首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adverse conditions often induce an increase in active oxygen species (AOS) such as hydrogen peroxide (H2O2). H2O2 is converted to water, and thus becomes detoxified by enzymes such as ascorbate peroxidase (APX; EC 1.11.1.11). APX activity is estimated by the disappearance rate of ascorbic acid, which becomes oxidized. However, ascorbate is also a substrate of guaiacol peroxidase (POX; EC 1.11.1.7). POX oxidizes phenols (including flavonoids), whereby ascorbate accepts an electron from phenoxyl or flavonoid radicals. Ascorbate becomes thereby converted to the monodehydroascorbate radical, which subsequently can become converted to dehydroascorbate. POX isozymes therefore convert hydrogen peroxide to water and oxidize ascorbate, just as APX does. POX activity is usually estimated by monitoring the formation of tetraguaiacol from guaiacol. This reaction is not specific, as some APX isozymes show rather high activity when using guaiacol or similar phenols as a substrate. It is concluded that APX activity can easily be confounded with POX activity, and vice versa. Proper methods should be used to separate the two enzyme activities.  相似文献   

2.
Root activity plays a dominant role in grain filling in cereal crops. However, the importance of deep roots for regulating post‐anthesis leaf senescence is not clearly understood in wheat (Triticum aestivum L.). In this study, we used 32P tracing to estimate the difference in wheat root activity at soil depths of 30 and 70 cm and the root restriction method to investigate the effects of vertical distribution of deep roots on leaf senescence, with non‐restricted plants as controls. Recovery of radioactive 32P indicated that deep roots had significantly higher activity than upper roots in wheat. Root restriction at a soil depth of 50 cm caused significant decreases in the activities of superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6) and ascorbate peroxidase (EC 1.11.1.11) at 16 days after anthesis and thereafter resulting in an increase in malondialdehyde. As a result, chlorophyll levels and net photosynthesis decreased. Ultimately, the root‐restricted wheat produced a significantly lower grain yield than the non‐restricted controls. These data suggest that deep roots are pivotal for regulating plant senescence, duration of grain filling, and yield formation.  相似文献   

3.
Maize (Zea mays L. cv. 777) plants grown in hydroponic culture were treated with 50 μm CdSO4. Growth and metabolic parameters indicative of oxidative stress and antioxidant responses were studied in leaves of plants treated with Cd. Apart from increasing lipid peroxidation and H2O2 accumulation, supply of Cd suppressed growth, fresh and dry mass of plants and decreased the concentrations of chloroplastic pigments. The activities of catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7), ascorbate peroxidase (APX; EC 1.11.1.11) and superoxide dismutase (SOD; EC 1.15.1.1) were increased in plants supplied 50 μm Cd. Localization of activities of isoforms of these enzymes (POD, APX and SOD) on native gels also revealed increase in the intensities of pre‐existing bands. Stimulated activities of CAT, POD, APX and SOD in maize plants supplied excess Cd do not appear to have relieved plants from excessive generation of reactive oxygen species (ROS). It is, therefore, concluded that supply of 50 μm Cd induces oxidative stress by increasing production of ROS despite increased antioxidant protection in maize plants.  相似文献   

4.
In a field trial conducted during 1993–1994, mustard ( Brassica juncea L. Czern & Coss.) cv. Varuna was sprayed with either deionised water or 10−5 M GA3 at 40 (vegetative stage), 60 (flowering stage) or 80 (pod fill stage) days after sowing (DAS) to select the suitable growth stage for spray for augmenting productivity of the crop. Shoot length per plant, leaf number per plant, leaf area per plant, dry weight per plant and leaf area index and accumulation of N, P and K were recorded at 100 DAS. Pods per plant, seeds per pod, 1000 seed weight, seed yield, biological yield, harvest index and seed yield merit were computed at harvest. Growth, NPK accumulation and yield were maximal when spraying was done at 40 DAS. However, spraying at 40 and 60 DAS gave at par values for most of the growth and yield parameters. It was also noted that there was a significant difference in spray treatment at different growth stages only when G A, was sprayed and not when water was sprayed.  相似文献   

