首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lattice-mismatch strains are widely known to control nanoscale pattern formation in heteroepitaxy, but such effects have not been exploited in colloidal nanocrystal growth. We demonstrate a colloidal route to synthesizing CdS-Ag(2)S nanorod superlattices through partial cation exchange. Strain induces the spontaneous formation of periodic structures. Ab initio calculations of the interfacial energy and modeling of strain energies show that these forces drive the self-organization of the superlattices. The nanorod superlattices exhibit high stability against ripening and phase mixing. These materials are tunable near-infrared emitters with potential applications as nanometer-scale optoelectronic devices.  相似文献   

2.
The growth of colloidal nanocrystal architectures by nanoparticle attachment is frequently reported as an alternative to the conventional growth by monomer attachment. However, the mechanism whereby nanoparticle attachment proceeds microscopically remains unclear. We report real-time transmission electron microscopy (TEM) imaging of the solution growth of Pt(3)Fe nanorods from nanoparticle building blocks. Observations revealed growth of winding polycrystalline nanoparticle chains by shape-directed nanoparticle attachment followed by straightening and orientation and shape corrections to yield single-crystal nanorods. Tracking nanoparticle growth trajectories allowed us to distinguish the force fields exerted by single nanoparticles and nanoparticle chains. Such quantification of nanoparticle interaction and understanding the growth pathways are important for the design of hierarchical nanomaterials and controlling nanocrystal self-assembly for functional devices.  相似文献   

3.
The manufacture of smaller, faster, more efficient microelectronic components is a major scientific and technological challenge, driven in part by a constant need for smaller lithographically defined features and patterns. Traditional self-assembling approaches based on block copolymer lithography spontaneously yield nanometer-sized hexagonal structures, but these features are not consistent with the industry-standard rectilinear coordinate system. We present a modular and hierarchical self-assembly strategy, combining supramolecular assembly of hydrogen-bonding units with controlled phase separation of diblock copolymers, for the generation of nanoscale square patterns. These square arrays will enable simplified addressability and circuit interconnection in integrated circuit manufacturing and nanotechnology.  相似文献   

4.
We have studied the self-assembly of amphiphilic dendrons extended with linear polyethylene oxide (PEO) chains and their ion complexes. Keeping the dendron core and linear PEO chain compatible allows for the combination of dendritic core-shell and conventional blockcopolymer characteristics for complex mesophase behavior. An unexpected sequence of crystalline lamellar, cubic micellar (Pm3n), hexagonal columnar, continuous cubic (Ia3d), and lamellar mesophases is observed. Multiple phase behavior within single compounds allows for the study of charge transport and mechanical property correlations as a function of structure. The results suggest an advanced molecular design concept for the next generation of nanostructured materials in applications involving charge transport.  相似文献   

5.
Self-assembling materials are the building blocks of bottom-up nanofabrication processes, but they need to be templated to impose long-range order and eliminate defects. In this work, the self-assembly of a thin film of a spherical-morphology block copolymer is templated using an array of nanoscale topographical elements that act as surrogates for the minority domains of the block copolymer. The orientation and periodicity of the resulting array of spherical microdomains are governed by the commensurability between the block copolymer period and the template period and is accurately described by a free-energy model. This method, which forms high-spatial-frequency arrays using a lower-spatial-frequency template, will be useful in nanolithography applications such as the formation of high-density microelectronic structures.  相似文献   

6.
The growth of the bacterial flagellar filament occurs at its distal end by self-assembly of flagellin transported from the cytoplasm through the narrow central channel. The cap at the growing end is essential for its growth, remaining stably attached while permitting the flagellin insertion. In order to understand the assembly mechanism, we used electron microscopy to study the structures of the cap-filament complex and isolated cap dimer. Five leg-like anchor domains of the pentameric cap flexibly adjusted their conformations to keep just one flagellin binding site open, indicating a cap rotation mechanism to promote the flagellin self-assembly. This represents one of the most dynamic movements in protein structures.  相似文献   

