首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In order to optimise land use systems, to prevent erosion-induced degradation and to restore the degraded red soils in subtropical China, five cropping systems and four agroforestry systems were conducted in red soils with a slope of 7° from 1993 to 1995. The results showed that erosion risk period occurred from April to June, and the annual runoff and the losses of soil and nutrients with sediment were alarming for two conventional farming systems, whereas they were negligible for the farming systems with ridge tillage. Enrichment ratios of the lost soils from erosion were more than 1.20 for all nutrients with much higher values for hydrolysable N and organic matter. Compared with the control, the alley cropping systems also distinctly decreased runoff by 30% or 50%. However, the coverage of soil surface varied with alley cropping systems for the competition of nutrients and soil water, which made a profound difference in runoff. The cropping systems of sweet potato intercropped with soybean, the alley cropping systems and the measures of mulching and ridge tillage were the alternatives for red soil reclamation so as to prevent erosion-induced degradation.  相似文献   

2.
基于小白菜Cd吸收推算土壤Cd安全阈值   总被引:3,自引:0,他引:3  
Cadmium(Cd), a common toxic heavy metal in soil, has relatively high bioavailability, which seriously threatens agricultural products. In this study, 8 different soils with contrasting soil properties were collected from different regions in China to investigate the Cd transfer coefficient from soil to Chinese cabbage(Brassica chinensis L.) and the threshold levels of Cd in soils for production of Chinese cabbage according to the food safety standard for Cd. Exogenous Cd(0–4 mg kg~(-1)) was added to the soils and equilibrated for 2 weeks before Chinese cabbage was grown under greenhouse conditions. The influence of soil properties on the relationship between soil and cabbage Cd concentrations was investigated. The results showed that Cd concentration in the edible part of Chinese cabbage increased linearly with soil Cd concentration in 5 soils, but showed a curvilinear pattern with a plateau at the highest dose of exogenous Cd in the other 3 soils. The Cd transfer coefficient from soil to plant varied significantly among the different soils and decreased with increasing soil p H from 4.7 to 7.5. However, further increase in soil pH to 8.0 resulted in a significant decrease in the Cd transfer coefficient. According to the measured Cd transfer coefficient and by reference to the National Food Safety Standards of China, the safety threshold of Cd concentration in soil was predicted to be between 0.12 and 1.7 mg kg~(-1) for the tested soils. The predicted threshold values were higher than the current soil quality standard for Cd in 5 soils, but lower than the standard in the other 3 soils. Regression analysis showed a significant positive relationship between the predicted soil Cd safety threshold value and soil p H in combination with soil organic matter or clay content.  相似文献   

3.
The fallout radionuclide cesium-137(137 Cs) has been widely employed as a tracer for assessment of soil loss from thick uniform soils;however,few studies have been conducted on thin stony soils on slopes underlain by carbonate rocks which are widely distributed in karst areas.Information derived from 137 Cs measurement of soil samples collected along a carbonate rock slope with thin stony soil where neither soil erosion nor deposition occurred was used to investigate the characteristics of 137 Cs redistribution in a karst area of Southwest China.The results indicated that the 137 Cs inventories of the surface soil on the slope studied were much lower than that of the local 137 Cs reference inventory and the 137 Cs activities were much higher than those on slopes with thick uniform soils.The spatial distribution of 137 Cs inventories was characterized by considerable variation.The high 137 Cs depletion in the stony soil of the slope studied was mainly because a considerable proportion of the fallout input of 137 Cs could be lost with runoff and the dissolution of carbonate particles in the soil promoted the loss of 137 Cs.These demonstrated that the rates of soil loss could not be estimated from the degree of depletion of the 137 Cs inventory relative to the local reference inventory for the thin stony soil of the rocky slope underlain by carbonate rocks in the study area in the way that has been widely used in areas with thick uniform soils.  相似文献   

4.
树的年轮和土壤中元素含量的长期分布情况   总被引:19,自引:0,他引:19  
Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the ^137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.  相似文献   

5.
侵蚀引起的苏南坡地土壤退化   总被引:5,自引:0,他引:5  
Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the 137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.  相似文献   

6.
澳大利亚东部地区一些酸性硫酸盐土壤磷的特征   总被引:1,自引:0,他引:1  
C. LIN 《土壤圈》2002,12(3):229-234
Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1-extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of Pin these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.54.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.  相似文献   