5.
Salinity is one of a major threat in harvesting good wheat stand on sustained basis. In this study, potential of seed priming techniques to improve the performance of wheat varieties (SARC‐1 and MH‐97) in a saline field was tested. For priming, wheat seeds were soaked in aerated solution of ascorbate (50 mg l?1; ascorbate priming), salicylic acid (50 mg l?1; salicylicate priming), kinetin (50 mg l?1; kinetin priming) and CaCl2 (50 mg l?1; osmopriming) for 12 h. For comparison, seeds were also soaked in simple water (hydropriming); in addition, untreated seeds were also taken as control. Seed priming treatments substantially improved the stand establishment; osmopriming (with CaCl2) was at the top however. Likewise maximum fertile tillers, grains per spike, 1000‐grain weight, grain yield and harvest index were observed in plants raised from seeds osmoprimed (with CaCl2) followed by ascorbate priming in both the varieties tested. As an index of salinity tolerance, seed priming treatments also improved the leaf K+ contents with simultaneous decrease in Na+ concentration, osmopriming being the best treatment. Similarly, maximum total phenolic contents, total soluble proteins (TSP), α‐amylase and protease activities were observed in osmoprimed (with CaCl2) seeds followed by ascorbate priming. Economic analysis also indicated that osmopriming is more viable with maximum net return and benefit‐to‐cost ratio. In conclusion, different seed priming treatments in wheat seeds improved the salinity tolerance nonetheless osmopriming (with CaCl2) was the most effective treatments to get higher grain yield and net return in both wheat varieties whereas kinetin was the least effective.  相似文献   

6.
Worldwide rice productivity is being threatened by increased endeavours of drought stress. Among the visible symptoms of drought stress, hampered water relations and disrupted cellular membrane functions are the most important. Exogenous use of polyamines (PAs), salicylic acid (SA), brassinosteroids (BRs), glycinebetaine (GB) and nitrous oxide (NO) can induce abiotic stresses tolerance in many crops. In this time course study, we appraised the comparative role of all these substances to improve the drought tolerance in rice (Oryza sativa L.) cultivar Super‐Basmati. Plants were subjected to drought stress at four leaf stage (4 weeks after emergence) by maintaining soil moisture at 50 % of field capacity. Pre‐optimized concentrations of GB (150 mg l?1), SA (100 mg l?1), NO (100 μmol l?1 sodium nitroprusside as NO donor), BR (0.01 μm 24‐epibrassinolide) and spermine (Spm; 10 μm ) were foliar sprayed at five‐leaf stage (5 weeks after emergence). There were two controls both receiving no foliar spray, viz. well watered (CK1) and drought stressed (CK2). There was substantial reduction in allometric response of rice, gas exchange and water relation attributes by drought stress. While drought stress enhanced the H2O2, malondialdehyde (MDA) and relative membrane permeability, foliar spray of all the chemicals improved growth possibly because of the improved carbon assimilation, enhanced synthesis of metabolites and maintenance of tissue water status. Simultaneous reduction in H2O2 and MDA production was also noted in the plants treated with these substances. Drought tolerance was sturdily associated with the greater tissue water potential, increased synthesis of metabolites and enhanced capacity of antioxidant system. Of all the chemicals, foliar spray with Spm was the most effective followed by BR.  相似文献   

7.
Alternaria sesami is a major pathogen causing Alternaria leaf spot, prevalent in all the sesame growing areas of the world. Fungicidal effect of Mikania scandens plant extract was evaluated against Alternaria leaf spot disease in Sesamum orientale. Methodology includes hydrodistillation of M. scandens using clevenger apparatus followed by GC-MS, GC-FID spectrometer analysis, changes in the activity of phenylalanine ammonia lyase (PAL), peroxidase (POX), total phenolic content, and isozyme pattern of superoxide dismutase in sesame. Aqueous M. scandens leaf extract showed remarkable inhibition of mycelial growth. Treatment of healthy S.orientale with M. scandens aqueous extract followed by fungal inoculation induced significantly high phenylalanine ammonia lyase activity; the initiator enzyme of secondary metabolic pathway followed by a substantial increase in cytosolic and membrane-bound peroxidase activity. The isozyme profile of superoxide dismutase showed no significant changes. Phenolic compounds also showed an increased profile. Bioassays were conducted under field conditions for two successive growing seasons (2011 and 2012) at the experimental farm which resulted in a sufficient decrease in both disease incidence and disease severity compared with the control. Thus, application of M. scandens aqueous extract to sesame initiated a series of biochemical changes in the plants which are considered to be a part of the plant defense response. Further studies designed to assess the role of the extract in the molecular signal induction of resistance against pathogens are in progress.  相似文献   