7.
Self-assembling materials spontaneously form structures at length scales of interest in nanotechnology. In the particular case of block copolymers, the thermodynamic driving forces for self-assembly are small, and low-energy defects can get easily trapped. We directed the assembly of defect-free arrays of isolated block copolymer domains at densities up to 1 terabit per square inch on chemically patterned surfaces. In comparing the assembled structures to the chemical pattern, the density is increased by a factor of four, the size is reduced by a factor of two, and the dimensional uniformity is vastly improved.  相似文献   

8.
We report here the self-assembly of macroscopic sacs and membranes at the interface between two aqueous solutions, one containing a megadalton polymer and the other, small self-assembling molecules bearing opposite charge. The resulting structures have a highly ordered architecture in which nanofiber bundles align and reorient by nearly 90 degrees as the membrane grows. The formation of a diffusion barrier upon contact between the two liquids prevents their chaotic mixing. We hypothesize that growth of the membrane is then driven by a dynamic synergy between osmotic pressure of ions and static self-assembly. These robust, self-sealing macroscopic structures offer opportunities in many areas, including the formation of privileged environments for cells, immune barriers, new biological assays, and self-assembly of ordered thick membranes for diverse applications.  相似文献   

9.
The realization of the Borromean link in a wholly synthetic molecular form is reported. The self-assembly of this link, which is topologically achiral, from 18 components by the template-directed formation of 12 imine and 30 dative bonds, associated with the coordination of three interlocked macrocycles, each tetranucleating and decadentate overall, to a total of six zinc(II) ions, is near quantitative. Three macrocycles present diagonally in pairs, six exo-bidentate bipyridyl and six endo-diiminopyridyl ligands to the six zinc(II) ions. The use, in concert, of coordination, supramolecular, and dynamic covalent chemistry allowed the highly efficient construction, by multiple cooperative self-assembly processes, of a nanoscale dodecacation with an approximate diameter of 2.5 nanometers and an inner chamber of volume 250 A(3), lined with 12 oxygen atoms.  相似文献   

10.
Biomolecular motors such as F1-adenosine triphosphate synthase (F1-ATPase) and myosin are similar in size, and they generate forces compatible with currently producible nanoengineered structures. We have engineered individual biomolecular motors and nanoscale inorganic systems, and we describe their integration in a hybrid nanomechanical device powered by a biomolecular motor. The device consisted of three components: an engineered substrate, an F1-ATPase biomolecular motor, and fabricated nanopropellers. Rotation of the nanopropeller was initiated with 2 mM adenosine triphosphate and inhibited by sodium azide.  相似文献   

11.
Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.  相似文献   

12.
Molecular chaperones are a family of unrelated proteins found in all types of cell. They mediate the correct assembly of other polypeptides, but are not components of the mature assembled structures. Chaperones function by binding specifically to interactive protein surfaces that are exposed transiently during many cellular processes and so prevent them from undergoing incorrect interactions that might produce nonfunctional structures. The concept of molecular chaperones originated largely from studies of the chloroplast enzyme rubisco, which fixes carbon dioxide in plant photosynthesis; the function of chaperones forces a rethinking of the principle of protein self-assembly.  相似文献   

13.
Although both tooth enamel and bone are composed of organized assemblies of carbonated apatite crystals, enamel is unusual in that it does not contain collagen nor does it remodel. Self-assembly of amelogenin protein into nanospheres has been recognized as a key factor in controlling the oriented and elongated growth of carbonated apatite crystals during dental enamel biomineralization. We report the in vitro formation of birefringent microribbon structures that were generated through the supramolecular assembly of amelogenin nanospheres. These microribbons have diffraction patterns that indicate a periodic structure of crystalline units along the long axis. The growth of apatite crystals orientated along the c axis and parallel to the long axes of the microribbons was observed in vitro. The linear arrays (chains) of nanospheres observed as intermediate states before the microribbon formation give an important indication as to the function of amelogenin in controlling the oriented growth of apatite crystals during enamel mineralization.  相似文献   