7.
基于SOTER的海南岛土壤水侵蚀模拟   总被引:10,自引:0,他引:10  
The actual and potential water erosion rates of soils with different land covers in Hainan Island,China,were estimated based on the universal soil loss equation(USLE) and a 1:200000 Soils and Terrain digital Database(SOTER) Ddatabase,from which soil water erosion factors could be extracted.92.8% of the whole island had a current erosion rate of lowerthan 500t km^-2 a^-1.Soil erosion risk was considered to be high because of its abundant rainfall.Without vegetation tcover,the potential soil erosion ratewould be extremely high and 90.8% ofthe island would have a soil erosion rate higher than 2500t km^-2a^-1.Relative erosion vulnerability of different soil zones,landform types,and lithological regions of the island was compared by introducing a relative erosion hazard parameter α.Cambosols developed from siltstone and mudstone in low hill regions were pinpointed as soils with the highest erosion risk in the island.  相似文献   

8.
Diffusion coefficients of chlorde ions in four soils of different exture with varying effective moisture content and varying bulk density from 1.1 to 1.6 g cm^3 under three different temperatures were determined by the diffusion-cell method using ^36Cl-labelled CaCl2 solution.The result showed that activation energy decreased with water content,which indicated that the threshold fro diffusion was lower at a higher soil moisture rate .Therefor,the diffusion coefficient(D) of chloride ions in soil increased consistently with soil moisture,Although a near linear increase in the diffusion coefficient with increasing soil moisture or bulk density in all the soils was observed,the increase rate in different soils was not the same.The D value increased with teperature,and with temperature increased by 10℃ in the range from 5℃to 45℃ the D valve increased by 10%-30%,averaging about 20%.  相似文献   

9.
An experiment arranged in a randomized complete block design with three replications was conducted on a Lexington soil (fine-silty, mixed, active, thermic, Ultic Hapludalfs) and a Loring soil (fine-silty, mixed, active, thermic, Oxyaquic Fragiudalfs) in Mississippi from September 1997 to September 2000 on 18 runoff plots under natural rainfall condition to study the phosphorus (P) dynamics in poultry litter amended soils under three management systems combining tillage and planting date treatments to identify effective management practices in southern U. S. A. The management systems in the study were:1) tillage in the fall prior to litter application followed by a delayed planting of fall forages (CT-DP); 2) tillage followed by immediate planting of the fall forage with subsequent litter application (CT-IP); and 3) no-till with planting prior to litter application (NT-IP). The results indicated that there was significant increase in soil P after 3 years of poultry litter application for both Lexington and Loring soils (P <0.05). Based on P budget analysis, the majority of P from poultry litter application (> 90%), was accumulated in both soils. In Loring soil, soluble P mass in the runoff was significantly higher from NT-IP than from CT-DP and CT-IP over the entire study period (P <0.01). For both soils, there were no significant differences in sediment P mass between management systems. For Loring soil, CT-DP and CT-IP were effective management practices to mitigate negative effects due to poultry litter application.  相似文献   

10.
长白山地区不同植被下土壤酸度状况   总被引:3,自引:0,他引:3  
The acidity regimes of representative soils on the north slope of the Changbai Mountains were examined through determinations of pH and pCa of the soil paste as well as in-situ determinations,For soils under broad-leaf forest or broad-leaf-Korean pine forest,the pH decreased from the litte to lower layers gradually until it did not change or decreased further slightly .For soils under coniferous of Erans birch forest,ther was a minimum in pH at a depth of 3-6 cm where the content of humus was high,The pCa increased gradually from the soil surface downward to a constant value.The lime potential(pH-0.5pCa) showed a similar trend as the pH in its distribution.For a given soil,the measured pH value of the thick paste,ranging from 4.5 to 5.5,was lower by about 0.5 units than the value determined by the conventional method with a water to soil ratio of 5:1 ,The pH determined in situ was even lower.It was found that there was a firly close relationship between soil acidity and the type of vegetation.The pH showed a trend of decreasing from soils under broda-leaf forest through broad-leaf-conifer mixed rorest and coniferos forest to Ermans birch forest,and the pCa showed an opposite trend in variation.  相似文献   

