首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: To compare retrograde filling cystometry at infusion rates of 5, 10, and 20 mL/min with diuresis cystometry for determination of an appropriate infusion rate and to confirm the reproducibility of measurements obtained by urethral pressure profilometry (UPP) and cystometry in female Beagles. ANIMALS: Adult female Beagles. PROCEDURE: Successive UPP and cystometry were performed by use of a water perfusion catheter on dogs anesthetized with propofol. Dogs randomly underwent each of the following at 1-week intervals: retrograde filling cystometry at 5, 10, and 20 mL/min, and diuresis cystometry. The maximum urethral pressure and closure pressure, functional and anatomic profile lengths, threshold pressure, threshold volume, and compliance were measured. RESULTS: For each UPP variable, significant differences were found among dogs, but no significant differences were found in intra- or interstudy measurements for individual dogs. For retrograde filling cystometry, threshold pressure was not significantly different between a 5 and 10 mL/min infusion rate. Threshold pressure was significantly higher during retrograde filling cystometry at 20 mL/min, compared with 5 and 10 mL/min, and was associated with bladder wall damages. Threshold pressure was significantly lower during diuresis cystometry, compared with retrograde filling cystometries. Threshold volume and compliance were not significantly different among retrograde filling cystometries but were significantly higher during diuresis cystometry. CONCLUSIONS AND CLINICAL RELEVANCE: Retrograde filling cystometry at 20 mL/min leads to unacceptable sudden increase in threshold bladder pressure. Retrograde filling cystometry at 10 mL/min can be recommended in a clinical setting, shortening the anesthesia time. However, diuresis cystometry approximates physiologic bladder filling most accurately.  相似文献   

2.
OBJECTIVES: To compare the values of the urodynamic parameters of the lower portion of the urinary tract and vaginourethral measurements obtained during the phases of the estrous cycle in dogs and determine possible functional or anatomic modifications of the lower portion of the urinary tract associated with those phases. ANIMALS: 7 adult female Beagles. PROCEDURE: Urethral pressure profilometry, diuresis cystometry, and vaginourethrography were performed in each dog during proestrus; estrus; early, mid, and late diestrus; and early and late anestrus. The maximum urethral pressure (MUP), maximum urethral closure pressure (MUCP), urethral functional and anatomic profile lengths (UFPL and UAPL, respectively), integrated pressure, threshold pressure, threshold volume, compliance, urethral length, and vaginal length and width were measured. RESULTS: For all measurements, significant interindividual variation was detected. Integrated and threshold pressures, APL, and each morphometric value significantly increased from late anestrus to proestrus. Compared with other phases, MUP, MUCP, and integrated pressure values were significantly lower in estrus and early diestrus; UAPL and UFPL values were significantly lower in late diestrus. At each cycle phase in old dogs, MUP, MUCP, threshold pressure, and vaginal length and width were significantly lower (except in proestrus for vaginal measurements) and threshold volume and compliance values were significantly higher, compared with middle-aged dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Urodynamic and morphometric measurements of the lower portion of the urogenital tract are affected by the changes in hormonal balance that occur during the estrous cycle. In sexually intact female dogs, estrous phase determination is important for the interpretation of urodynamic data.  相似文献   

3.
OBJECTIVE: To compare the urodynamic and morphologic effects of the administration of estriol alone and in combination with phenylpropanolamine on the lower portion of the urogenital tract in female dogs. ANIMALS: 3 sexually intact and 3 spayed female Beagles without urinary incontinence. PROCEDURE: Dogs received estriol (2 mg, PO) once daily for 7 days followed by estriol (2 mg, PO) and phenylpropanolamine (1.5 mg/kg, PO) once daily for 7 days. Urethral pressure profilometry, diuresis cystometry, and vaginourethrography were performed before treatment (day 0) and at days 7 and 14. The maximum urethral pressure (MUP) and closure pressure (MUCP), urethral functional and anatomic profile lengths, integrated pressure (IP), plateau, distance before MUP, maximum meatus pressure, threshold pressure, threshold volume, compliance, urethral length, and vaginal length and width were measured. RESULTS: Before treatment, no urodynamic differences were observed between the 2 groups; however, vaginal length and width were significantly shorter in spayed dogs. Compared with day 0 values, estriol treatment significantly increased MUP, MUCP, and IP values at day 7, but at day 14, this effect decreased despite phenylpropanolamine administration. No morphologic changes from baseline were detected after either treatment in any dog. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that estriol mainly acts on the urethral sphincter mechanism by increasing urethral resistance in sexually intact and spayed female dogs without urinary incontinence. Administration of estriol and phenylpropanolamine did not increase the urethral resistance more than estriol alone. The urodynamic effects of estriol in female dogs with urinary incontinence remain to be elucidated.  相似文献   