8.
Although the relationship between fungal endophyte and agronomic grass (Lolium perenne and Festuca arundinacea) in drought tolerance are well documented, the mechanisms responsible for wild grass are not well understood. In this study, we determined the biomass production and growth parameters endophyte infected (E+) and endophyte uninfected (E−) Elymus dahuricus plants under high water (HW) and low water (LW) treatment for 8 weeks in a controlled‐environment condition experiment. We also determined the changes in the activities of the anti‐oxidative enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and content of H2O2, as well as levels of proline and chlorophyll a + b were examined in the leaves of E+ and E− plants. Under low water treatment, E+ plants produced more biomass and had higher values in plant height and tiller numbers, but no influence by the fungus were observed in high water treatment. Anti‐oxidative enzyme (include SOD, POD, CAT and APX) activities and contents of proline and chlorophyll a + b increased and H2O2 concentration declined in the E+ plants compared with E− plants under low water treatment. Therefore, endophyte infection was a benefit to growth and anti‐oxidative affection E. dahuricus under low water treatment.  相似文献   

9.
利用EMS诱变籼型三系保持系西农1B,获得了一个新的水稻叶片淀粉过度积累而导致的早衰突变体esl9(early senescence leaf 9)。该突变体苗期叶片呈淡绿色,分蘖期开始除心叶外的叶片从叶尖开始黄化衰老,逐渐延伸至叶中上部,基部保持绿色,该性状一直持续到成熟。与野生型相比,esl9叶片光合色素含量下降,O_2~-、·OH和H_2O_2等活性氧含量上升,保护酶系统中SOD和CAT活性降低。组织化学分析表明,esl9叶片中积累了大量的淀粉颗粒,淀粉含量显著上升;qRT-PCR结果显示,淀粉合成途径相关基因上调,磷酸丙糖(TP)分配途径基因下调,推测基因突变可能改变了TP的分配途径,导致叶片过度积累淀粉,破坏叶绿体结构,光合系统受阻,活性氧增多,引起叶片黄化衰老。遗传分析表明该突变体受一对显性核基因调控,ESL9位于第11染色体标记S11-110与S11-87之间,物理距离为304.9 kb,这为进一步基因克隆和功能研究奠定了基础。  相似文献   

10.
高产低定额灌溉对冬小麦旗叶衰老的影响   总被引:38,自引:0,他引:38  
于振文  岳寿松 《作物学报》1995,21(4):503-508
本文在池栽防雨条件下研究了高产低定额灌溉对冬小麦旗叶衰老的影响,结果表明,随灌水次数的减少,小麦旗叶的过氧化物酶活性丙二醛含量增高,可溶性蛋白质,叶绿素含量和超氧物歧化酶活性降低,旗叶光合速率下降,加速膜脂过氧化作用和衰老,但是,灌3水和灌5水的处理之间,上述生理特性和籽粒产量均无显著差异,这是高产效低定额灌溉的生理基础。文中还就不同层次土壤水分状况与衰老的关系及不同灌水方案的灌溉效益进行了分析。  相似文献   