11.
褐土和棕壤坡耕地细沟侵蚀过程及侵蚀产沙特征   总被引:7,自引:5,他引:2  
为揭示辽西低山丘陵区主要土壤类型褐土、棕壤坡耕地细沟侵蚀产流产沙变化规律,以期为该地区土壤侵蚀预测预报提供一定理论依据,利用人工模拟降雨系统在坡度为10°和15°、降雨强度为40,60,80 mm/h条件下分析褐土和棕壤2种土壤细沟侵蚀产沙过程,结果表明:褐土在坡度为10°和15°,径流量均随雨强的增加而增大,在坡度为15°雨强为80 mm/h降雨过程中出现最大值,而含沙量变化相反,大体呈现出随着雨强的增加而降低的特征,在坡度为15°时,3种降雨强度在降雨末期均集中在0.05 g/mL;棕壤在10°和15°径流量与含沙量变化无明显规律;2种土壤总体水沙关系表现出褐土总径流量大于棕壤,而总侵蚀量表现为小于棕壤;棕壤更易发生细沟侵蚀。  相似文献   

12.
[目的]准确掌握辽宁省阜新市的土壤侵蚀状况,为政府制定土地和经济方面的相关政策提供科学依据。[方法]基于修正的土壤流失方程(RUSLE),运用RS和GIS等技术和方法,对阜新市的土壤侵蚀状况进行分析和研究。[结果]阜新市年均土壤侵蚀量为1.99×107 t,土壤侵蚀模数为19.18t/(hm2·a)。土壤侵蚀强度在中度以下的区域占研究区总面积的77.01%,对研究区土壤侵蚀量的贡献率为12.57%,而中度以上侵蚀区域占研究区总面积的22.99%,对研究区土壤侵蚀量的贡献率高达87.43%。[结论]5°~25°为研究区主要侵蚀坡度段,裸土地、湖泊和农村居民点为研究区主要侵蚀地带,应将其列为水土保持重点治理对象。  相似文献   

13.
基于CSLE模型的天山北坡西白杨沟流域土壤侵蚀定量评价   总被引:2,自引:1,他引:2  
卢刚 《水土保持通报》2019,39(2):124-130
[目的]定量评价天山北坡西白杨沟流域水土流失土壤侵蚀状况,分析其分布特征,为区域水土保持以及生态环境建设提供科学依据。[方法]以新疆维吾尔自治区乌鲁木齐县西白杨沟流域为研究区,采用样地调查与地理信息系统(GIS)、遥感(RS)技术相结合方法和CSLE模型,对西白杨沟流域进行土壤水力侵蚀评价及侵蚀强度空间分布分析。[结果]天山北坡西白杨沟流域平均土壤侵蚀模数748.91 t/(km~2·a)。地形对土壤侵蚀强度影响明显,在坡度20°~40°区域,土壤侵蚀模数最高,为1 127.22~1 229.62 t/(km~2·a)。缓坡(20°)区域,坡度对土壤侵蚀模数呈正效应,而在陡坡(40°~70°)区域,坡度对土壤侵蚀模数呈负效应。土壤侵蚀主要发生在南坡、东南坡和东坡;不同土地利用方式对土壤水力侵蚀程度影响不同,表现为:呈灌木林地[1 709.80 t/(km~2·a)]有林地[1 389.40 t/(km~2·a)]天然牧草地[605.20 t/(km~2·a)]人工牧草地[334.71 t/(km~2·a)]水浇地[113.69 t/(km~2·a)]的趋势。[结论]土壤侵蚀强度总体以微度和轻度为主,强烈侵蚀、极强烈侵蚀、剧烈侵蚀主要分布在流域的中下游和下游;天山北坡西白杨沟流域侵蚀强度的空间分布与地形、土地利用、土壤性质联系紧密。  相似文献   

14.
土壤侵蚀一直是我国开展区域生态环境治理所关注的热点问题之一。在RS和GIS技术支持下,基于RUSLE模型分析了凉山州孙水河流域不同土地利用类型、海拔和坡度条件下土壤侵蚀强度的特征,定量评价了研究区土壤侵蚀空间特征。结果表明:孙水河流域平均土壤侵蚀模数为1 954.32 t/(km~2·a),土壤侵蚀严重区域主要集中于孙水河干流及其支流沿岸;坡耕地和中覆盖草地是流域内主要侵蚀土地利用类型;海拔2 000~3 000 m流域土壤侵蚀较为严重,平均土壤侵蚀模数超过2 000 t/(km~2·a);当坡度低于25°时,土壤侵蚀模数随着坡度的增加而增大,15°~25°是该流域侵蚀最为严重的地带。研究成果可服务于凉山州孙水河流域水土保持治理工作,为实现乡村振兴提供一定理论支持。  相似文献   