4.
Effects of atropine on cystometry and urethral pressure profilometry were examined in 12 healthy young adult dogs by comparing recordings obtained after xylazine alone with those obtained after administration of xylazine and atropine. Significant differences (P greater than 0.05) were not found, indicating that atropine, when administered SC with xylazine, did not markedly affect cystometrographic results and urethral pressure profiles.  相似文献   

5.
This study was aimed to investigate and compare the effects of medetomidine and xylazine on the blood level of some stress-related neurohormonal and metabolic variables in clinically normal dogs, especially focusing on time and dose relations of the effects. A total of 9 beagle dogs were used for 9 groups, which were treated with physiological saline solution (control), 10, 20, 40, and 80 μg/kg medetomidine, and 1, 2, 4, and 8 mg/kg xylazine, intramuscularly. Blood samples were taken at 10 times during 24 h from a central venous catheter. Plasma norepinephrine, epinephrine, cortisol, glucose, insulin, glucagon, and non-esterified fatty acid concentrations were determined. Both medetomidine and xylazine similarly and dose-dependently inhibited norepinephrine release and lipolysis. Medetomidine suppressed epinephrine release dose-dependently with greater potency than xylazine. Xylazine also tended to decrease epinephrine levels dose-dependently. The cortisol and glucagon levels did not change significantly in any treatment group. Both drugs suppressed insulin secretion with similar potency. Both medetomidine and xylazine increased glucose levels. The hyperglycemic effect of medetomidine, in contrast with xylazine, was not dose-dependent at the tested dosages. The results suggested that the effect of medetomidine on glucose metabolism may not be due only to α2-adrenoceptor-mediated actions.  相似文献   

6.
ObjectiveTo determine the effects of intramuscular (IM) administration of medetomidine and xylazine on intraocular pressure (IOP) and pupil size in normal dogs.Study designProspective, randomized, experimental, crossover trial.AnimalsFive healthy, purpose-bred Beagle dogs.MethodsEach dog was administered 11 IM injections of, respectively: physiological saline; medetomidine at doses of 5, 10, 20, 40 and 80 μg kg−1, and xylazine at doses of 0.5, 1.0, 2.0, 4.0 and 8.0 mg kg−1. Injections were administered at least 1 week apart. IOP and pupil size were measured at baseline (before treatment) and at 0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6, 7, 8 and 24 hours post-injection.ResultsA significant decrease in IOP was observed at 6 hours after 80 μg kg−1 medetomidine compared with values at 0.25 and 0.50 hours, although there were no significant changes in IOP from baseline. In dogs treated with 8.0 mg kg−1 xylazine, significant reductions in IOP were observed at 4 and 5 hours compared with that at 0.25 hours after administration. In dogs treated with 5, 10, 20 and 40 μg kg−1 medetomidine and 0.5, 1.0 and 2.0 mg kg−1 xylazine, there were no significant changes in IOP. Pupil size did not change significantly after any of the medetomidine or xylazine treatments compared with the baseline value.Conclusions and clinical relevanceLow or moderate doses of medetomidine or xylazine did not induce significant changes in IOP or pupil size. In contrast, high doses of medetomidine or xylazine induced significant changes up to 8 hours after treatment, but values remained within the normal canine physiological range. The results of this study suggest a lack of significant change in IOP and pupil size in healthy dogs administered low or moderate doses of xylazine or medetomidine.  相似文献   