14.
Hierarchical self-assembly offers a powerful strategy for producing molecular nanostructures. Although widely used, the mechanistic details of self-assembly processes are poorly understood. We spectroscopically monitored a nucleation process in the self-assembly of p-conjugated molecules into helical supramolecular fibrillar structures. The data support a nucleation-growth pathway that gives rise to a remarkably high degree of cooperativity. Furthermore, we characterize a helical transition in the nucleating species before growth. The self-assembly process depends strongly on solvent structure, suggesting that an organized shell of solvent molecules plays an explicit role in rigidifying the aggregates and guiding them toward further assembly into bundles and/or gels.  相似文献   

15.
We show the anisotropic selective growth of gold tips onto semiconductor (cadmium selenide) nanorods and tetrapods by a simple reaction. The size of the gold tips can be controlled by the concentration of the starting materials. The new nanostructures display modified optical properties caused by the strong coupling between the gold and semiconductor parts. The gold tips show increased conductivity as well as selective chemical affinity for forming self-assembled chains of rods. Such gold-tipped nanostructures provide natural contact points for self-assembly and for electrical devices and can solve the difficult problem of contacting colloidal nanorods and tetrapods to the external world.  相似文献   

16.
Regular arrays of topologically complex, millimeter-scale objects were prepared by self-assembly, with the shapes of the assembling objects and the wettability of their surfaces determining the structure of the arrays. The system was composed of solid objects floating at the interface between perfluorodecalin and water and interacting by lateral capillary forces; patterning of the wettability of the surfaces of the objects directs these forces. Self-assembly results from minimization of the interfacial free energy of the liquid-liquid interface. Calculations suggest that this strategy for self-assembly can be applied to objects on a micrometer scale.  相似文献   

17.
We demonstrate the controlled and reversible telescopic extension of multiwall carbon nanotubes, thus realizing ultralow-friction nanoscale linear bearings and constant-force nanosprings. Measurements performed in situ on individual custom-engineered nanotubes inside a high-resolution transmission electron microscope demonstrated the anticipated van der Waals energy-based retraction force and enabled us to place quantitative limits on the static and dynamic interwall frictional forces between nested nanotubes. Repeated extension and retraction of telescoping nanotube segments revealed no wear or fatigue on the atomic scale. Hence, these nanotubes may constitute near perfect, wear-free surfaces.  相似文献   

18.
Electrorheological fluids   总被引:1,自引:0,他引:1  
Suspensions of polarizable particles in nonpolarizable solvents form fibrillated structures in strong electric fields. The resulting increase in viscosity of these "electrorheological" fluids can couple electrical to hydraulic components in a servomechanism. The physical properties of these fluids are unusual owing to the long-range, anisotropic nature of the interparticle forces. Immediately after the electric field is applied, elongated chains or columns of particles form parallel to the field. This structure then coarsens as a result of thermal forces between the columns. In shear flows, fluids show yielding behavior at low stresses followed by shear-thinning behavior at higher stresses.  相似文献   

19.
Kato T 《Science (New York, N.Y.)》2002,295(5564):2414-2418
Additional functionality can be incorporated into liquid crystalline materials by using phase segregation and self-assembly. Intermolecular interactions such as hydrogen bonding and ionic interactions play key roles in the formation of these complex structures. One-, two-, and three-dimensional phase-segregated structures on various scales of length are formed by self-assembly of a variety of partially incompatible molecules. Such structures can enhance anisotropic properties such as ionic conductivity.  相似文献   

20.
Self-assembly is an effective strategy for the creation of periodic structures at the nanoscale. However, because microelectronic devices use free-form design principles, the insertion point of self-assembling materials into existing nanomanufacturing processes is unclear. We directed ternary blends of diblock copolymers and homopolymers that naturally form periodic arrays to assemble into nonregular device-oriented structures on chemically nanopatterned substrates. Redistribution of homopolymer facilitates the defect-free assembly in locations where the domain dimensions deviate substantially from those formed in the bulk. The ability to pattern nonregular structures using self-assembling materials creates new opportunities for nanoscale manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号