11.
Elevated ultraviolet‐B (UV‐B; between 290 and 320 nm) radiation, because of depletion of the stratospheric ozone layer, is one of the major environmental factors influencing plant metabolic processes and yield. The southern US rice cultivars contribute greatly towards US rice production, but the effects of elevated UV‐B radiation on these cultivars are not well known. The objective of this study was to determine the effects of elevated UV‐B radiation on leaf photosynthetic rate (Pn), membrane stability, pollen viability, phenolic concentration and yield of eight commercially popular southern US rice cultivars (five inbred cultivars and three hybrids). Plants were grown in a temperature‐controlled greenhouse in Beaumont, TX, USA, and were exposed to UV‐B radiation of 0, 8 or 16 kJ m?2 day?1 for 90 days. For most of the cultivars, plants grown under 8 or 16 kJ UV‐B radiation showed significant decreases in Pn, membrane stability, pollen viability, and yield compared with the plants grown under an UV‐B‐free environment, whereas there was a significant increase in leaf phenolic concentration under 16 kJ UV‐B radiation. The hybrid ‘Clearfield XL729’ performed best among the selected southern US rice cultivars under 16 kJ UV‐B radiation.  相似文献   

12.
肖强  杨曙  郑海雷 《作物学报》2011,37(1):177-181
一氧化氮(nitric oxide, NO)是植物中一种重要的信号分子, 在诱导种子萌发, 影响植物生长发育, 促进植物细胞衰亡等方面发挥着重要作用。然而对于外源NO是否参与了Se诱导的脂质过氧化调节过程仍不为人知。我们研究了0.2 μmol L-1和20 μmol L-1Na2SeO3及一氧化氮供体硝普钠(sodium nitroprusside, SNP)处理对水稻叶片叶绿素、H2O2和硫代巴比妥酸反应产物(Thiobarbituric Acid Reactive Substances, TBARS)含量, 愈创木酚过氧化物酶(guaiacol peroxidase, GPX)、超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)以及抗坏血酸过氧化物酶(ascorbate peroxidase, APX)活性等生理生化指标的影响。结果表明, 1 μmol L-1SNP处理促进GPX、APX和CAT活性, 缓解膜脂过氧化, 降低TBARS含量;显著提高0.2 μmol L-1Na2SeO3处理下水稻叶片中叶绿素含量。在20 μmol L-1Na2SeO3处理下, 外加1 μmol L-1SNP更加显著促进GPX和CAT活性, 与此同时明显降低20 μmol L-1Na2SeO3处理引起的H2O2含量上升, 并降低TBARS含量。NO对植物中由Se引起的脂质过氧化具有调节作用。  相似文献   

13.
Previously we reported that postproduction quality of pot ‘Seadov’ tulip (Tulipa gesneriana) was significantly increased by GA4+7 plus BA in a manner dependent on the concentration and stage of flower development at application. In these experiments, we extended the survey to 20 tulip cultivars to further evaluate the effects of GA4+7 plus BA sprays for enhancing postproduction flower and leaf quality. The senescence symptom of the cultivars fell into three categories: wilting, wilting-abscission (abscission shortly after tepal wilting) and abscission (abscission without wilting), with the majority of the cultivars belonging to the wilting and wilting-abscission categories. Pots bearing six plants were sprayed with a range of GA4+7 plus BA concentrations at marketable stage and placed in a simulated consumer environment (SCE). GA4+7 plus BA significantly enhanced individual flower and postproduction longevity, but the effect was dependent upon the senescence category of the cultivar. In general, GA4+7 plus BA increased individual flower and postproduction longevity of wilting-type cultivars at concentrations above 10 mg L?1, while longevity of wilting-abscission-type cultivars was only enhanced by 50 mg L?1. Abscission-type cultivars were not affected by any concentrations of GA4+7 plus BA. Regardless of floral senescence category, leaf yellowing was significantly reduced by GA4+7 plus BA sprays in those cultivars showing postproduction leaf yellowing. GA4+7 plus BA did not induce leaf and stem elongation in most cultivars. Only ‘Yellow Baby’, the shortest cultivar, showed elongation of stem and leaf by GA4+7 plus BA at concentrations above 25 mg L?1. Spray applications of GA4+7 plus BA can be useful to enhance flower and leaf quality in pot tulips.  相似文献   