7.
Sedative and analgesic effects of medetomidine in dogs   总被引:3,自引:0,他引:3  
The sedative and analgesic effects of medetomidine were studied in 18 laboratory beagles in a randomized cross-over study which was carried out in a double-blind fashion. Xylazine was included as a positive control and placebo as a negative control. Medetomidine was used at doses of 10, 30, 90 and 180 micrograms/kg i.m. compared to a dose of 2.2 mg/kg xylazine i.m. Parameters closely related to sedation were used to measure the degree of sedation. These were a posture variable (including evaluation of the dog's posture without external disturbance and resistance when laid recumbent) and a relaxation variable (including relaxation of the jaws, upper eyelids and anal sphincter). The first signs of sedation were recorded 1.5-3.5 min after administration of both drugs. The dogs sat down at 0.6-2.6 min post-injection and became prone at 1.9-5.9 min. Medetomidine dose-dependently affected the posture of the dogs and the relaxation variable--the higher the dose, the stronger and longer lasting the effect recorded. The sedative effect of xylazine was comparable to a medetomidine dose of 30 micrograms/kg. The analgesic effect was assessed as changes in the response to superficial pain induced by electrical stimuli. The response threshold increased significantly with both drugs and the effect of medetomidine was dose-dependent. The effects of the doses of 30 micrograms/kg medetomidine and 2.2 mg/kg xylazine did not differ significantly. In summary, medetomidine possessed an excellent sedative effect associated with analgesia in dogs.  相似文献   

8.
Urodynamic testing provides a quantitative assessment of the function of the small animal lower urinary tract. Most commonly these techniques are utilized to assess urethral tone (urethral pressure profile or UPP) and bladder detrusor muscle function (cystometrogram or CMG). A UPP may be indicated in cases of canine and feline micturition disorders. Examples include suspected primary sphincter mechanism incontinence (PSMI), ureteral ectopia, other congenital abnormalities, suspected neurological disorders, and mechanical or functional urethral obstruction. A UPP can be performed effectively utilizing human dedicated equipment. A CMG may be indicated to assess detrusor function in all of the above cases as well as cases of suspected atonic or infiltrated urinary bladder. This procedure can also be performed using the same human equipment. These tests are useful not only in providing an accurate diagnosis, but also in providing a sensitive prognostic indicator for clinical outcome of micturition disorders with and without pharmacological or surgical therapy. A leak pressure point may also be established in dogs with urinary incontinence, and may be even more sensitive than a UPP to predict clinical incontinence in some cases.  相似文献   

9.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

10.
The sedative effects in horses of the new alpha 2 agonist medetomidine were compared with those of xylazine. Four ponies and one horse were treated on separate occasions with two doses of medetomidine (5 micrograms/kg bodyweight and 10 micrograms/kg bodyweight) and with one dose of xylazine (1 mg/kg bodyweight) given by intravenous injection. Medetomidine at 10 micrograms/kg was similar to 1 mg/kg xylazine in its sedative effect but produced more severe and more prolonged ataxia, and one animal fell over during the study. Medetomidine at 5 micrograms/kg produced less sedation but a similar degree of ataxia to 1 mg/kg xylazine.  相似文献   

11.
OBJECTIVE: To evaluate the effects of the alpha2-adrenoceptor agonist medetomidine on respiratory rate (RR), tidal volume (V(T)), minute volume (V(M)), and central respiratory neuromuscular drive as determined by inspiratory occlusion pressure (IOP) during increasing fractional inspired concentrations of carbon dioxide (FiCO2) in conscious dogs. ANIMALS: 6 healthy dogs (3 males and 3 females). PROCEDURE: Dogs were administered 0, 5, or 10 microg of medetomidine/kg i.v. We measured RR, V(T), V(M), and IOP for the first 0.1 second of airway occlusion (IOP0.1) during FiCO2 values of 0%, 2.5%, 5.0%, and 75% at 15 minutes before and 5, 30, and 60 minutes after administration of medetomidine. RESULTS: Increases in FiCO2 significantly increased RR, V(T), and V(M). The i.v. administration of 5 and 10 microg of medetomidine/kg significantly decreased RR and V(M) at 5, 30, and 60 minutes for FiCO2 values of 2.5% and 5.0% and at 30 and 60 minutes for an FiCO2 value of 75%. The IOP0.1 was decreased after 30 minutes only for an FiCO2 value of 7.5% in dogs administered 5 and 10 microg of medetomidine/kg. The IOP0.1 was decreased at 60 minutes after administration of 10 microg of medetomidine/kg for an FiCO2 value of 7.5%. CONCLUSIONS AND CLINICAL RELEVANCE: The i.v. administration of medetomidine decreases RR, V(M), and central respiratory drive in conscious dogs. Medetomidine should be used cautiously and with careful monitoring in dogs with CNS depression or respiratory compromise.  相似文献   