15.
以松花江流域哈尔滨城区段为研究区域,以ArcGIS为分析平台,对1995-2005年土壤侵蚀时空格局及其动态变化进行了研究.在DEM基础上,分析土壤侵蚀时空变化地貌特征的空间分布.结果表明,水力侵蚀是松花江流域土壤侵蚀的主要形式,以微度侵蚀为主;在0-400 m高程范围内,微度-轻度、轻度-微度、轻度-中度和中度-强度侵蚀相互转换剧烈;土壤侵蚀变化随着坡度的增加而减少且变化主要集中在坡度小于25°的区域上,0°~6°的区域,土壤侵蚀主要集中在0.5°~5°的坡耕地,6°~15°区域,微度-轻度和轻度-微度侵蚀相互交换相对剧烈;土壤侵蚀变化的坡向特征呈现双峰现象,各种强度水力侵蚀的变化主要集中在阴坡(东北)与阳坡(西南)两个坡向,微度侵蚀变化量在平地的面积比重较大.  相似文献   

16.
[目的] 研究库布齐沙漠中段沙区光伏阵列扰动下地表形态变化规律及其与风环境的关系,为科学制定沙区光伏电站次生风沙危害防治技术方案提供理论依据。[方法] 运用风洞试验方法,分析光伏阵列与风向之间夹角为0°,45°,90°,135°和180°时光伏阵列地表蚀积空间分布规律和地表形态剖面特征。[结果] 夹角为±90°时,迎风侧前两排电板区域地表蚀积变化表现为风蚀以中度和重度为主,堆积以轻度为主。第3—5排电板区域在前两排电板的遮蔽作用下风沙活动强度大幅降低。夹角为±45°时所有电板区域蚀积变化规律较为相似;45°时蚀积变化表现为风蚀以中度和重度为主,堆积以中度和轻度为主,小范围出现重度堆积现象;-45°时风蚀和堆积均表现为以轻度和中度为主。以8 m/s风速条件为例,不同夹角条件光伏阵列地表蚀积强度表现为:45°>90°>-45°>-90°>0°。夹角为0°时最小,蚀积变化极差仅为1.265 cm。夹角为45°时最大,蚀积变化极差可达5.429 cm。夹角绝对值相等符号相反风况条件下,夹角为正值相较负值时光伏阵列地表风沙活动更为强烈。夹角为45°时蚀积强度是夹角为-45°时的1.566倍,夹角为90°时则是夹角为-90°时的1.269倍。[结论] 沙区光伏阵列次生风沙危害的防治技术方案设计应充分考虑区域主害风向条件。  相似文献   

17.
为探究玉米秸秆粉碎还田对黑土坡面土壤侵蚀特征的影响,对不同坡度(3°,5°和7°)下不同玉米秸秆粉碎还田量(0,25%,50%,75%和100%)坡面进行人工模拟降雨试验.结果表明:玉米秸秆粉碎还田措施具有调控径流作用,坡面产流时间延缓,产流率和径流量降低;秸秆还田量越大,产流时间延后越明显,平均径流流速越低;在3°坡...  相似文献   

18.
基于RUSLE的引黄入晋北干线沿线地区土壤侵蚀定量研究   总被引:1,自引:0,他引:1  
[目的]分析引黄入晋北干线沿线地区土壤侵蚀时空分布特征及其主控因子,为当地水土保持和生态环境建设提供科学的理论依据。[方法]以引黄入晋北干线沿线地区为研究区,基于GIS和RS技术,利用2005,2010,2015年3期Landsat遥感影像,DEM,LUCC,月降水资料,计算土壤侵蚀模数,并分析研究区土壤侵蚀强度的时空变化特征及与主控因子间的关系。[结果]2005,2015年为轻度侵蚀,2010年为中度侵蚀,从2005—2010年土壤侵蚀模数增长80.91%,2010—2015年土壤侵蚀模数降低47.87%,呈先增后减,总体减小的趋势;以北干线为界,界线两侧土壤侵蚀差异显著,朔州市辖区的土壤侵蚀面积和土壤侵蚀量最大。R因子与土壤侵蚀呈正相关,当土壤类型为栗褐土,坡度为8°~15°,土地利用类型为耕地时土壤侵蚀面积最大,当坡度大于25°,土地利用类型为草地和林地时土壤侵蚀量最高。[结论]引黄入晋北干线的施工加剧了沿线地区土壤侵蚀,降雨、土壤类型、坡度、土地利用类型作为主控因子与该地的土壤侵蚀分布联系紧密。因此应确定水土保持重点区域,有针对性地制定水土流失防治措施,改善生态环境。  相似文献   