14.
转codA基因提高番茄植株的耐热性   总被引:3,自引:0,他引:3  
以野生型番茄(cv. Moneymaker)和转codA番茄为材料,用不同温度(25、30、35、40、45和50℃)分别处理2 h,测定叶片净光合速率(Pn)、PSII最大光化学效率(Fv/Fm)、过氧化氢(H2O2)含量、丙二醛(MDA)含量、相对电导率(REC)和抗氧化酶活性等生理指标;42℃高温处理0、3和6 h后,检测热响应基因的表达量以及D1蛋白的含量,研究高温胁迫对上述参数的影响,探讨转codA基因提高番茄叶片耐热性的机制。。结果表明,高温胁迫下,转codA基因番茄叶片Pn和Fv/Fm的抑制程度明显低于野生型,H2O2、MDA的积累量以及REC均低于野生型,而且明显增强了过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)的活性。此外,转codA基因番茄叶片中抗氧化酶基因和热胁迫基因的表达水平均高于野生型,而D1蛋白的降解水平低于野生型。转codA基因番茄体内合成的甜菜碱提高了转基因番茄的耐热性,这与提高和维持较高的抗氧化酶活性、促进热激响应基因的表达及减缓D1蛋白的降解等有关。  相似文献   

15.
The role of exogenously applied phytohormone methyl jasmonate (MeJA) in counteracting the ultraviolet B (UV‐B) stress in barley seedlings was investigated. Barley seedlings (Hordeum vulgare L., cv. Alfa) 4 days old were supplied with 5 × 10?5 m MeJA through the roots for 3 days and then exposed for 2 days for 5 h per day to UV‐B (312 nm, biological effectiveness of UV‐B radiation 28.8 kJ m?2day?1). The rate of 14CO2 fixation, PSI and PSII activities and chlorophyll content decreased, but flavonoids, H2O2, malondialdehyde, proline and UV‐B induced compounds increased after UV‐B treatment. The rate of photosynthetic oxygen evolution was more strongly inhibited by UV‐B‐irradiation than PSI and PSII efficiency. MeJA itself increased the content of free proline, which acts as a stress protector due to its radical scavenging ability. Increased superoxide dismutase, catalase and peroxidase (POX) activities in the leaves and in the roots and the POX isoforms induction revealed the MeJA involvement in plant tolerance to oxidative stress caused by UV‐B irradiation. It was shown that pre‐treatment with MeJA counteracted UV‐B stress. Therefore, it was suggested that MeJA could acts as a mediator in plant defense responses to UV‐B irradiation by enhancing the activity of antioxidant system and free radical scavenging capability of plant cells.  相似文献   

16.
To compare the phenolic responses under oxidative stressors, plants of two Italian cultivars of durum wheat (Claudio and Mongibello) were (a) exposed to ozone (O3) (80 ppb, 5 hr/day for 70 consecutive days), with the aim to investigate the changes of phenolic compound contents in their leaves, or (b) flooded (seven consecutive days). Plants showed O3-induced visible injury, but their photosynthetic performance was not affected by the pollutant. Specifically, Claudio showed a higher O3 tolerance than Mongibello. The major value of the present study is undoubtedly the pioneering investigation of phenolic metabolism of durum wheat under O3. We identified 12 foliar phenolic compounds in all leaf samples (i.e. controls, exposed to O3 and flooded): ten phenolic acids, a flavanol (catechin hydrate) and a phenolic aldehyde (syringaldehyde). Overall, O3 exposure resulted in accumulations of phenolic compounds, especially in Claudio. These responses can be likely considered a fine-regulated repair process that equipped Claudio stressed plants with an antioxidant system capable of scavenging oxidative stress. Different phenolic variations were found in flooded plants, suggesting that phenolic response to environmental constraints is stress specific. Our study confirms that investigations and characterization of specific phenolic profiles of crop cultivars under oxidative stress may be helpful in breeding programmes.  相似文献   