12.
OBJECTIVE: To determine the effect of medetomidine on the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. STUDY DESIGN: Prospective randomized study. ANIMALS: Twelve healthy adult female purpose-bred dogs, weighing 16.8 to 25 kg. METHODS: Two treatments were randomly administered to each of twelve dogs at weekly intervals: (1) Saline injected IM followed in 15 minutes by isoflurane anesthesia (ISO) induced by mask and maintained at an end-tidal concentration of 1.8% for 60 minutes; and (2) Medetomidine, 15 ug/lkg IM followed in 15 minutes by isoflurane anesthesia (ISO&MED) induced by mask and maintained at an end-tidal concentration of 1.0% for 60 minutes. One week after completion of these two treatments, all dogs were ovariohysterectomized. six receiving each treatment (SURG and SURG&MED). Central venous blood samples (10 mL) were obtained immediately before medetomidine or saline (baseline) and at 30, 75, and 195 minutes and 24 hours after administration of medetomidine or saline in ISO and ISO&MED. In SURG and SURG&MED, samples were obtained immediately prior to injection of medetomidine or saline (baseline) and at 30 (before skin incision), 45 (after severence of the ovarian ligament), 75 (after skin closure), 105 (30 minutes after skin closure, dog recovered and in sternal recumbency), 135, 195, 375 minutes, and 24 hours after the initial sample. Samples were analyzed for epinephrine, norepinephrine, adrenocorticotrophic hormone (ACTH), cortisol, insulin, and glucose. Data were analyzed by analysis of variance and where significant differences were found, a least significant difference test was applied. RESULTS: Premedication with medetomidine prevented or delayed the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. CONCLUSIONS: The stress response induced by ovariohysterectomy, although significant, is of short duration. Medetomidine safely and effectively reduced surgically-induced stress responses. CLINICAL RELEVANCE: Surgically induced stress responses can be obtunded or prevented by administration of medetomidine.  相似文献   

13.
Oxygenation status was evaluated in medetomidine-sedated dogs breathing room air (M) or 100 percent oxygen (MO2). Medetomidine (40 microg/kg IV) administration resulted in peripheral vasoconstriction and decreased venous saturation as measured by an increased oxygen extraction ratio in peripheral tissues. Providing 100 percent oxygen insufflation via face mask reduced desaturation by increasing oxygen content but did not prevent vasoconstriction or reduce the oxygen extraction ratio in peripheral tissues. Atipamezole (200 microg/kg IV) reversed medetomidine-induced vasoconstriction and increased oxygen supply to tissues as indicated by a lower tissue oxygen extraction ratio. The authors conclude that 100 percent oxygen insufflation via face mask during medetomidine sedation (40 micrograms/kg [corrected] IV) benefits tissue oxygenation in healthy dogs.  相似文献   

14.
The objective of this paper was to evaluate romifidine as a premedicant in dogs prior to propofol-halothane-N2O anesthesia, and to compare it with the other alpha2-agonists (medetomidine and xylazine). For this, ten healthy dogs were anesthetized. Each dog received 3 preanesthetic protocols: atropine (10 microg/kg BW, IM), and as a sedative, romifidine (ROM; 40 microg/kg BW, IM), xylazine (XYL; 1 microg/kg, IM), or medetomidine (MED; 20 microg/kg BW, IM). Induction of anesthesia was delivered with propofol 15 min later and maintained with halothane and N2O for one hour in all cases. The following variables were registered before preanesthesia, 10 min after the administration of preanesthesia, and at 5-minute intervals during maintenance: PR, RR, rectal temperature (RT), MAP, SAP, and DAP. During maintenance, arterial oxygen saturation (SpO2), end-tidal CO2 (EtCO2) and percentage of halothane necessary for maintaining anesthesia (%HAL) were also recorded. Induction dose of propofol (DOSE), time to extubation (TE), time to sternal recumbency (TSR) and time to standing (TS) were also registered. The statistical analysis was carried out during the anesthetic period. ANOVA for repeat measures revealed no differences between the 3 groups for PR and RR; however, MAP, SAP and DAP were higher in the MED group; SpO2 was lower in MED and EtCO2 was lower in ROM; %HAL was higher in XYL. No statistical differences were observed in DOSE, TE, TSR or TS. Percentage of halothane was lower in romifidine and medetomidine than in xylazine premedicated dogs also anesthetized with propofol. All the cardiorespiratory variables measured were within normal limits. The studied combination of romifidine, atropine, propofol, halothane and N2O appears to be a safe and effective drug combination for inducing and maintaining general anesthesia in healthy dogs.  相似文献   

