming; combination of PKMgCa fertilization, liming, tillage, and introduction of lupine (Lupinus polyphyllus L.)] on chemical topsoil properties, stand nutrition, and stand growth at two sites in Germany (Pfaffenwinkel, Pustert) with mature Scots pine (Pinus sylvestris L.) forest were investigated. Both sites are characterized by base-poor parent material, historic N and P depletion by intense litter-raking, and recent high atmospheric N input. Such sites contribute significantly to the forested area in Central Europe. Amelioration resulted in a long-term increase of pH, base saturation, and exchangeable Ca and Mg stocks in the topsoil. Moreover, significant losses of the forest floor in organic carbon (OC) and nitrogen stocks, and a decrease of the C/N ratio in the topsoil were noticed. The concentrations and stocks of OC and N in the mineral topsoil increased; however, the increases compensated only the N, but not the OC losses of the forest floor. During the recent 40 years, the N nutrition of the stands at the control plots improved considerably, whereas the foliar P, K, and Ca concentrations decreased. The 100-fascicle weights and foliar concentrations of N, P, Mg, and Ca were increased after both amelioration procedures throughout the entire 40-year period of investigation. For both stands, considerable growth acceleration during the recent 40 years was noticed on the control plots; the amelioration resulted in an additional significant long-term growth enhancement, with the NPKMgCa fertilization liming + being more effective than the combination of PKMgCa fertilization, liming, tillage, and introduction of lupine. The comprehensive evaluation of soil, foliage, and growth data revealed a key relevance of the N and P nutrition of the stands for their growth, and a change from initial N limitation to a limitation of other growth factors (P, Mg, Ca, and water).  相似文献   

12.
The objectives of this study were: (1) to quantify the genetic variation in foliar nutrient concentration in relation to foliar carbon isotope composition (δ13C) and tree growth of 122 clones of ca. 4-year-old F1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (P. caribaea var. hondurensis Barr. et Golf.) grown at two experimental sites with different water and nutrient availability in southeast Queensland, Australia and (2) to examine the potential of using foliar nutrient concentration of the 4-year-old tree canopies for selecting elite F1 hybrid pine clones with improved nutrient-use efficiency (NUE) and water-use efficiency (WUE), and ultimately enhanced tree growth under ambient growing conditions. There were significant differences in foliar nutrient concentrations between two canopy positions (upper outer and lower outer canopy) sampled, between summer and winter, and between the two sites. This highlights that foliar nutrient concentrations are influenced by sampling and environment. Significant genetic variations in foliar nutrient concentrations were detected between the clones, between the female parents, and between the male parents of the clones in both sampling seasons at both sites. Depending on the nutrient concerned, canopy position, season, and site sampled, the clones accounted for 4.7–33.9% of the total variation in foliar nutrient concentrations, the clone female parents for 0–25.1% and the clone male parents for 0–28.6%. The site-by-clone interactions were statistically significant for foliar N, P, Mg, Cu, Zn, Mn, Fe and mineral concentrations at the upper outer canopy in summer, and for foliar N concentration in winter. There were significant, positive correlations between clone means of foliar δ13C and N concentration at the upper outer canopy in summer for the wet site, while clone foliar δ13C was also positively related to clone foliar N concentration at both canopy positions in summer for the dry site. This suggests that clone WUE as reflected in foliar δ13C may be improved by selecting elite clones with higher foliar N concentration and increased photosynthesis, leading to enhanced tree growth when both water and N are the major growth-limiting factors. This is supported by the positive correlation detected between clone tree height and foliar N concentration at the upper outer canopy for both sites. Thus, foliar nutrient (particularly N) concentration, together with foliar δ13C, may be useful for assisting in selection of exotic pine clones with improved NUE and WUE, and enhanced tree growth under the nutrient- and water-limiting environments.  相似文献   

13.
Copper deficiency and stem deformation have been linked to poor lignification in Pinus radiata and in non-woody species. Tracheid collapse in zones of poorly lignified woody tissue from deformed Pinus radiata has also been reported. This paper reports an experiment to investigate whether tracheid collapse in poorly lignified wood from Cu-deficient plants can be caused by water-stress.

Seedlings from two families of P. radiata were grown in a peat/sand mix and subjected to stages of water-stress after symptoms of stem and branch deformation had become apparent. The final stage of water-stress was sufficient to kill the seedlings.

Woody tissue was poorly lignified, and seedlings had very low concentrations of copper in foliage (1.1 μg g−1). However, collapsed tracheids were not evident in poorly lignified wood after water-stress had been applied. The results indicated that previously reported tracheid collapse in deformed and poorly lignified stems of P. radiata was not caused by water-stress.