17.
当前玉米产量的提高部分归因于种植密度的增加,但过高的种植密度使冠层中下部叶片光照条件变差,致使单株生长速率降低。因此,如何缓解该条件下群体光合与单株光合性能的矛盾成为当前玉米高产栽培中急需解决的问题。为此,在种植密度为105 000株hm–2的大田试验条件下,研究了紧凑型玉米品种郑单958及半紧凑型玉米品种金海5号的群体光合速率(CAP)、叶面积指数(LAI)、穗位叶净光合速率(Pn)及抗氧化酶活性等对不同程度去叶的响应,以期为高密度栽培条件下稳定或提高单株生产力探讨新的技术途径,同时也为耐密高产品种选育提供借鉴。开花后3 d分别2个品种做不同程度去叶处理,包括去除植株顶部2片叶(S1)、4片叶(S2)、6片叶(S3),以不去叶植株为对照(S0)。结果表明,去叶可显著改善玉米生育后期群体透光率(LT),然而S2和S3处理显著降低了LAI,增加了生育后期的漏光损失,不利于光能利用率的提高,致使其实际光化学效率(ΦPSII)和最大光化学效率(Fv/Fm)较低;去除植株顶部两片叶(S1)可显著提高籽粒灌浆期间CAP并延长LAI高值持续期,形成较高的籽粒产量,而过度去叶(S2和S3)则显著降低产量;花后52 d,郑单958 S1处理CAP较对照升高12.49%,而金海5号则升高23.08%;随去叶程度的增强,花后0~26 d内各去叶处理穗位叶Pn、气孔导度(gs)和叶绿素含量明显升高,均显著高于S0,但之后S1处理表现出较优的单叶光合特性。S1处理穗位叶自花后13 d起保持较高的超氧化物歧化酶(SOD)、过氧化物酶(POD)活性及较低的丙二醛(MDA)含量。可见,高密度种植条件下,去除植株顶部2片叶可有效调控两株型玉米生育后期群体光合速率、穗位叶光合特性及活性氧清除能力,能较好地协调高密度群体与个体的关系,获得较高的籽粒产量,且对半紧凑型品种金海5号调控效果更明显。  相似文献   

18.
19.
Balanites aegyptiaca is a drought‐tolerant tree naturally distributed in Africa and has a high potential for biofuel production and livelihood. To understand the plant tolerance to drought stress, B. aegyptiaca plants collected from five provenances were subjected for 4 weeks to drought stress through different regimes of soil volumetric water content (VWC, i.e. 25% control, 15% as moderate and 5% as a severe drought stress) followed by 2‐week recovery. Morpho‐physiological responses as well as the changes in antioxidant defences under water stress and recovery were investigated. Drought stress significantly reduced plant biomass‐related parameters, stomatal conductance, quantum efficiency and increased leaf temperature. Each provenance showed specific patterns of stress response reactions that were detected in a cluster analysis. The large leaf area and a high level of lipid peroxidation in Cairo provenance increased its sensitivity to severe drought. For provenances El‐Kharga and Yemen, the highest tocopherol contents and the highest catalytic activities of ascorbate peroxidase (SOD), catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) were recorded. These traits contributed to the high drought tolerance of these two provenances in comparison with the other provenances. All plants recovered from stress and showed specifically increased activity of glutathione‐S‐transferase (GST) as a repair mechanism. Results showed that the drought tolerance level in B. aegyptiaca is provenance‐dependent.  相似文献   

20.
To improve the abiotic stress tolerance of maize (Zea mays L.), doubled haploid (DH) plants were produced by in vitro selection of microspores exposed to tert‐butyl hydroperoxide (t‐BuOOH) as a powerful prooxidant This study investigated the tolerance of the progenies of t‐BuOOH‐selected DH lines to oxidative stress, cold and drought in controlled environment pot experiments by analyses of photosynthetic electron transport and CO2 assimilation processes, chlorophyll bleaching and lipid peroxidation of leaves. Our results demonstrated that the t‐BuOOH‐selected DH plants exhibited enhanced tolerance not only to oxidative stress‐induced by t‐BuOOH but also to cold and drought stresses. In addition, they showed elevated activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase and glutathione S‐transferase when compared with the DH lines derived from microspores that were not exposed to t‐BuOOH and to the original hybrid plants. The results suggest that the simultaneous up‐regulation of several antioxidant enzymes may contribute to the oxidative and cold stress tolerance of the t‐BuOOH‐selected DH lines, and that the in vitro microspore selection represents a potential way to improve abiotic stress tolerance in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号