19.
间歇降雨对红壤坡面土壤侵蚀特征的影响   总被引:2,自引:2,他引:2  
自然条件下降雨多以间歇形式出现,而坡面土壤侵蚀又是一个渐变发育的复杂过程。通过3个雨强(60,90,120 mm/h)、5个坡度(5°,10°,15°,20°,25°)下的15场室内模拟降雨,研究一、二次降雨条件下不同雨强、坡度及降雨量对红壤坡面径流和侵蚀过程的影响,探讨间歇降雨条件下坡面侵蚀发育过程及其主要影响因素的变化。结果表明:(1)二次降雨的产流时间相比一次降雨均提前,一次降雨径流总量受到雨强、坡度和降雨量的共同影响,15°坡度是径流总量变化的一个转折点,二次降雨时降雨量的作用减弱,各雨强下的最大相差倍数减小,各坡度之间的倍数差距也减小。(2)一次降雨发生细沟侵蚀最主要的动力是降雨强度,大雨强、陡坡情况下细沟侵蚀更容易产生,而15°坡度对细沟侵蚀的产生具有重要作用,此时若发生细沟侵蚀,坡面侵蚀则多以细沟侵蚀为主,二者侵蚀量呈正比例函数关系,二次降雨的细沟侵蚀量和一次降雨过程中细沟发育情况相关,一次降雨的细沟发育越剧烈,二次降雨的细沟侵蚀量越少,此时细沟侵蚀量和总侵蚀量呈一次函数关系。总体来说,侵蚀总量的变化和细沟发育所处阶段紧密相关。(3)间歇降雨条件下,不同雨强、坡度、降雨量对坡面土壤径流和侵蚀过程的影响存在差异;同时,一次降雨土壤径流和侵蚀的变化对后期二次降雨径流和侵蚀的发展具有重要影响,使得在不同土壤侵蚀发展阶段,雨强、坡度、降雨量等因子对坡面土壤径流和侵蚀影响的程度也随之改变。  相似文献   

20.
褐土与棕壤坡耕地细沟侵蚀发生的阶段性水沙变化   总被引:3,自引:0,他引:3  
为深入探究辽西低山丘陵区坡耕地土壤侵蚀机理,以该区的典型土壤类型褐土和棕壤为研究对象,采用室内人工降雨模拟试验,研究3种坡度(5°,10°,15°)和3种降雨强度(40,60,80 mm/h)下细沟侵蚀发生的阶段性水沙变化过程。结果表明:褐土与棕壤坡面侵蚀过程可划分为3个阶段,即细沟侵蚀之前阶段、跌坎发育阶段和细沟侵蚀快速发育阶段;细沟侵蚀之前的面蚀阶段,同一坡度条件下,褐土与棕壤随雨强的增加,坡面流速呈增大趋势,而在同一雨强条件下,坡度对流速的影响并无明显规律;细沟侵蚀阶段,当坡度一定条件下,褐土与棕壤细沟内、细沟间的流速随雨强的增加而增大,当雨强一定时,褐土与棕壤随坡度的增加细沟间流速增加;细沟侵蚀阶段流速表现为细沟内流速坡面流速细沟间流速;细沟侵蚀快速发育阶段2种土壤产生的径流量占总径流量的80%以上,土壤侵蚀量占总侵蚀量均在70%以上,且棕壤对总体侵蚀量的贡献更稳定,更易发生细沟侵蚀。整场降雨的侵蚀方式是面蚀向细沟侵蚀的转变,坡面一旦发生侵蚀,细沟侵蚀对坡面总侵蚀的贡献更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号