There were significant differences in stem deformation between the two seedling families.  相似文献   


14.
The present study was carried out to elucidate the drought growth responses of Quercus ilex L., Phillyrea latifolia L., Arbutus unedo L., and other accompanying woody species of the Mediterranean holm oak forest. We submitted holm oak forest stands in Prades mountains (NE Spain) to a 2-year experimental drought. We reduced soil water availability about 15% by plastic strips and funnels that partially excluded rain throughfall and by ditch interception of water runoff. Mean stem diameter increment showed a great variation depending on the species. A. unedo had larger growth rates than Q. ilex and P. latifolia, but it was also the species that experimented the highest growth reduction in the drought plots (77%), suggesting a higher drought sensitivity than Q. ilex (55%) and P. latifolia (no drought effect). The growth reduction was specially marked in the larger trees. Aboveground stand biomass increment, estimated from stem diameter by allometric relationships, was 1.9 Mg ha−1 per year in the control plots. The 15% reduction in the upper soil moisture produced 42% reduction in this biomass increment. In the drier conditions predicted in this Mediterranean area in the frame of climate change, an important reduction of growth rates can be hence expected, accompanied by a gain of dominance of drought-tolerant species such as P. latifolia in detriment of more mesic species such as Q. ilex.  相似文献   

15.
Seasonal changes in above ground dry-matter, nitrogen (N), and phosphorus (P) accumulation were measured following application of N and P in autumn or spring to 1-year-old Pinus radiata (D. Don). Dry-matter production and nutrient accumulation were measured eight times over two years following fertilization.

All trees produced dry-matter throughout the year, but during the summer, fertilized trees produced more dry-matter than unfertilized trees. In contrast to dry-matter production, nutrient accumulation showed a distinctly seasonal pattern with maximum accumulation of N and P occurring in winter and spring, when rainfall and soil moisture were highest. Accumulation of N and P either slowed markedly or ceased during summer depending on fertilizer treatment. Continued dry-matter production during summer, when nutrient accumulation was low, resulted in the decline of N and P concentrations in needles, branches and stems of all trees. This indicated that nutrients required for new growth during summer were mobilized from existing foliage and wood. Fertilization increased the concentrations of N and P in foliage and wood, and these higher concentrations persisted through summer. Spring fertilization increased N accumulation to a greater extent than autumn fertilization, this effect lasting two years. The greater dry-matter production by fertilized trees during summer indicated that growth during summer was limited by nutrient supply.  相似文献   


16.
Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5–8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or Al, Ca with Mg, and Fe with Al provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study.  相似文献   

17.
Two types of measures have traditionally been used to monitor changes after disturbances in the nutrient availability of forest ecosystems: (1) soil nutrient pools and transformation rates and (2) foliar nutrient content. We used a wildfire chronosequence in natural and unmanaged Pinus canariensis forests to determine which kind of measure is more effective in discriminating between disturbed and undisturbed plots and to determine whether the different availability indices provide comparable and consistent results within the chronosequence and between different sampling dates. The results showed that (1) foliar N and P concentrations were the variables that best discriminated between the plots of the chronosequence, (2) the various soil N availability indices neither showed steady relationships nor predicted the plant nutrient availability, and (3) P availability indices showed steady relationships and predicted plant nutrient availability. Due to the changing nature of the soil N pools, repeated sampling over a long period of time could yield results different from those presented here. However, the large sampling effort required would favor the use of foliar nutrient concentrations as the most desirable first approach to the community’s nutritional status, especially when time or budget constraints are relevant.  相似文献   