15.
Effects of xylazine on the urethral pressure profile of healthy dogs   总被引:2,自引:0,他引:2  
Thirteen healthy male dogs and 11 healthy female dogs were subjected to urodynamic assessment, using a simultaneous urethral pressure profile and urethral sphincter electromyogram (EMG). The study was done on the dogs in the nonsedated state and after xylazine sedation. Results showed a significant decrease in maximal urethral closure pressures in dogs of both sexes after they were given xylazine (from 79.79 cm of H2O to 23.00 cm of H2O in female dogs, and from 99.77 cm of H2O to 41.77 cm of H2O in male dogs). There was a significant reduction in EMG activities in dogs of both sexes after they were given xylazine. There was also little variability in measurements made on the same dog on consecutive days. Simultaneous intravesicular pressure and urethral pressure monitoring indicated that the effect of bladder distention on the urethral pressure profile was minimal and that there were no spontaneous detrusor contractions. This study indicates that xylazine produced a significant artifact in the simultaneous urethral pressure profile/EMG.  相似文献   

16.
The sedative and analgesic effects of medetomidine were evaluated in heartworm-infected (HW+) and uninfected (HW–) beagle dogs by intravenous (IV) and intramuscular (IM) administration of 30 µg/kg and 40 µg/kg doses, respectively. Posture, response to noise and the pedal reflex were monitored. A procedure for mock radiographic positioning was performed to evaluate its overall clinical use. Observation times were 0, 15, 30, 60, 90, 120 and 180 min. In addition, the times from injection until the dog could not stand on its feet (down time), from lateral to sternal recumbency (sternal recumbency time), and from sternal recumbency to rising again (rising time) were also noted.Medetomidine produced rapid sedation and analgesia by both routes. Down times for the IM and IV routes were similar, which verified the manufacturer's recommended doses. The HW+ dogs had shorter down times, probably owing to increased blood flow to the brain caused by adrenergic alpha-2 activity. Sternal recumbency and rising times did not differ between the groups, suggesting a similar metabolism. Sedation and analgesia were adequate for performing the procedure in all dogs. HW– dogs showed less resistance to handling during the procedure than HW+ dogs. Overall, medetomidine seems to be a suitable agent for short-term chemical restraint in dogs, even with subclinical heartworm infestation.  相似文献   

17.
OBJECTIVE: To examine stress-related neurohormonal and metabolic effects of butorphanol, fentanyl, and ketamine administration alone and in combination with medetomidine in dogs. ANIMALS: 10 Beagles. PROCEDURE: 5 dogs received either butorphanol (0.1 mg/kg), fentanyl (0.01 mg/kg), or ketamine (10 mg/kg) IM in a crossover design. Another 5 dogs received either medetomidine (0.02 mg/kg) and butorphanol (0.1 mg/kg), medetomidine and fentanyl (0.01 mg/kg), medetomidine and ketamine (10 mg/kg), or medetomidine and saline (0.9% NaCI) solution (0.1 mL/kg) in a similar design. Blood samples were obtained for 6 hours following the treatments. Norepinephrine, epinephrine, cortisol, glucose, insulin, and nonesterified fatty acid concentrations were determined in plasma. RESULTS: Administration of butorphanol, fentanyl, and ketamine caused neurohormonal and metabolic changes similar to stress, including increased plasma epinephrine, cortisol, and glucose concentrations. The hyperglycemic effect of butorphanol was not significant. Ketamine caused increased norepinephrine concentration. Epinephrine concentration was correlated with glucose concentration in the butorphanol and fentanyl groups but not in the ketamine groups, suggesting an important difference between the mechanisms of the hyperglycemic effects of these drugs. Medetomidine prevented most of these effects except for hyperglycemia. Plasma glucose concentrations were lower in the combined sedation groups than in the medetomidine-saline solution group. CONCLUSIONS AND CLINICAL RELEVANCE: Opioids or ketamine used alone may cause changes in stress-related biochemical variables in plasma. Medetomidine prevented or blunted these changes. Combined sedation provided better hormonal and metabolic stability than either component alone. We recommend using medetomidine-butorphanol or medetomidine-ketamine combinations for sedation or anesthesia of systemically healthy dogs.  相似文献   