18.
Effects of three methods of site preparation, i.e. trench (30 cm deep and 30 cm wide dug across the plots), pit (30 cm × 30 cm × 30 cm) and augerhole (15cm diameter and 90 cm deep) on raising Prosopis juliflora plantations on a highly alkali soil (pH2 10.3) were studied in a field experiment at Gudha Experimental Farm of the Central Soil Salinity Research Institute, Karnal. A uniform dose of gypsum of 3 kg per plant was mixed with the excavated soil before trenches/pits/augerholes were refilled and Prosopis planted. The study indicated that mean plant height and girth growth, recorded at 2 year intervals from planting up to 8 years, were greatest with the augerhole method. Similarly, the air dried shoot and root biomass accumulated by Prosopis in 6 years was maximum in augerhole planting. In trench and pit planting, most of the roots were confined to surface layers (0–60 cm), whereas in augerhole the roots were able to pierce the hard CaCO3 layer (caliche bed) and were nearly 2.5 m deep 2 years after planting. Differential site preparation techniques showed little effect on N, P, K, Ca, Mg, S and Na concentrations in plant parts (leaf, branch and stem) of Prosopis both at 2 and 6 years after planting. Total removal of N, P, K, Ca, Mg and S through Prosopis parts at 2 and 6 years after planting was maximum in auger planting and minimum in trench planting. The augerhole was also superior to other techniques in pod production, litter yield and nutrient additions to the site. However, litter quality remained unaffected owing to planting techniques. In general, there was marked decrease in pH and electrical conductivity and appreciable improvement in organic carbon and available N status of the experimental soil owing to Prosopis growth, but effect of different site preparation methods was not significant. This study showed that site preparation for planting Prosopis in high pH soils in the vertically downward direction is more important than reclamation of surface soil in the horizontal direction.  相似文献   

19.
The impacts of different methods of mechanical site preparation (MSP) on performance and foliar nutrition of planted white spruce (Picea glauca (Moench) Voss) seedlings were examined at two mixed-wood boreal forest sites (Judy Creek, Fox Creek) in Alberta, Canada. The treatments included three types of MSP: disc trench, ripper plough, and bladed, the latter including thin and thick microsites (based on depth of remaining organic matter); as well as a harvested-control (no MSP). Seedlings were planted in June 1991, four months after MSP, and foliar N, P, K, Ca, Mg, S, Mn, Fe, and Al were assessed in the second and third growing seasons (13, 25, and 28 months later). Nutrient concentration and relative (among treatments) foliar nutrient content scaled up to the level of the whole seedling were examined. Following analysis of variance, significant responses were interpreted using vector analysis. MSP did not significantly affect seedling survival, height or unit needle weight. There was a non-significant trend of higher foliar biomass for seedlings in MSP areas than for control seedlings. Overall, the impact of MSP on foliar nutrient status on these sites was minimal. The only consistent positive effect of MSP on seedling nutrition was increased foliar Mg concentrations in blade-thin sites at Fox Creek. Indications of possible negative impacts of MSP include: increased Fe and Al concentrations in MSP areas at both sites; reduced P and K concentrations at both sites; and reduced Mn concentration and content at one site. The ripper treatment had the greatest positive effect on foliar nutrient status (P, K, Mn concentration). Blading (particularly blade-thin) resulted in the lowest concentrations of foliar P, K and Mn and the greatest increases in foliar Fe and Al.  相似文献   

20.
Growing interest in the use of planted forests for bioenergy production could lead to an increase in the quantities of harvest residues extracted. We analysed the change in C and N stocks in the forest floor (LFH horizon) and C and N concentrations in the mineral soil (to a depth of 0.3 m) between pre-harvest and mid-rotation (stand age 15 years) measurements at a trial site situated in a Pinus radiata plantation forest in the central North Island, New Zealand. The impacts of three harvest residue management treatments: residue plus forest floor removal (FF), residue removal (whole-tree harvesting; WT), and residue retention (stem-only harvesting; SO) were investigated with and without the mean annual application of 190 kg N ha−1 year−1 of urea-N fertiliser (plus minor additions of P, B and Mg). Stocks of C and N in the forest floor were significantly decreased under FF and WT treatments whereas C stocks and mass of the forest floor were significantly increased under the SO treatment over the 15-year period. Averaged across all harvesting treatments, fertilisation prevented the significant declines in mass and C and N stocks of the forest floor which occurred in unfertilised plots. The C:N ratio of the top 0.1 m of mineral soil was significantly increased under the FF treatment corresponding to a significant reduction in N concentration over the period. However, averaged across all harvesting treatments, fertilisation prevented the significant increase in C:N ratio of the top 0.1 m of mineral soil and significantly decreased the C:N ratio of the 0-0.3 m depth range. Results indicate that residue extraction for bioenergy production is likely to reduce C and N stocks in the forest floor through to mid-rotation and possibly beyond unless fertiliser is applied. Forest floors should be retained to avoid adverse impacts on topsoil fertility (i.e., increased C:N ratio). Based on the rate of recovery of the forest floor under the FF treatment, stocks of C and N in the forest floor were projected to reach pre-harvest levels at stand age 18-20. While adverse effects of residue extraction may be mitigated by the application of urea-N fertiliser, it should be noted that, in this experiment, fertiliser was applied at a high rate. Assessment of the sustainability of harvest residue extraction over multiple rotations will require long-term monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号