18.
Renal effects of the selective alpha(2)-adrenoceptor agonist, medetomidine, were investigated in anesthetized dogs. Animals were administered medetomidine 20 and 40 microg/kg intravenously (IV) and 80 mug/kg intramuscularly (IM) or 1 ml of saline IV. Urine and blood samples were collected before and at 30, 60, 90 and 120 min following medetomidine injection. Mean arterial blood pressure (MABP), renal blood flow (RBF), glomerular filtration rate (GFR), urine volume (U(v)), urine osmolality (U(osm)), free water clearance (C(H2O)), fractional clearance of sodium (F(Na)), plasma osmolality (P(osm)), plasma glucose levels and plasma antidiuretic hormone (ADH) concentrations were measured. The results showed that IV administration of medetomidine initially increased MABP 5-15 min followed by long-lasting decrease. The initial hypertension was not observed after IM administration, which was accompanied by a more profound hypotensive effects. RBF, GFR, U(v), C(H2O) increased after IV injection and decreased after IM. Medetomidine increased FNa and Posm and decreased U(osm). Plasma glucose levels initially increased and subsequently decreased. Plasma ADH concentration was decreased by IV injection but increased by IM administration. Our data imply that: 1) IV administration of medetomidine at dose rates of 20 and 40 microg/kg results in profound diuresis up to 2 hr; 2) Suppression of ADH release from the CNS is one of the mechanisms of medetomidine-induced diuresis although it may not be the principal one.  相似文献   

19.
OBJECTIVE: To develop a stress leak point pressure (LPP) test for dogs, determine LPP for continent female dogs, and determine urethral pressure profile (UPP) values for nonanesthetized, continent female dogs. ANIMALS: 22 continent female dogs weighing from 21 to 29 kg. PROCEDURE: A standard UPP test and a modification of the LPP test used in women were performed on all dogs. On 3 occasions, dogs underwent UPP testing while awake. They then were anesthetized with propofol, and LPP was measured at bladder volumes of 75, 100, and 150 ml. For LPP tests, abdominal pressure was applied by inflating a human blood pressure cuff placed around the dog's abdomen. LPP were recorded through a urethral catheter (bladder LPP) and a rectal balloon catheter (abdominal LPP). RESULTS: Mean +/- SD and median maximal urethral closure pressure was 110.1+/-20.2 and 109.0 cm water, respectively. Mean bladder LPP for the 75, 100, and 150 ml bladder volumes was 172.4 cm water. Significant differences among LPP for the 3 bladder volumes were not detected. CONCLUSIONS: Stress LPP can be recorded in female dogs.  相似文献   

20.
The effect of medetomidine, a potent and highly selective α2-adrenoceptor agonist, on the motility of the gastric antrum, duodenum, mid-jejunum and ileum was investigated in ten dogs. Its effect on the release of gastrin was also determined. Administration of medetomidine intramuscularly (i.m.) at a dose of 40 μg/kg inhibited the motility of the gastric antrum, duodenum, mid-jejunum and ileum significantly, in comparison to administration of xylazine intramuscularly at a dose of 2.0 mg/kg. The release of gastrin was also significantly decreased in dogs receiving medetomidine. It was found to inhibit the motility in the gastric antrum and duodenum longer than in the mid-jejunum and ileum, presumably by acting specifically on α2-adrenoceptors, likely at the peripheral level. Medetomidine also inhibited the gastric contraction associated with gastrin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号