首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Root distribution of the wild jack tree (Artocarpus hirsutus) was determined by selective placement of 32P at various depths and lateral distances from the tree, in Kerala, India. In eight-and-a-half-year-old trees growing on a lateritic site, absorption of 32P from a lateral distance of 75 cm and 30 cm depth was much greater than from 150 and 225 cm lateral distance and 60 and 90 cm depth. Root activity declined with increasing depth and lateral distance. Most of the physiologically active roots were concentrated within a radius of 75 cm and 30 cm depth, although the tap root might reach even deeper. Possibly, surface accumulation of feeder roots may cause considerable overlap of the tree and crop root zones in intercropping situations. However, as the tree roots seldom extend beyond 2.25 m laterally from the trunk, the effect of overlapping root zones and the associated competitive effects may not be a serious problem for intercropping during the first few years (<10 years after planting) of tree growth.  相似文献   

2.
We excavated soil to study root distribution in Haloxylon ammodendron seedlings grown with different amounts of irrigation (35, 24.5 and 14 kg water for each plant each time) in the hinterland of the Taklimakan Desert. The results indicated that: 1) With decreasing irrigation amounts, the root biomass tended to be distributed in deeper soil layers. Underground biomass had a significantly negative logarithmic relationship with soil depth under different irrigation amounts. 2) Maximum horizontal spread of roots was twice that of vertical root spread, and horizontal distribution of root biomass was similar under all irrigation amounts. 3) Vertical distribution of fine roots was nearly consistent with vertical changes in soil moisture, and all had a unimodal curve; but peak values of fine root biomass in different soil layers varied with different irrigation amounts. The smaller the amount of irrigation, the deeper were the fine roots concentrated in soil layers. 4) Root length, root surface area and root volume all exhibited a unimodal curve under different irrigation amounts; the less the irrigation amount, the deeper the peak values appeared in soil layers. 5) Rootshoot ratio and ratio of vertical root depth to plant height both increased as irrigation amounts decreased. __________ Translated from Journal of Plant Ecology (Chinese Version), 2007, 31 (5): 769–776 [译自: 植物生态学报]  相似文献   

3.
The active root distribution pattern of mature rubber (Hevea brasiliensis Muell. Arg.) up to a lateral distance of 250 cm from the tree and to a soil depth of 90 cm was studied in an oxisol by employing 32P soil injection technique in Kerala, the state which accounts for 83% of rubber cultivation in India. The trees were aged 18 years and grown at a spacing of 4.9 × 4.9 m. The extent of absorption of applied 32P by the tree from various placements was assessed by radio assay of leaf and latex serum. Latex serum registered higher counts and variability was less compared to leaf indicating the suitability of latex serum as a potential source for radio assay for 32P studies in rubber. The results revealed that rubber is a surface feeder with 55% of the root activity confining to the top 10 cm of soil layer. Root activity declined with increasing depths and the concentration of physiologically active roots at 90 cm depth was only 6%. A more or less uniform distribution of root activity was noticed with respect to lateral distance indicating more extensive spread of lateral roots. Concentration of physiologically active roots in the surface layer suggests the possibility for competition under intercropped situation in mature plantations.  相似文献   

4.
Although crucial for assessing the functioning of alley cropping systems, quantitative information related to the hedgerow tree root distribution remains scarce. Soil mapping and destructive soil sampling was used to assess the impact of soil profile features on selected root characteristics of Senna siamea hedgerows, growing in alley cropping systems in three sites (Glidji, Amoutchou, and Sarakawa) representative for the derived savanna of Togo, West Africa. While the soil profiles in Glidji and Sarakawa contained a clay accumulation horizon, the Amoutchou profile was sandy up to 1 m. The number of small roots (diameter < 2 mm), quantified on a soil profile wall, decreased with depth in all sites. For most soil depths, the abundance of small roots tended to be higher near the tree base, e.g., ranging from 5.3 dm−2 in Amoutchou to 21.4 dm−2 in Glidji for the 0–20 cm layer, than in the middle of the alley, e.g., ranging from 3.1 dm−2 in Amoutchou to 13.8 dm−2 in Glidji for the 0–20 cm layer. Root length density (RLD) of the 0–10 cm and 10–20 cm layers was significantly higher in Glidji than in Amoutchou (P < 0.05) and in Sarakawa (P = 0.08). Differences in RLD between sites were not significant for layers below 30 cm. For each layer, root weight densities (RWD) were similar in all sites, e.g., ranging from 0.44 mg cm−3 in Amoutchou to 0.64 mg cm−3 in Glidji in the 0–10 cm layer, indicating that the roots in the Glidji topsoil had a smaller overall diameter than in Amoutchou. In Amoutchou, the relative RLD was lower than in Glidji or Sarakawa for the top 40 cm of soil, while the inverse was observed for the layers between 50 and 100 cm deep and this was related to the sandy soil profile in Amoutchou. Another consequence of the sandy profile was the larger tap root diameter below 50 cm in Amoutchou compared to Sarakawa. For all sites, significant (P < 0.001) linear regressions were observedbetween RLD's, RWD's, and the abundance of small roots, although the variation explained by the regression equations was highest for the relationship between RLD and RWD. The potential of the hedgerows to recover nutrients leached beyond the reach of food crops or the safety-net efficiency was evaluated for the tree sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Many teak plantations are established on acidic soils with low nutrient availability. There is also poor documentation of nutrient budgets for teak, therefore, a pot experiment with optimal hybrid regression design (Roquemore R311A) was implemented with calcium, boron and nitrogen treatments with teak seedlings (Tectona grandis L.f.) planted in acidic lateritic red soil substrate. Seedling growth, biomass production and root development, and soil pH, and exchangeable Ca and Al concentration were measured. Plant height, root collar diameter, biomass of leaves, stems and roots, root volume, taproot length, number of lateral roots of teak seedlings were significantly and positively correlated with soil exchangeable Ca, pH and Ca/Al molar ratio, and negatively correlated with exchangeable Al. All growth traits were significantly affected by calcium, nitrogen and their interaction, but B fertilizer and other interactions had insignificant effects. To effectively cultivate teak seedlings in acidic soil substrates, 1.68 g kg−1 quicklime (CaO) and 0.65 g kg−1 urea was suggested to be added to neutralize soil acidity, and enhance soil exchangeable Ca content and Ca/Al molar ratio. Urea should not be added without quicklime.  相似文献   

6.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

7.
Fine root turnover plays important roles in carbon allocation and nutrient cycling in forest ecosystems. Seasonal dynamics of fine roots is critical for understanding the processes of fine root turnover. From May to October 2002, soil core method was used for estimating the seasonal pattern of fine root (diameter < 1 mm) parameters (biomass, specific root length (SRL) and root length density (RLD)) in a Manchurian ash (Fraxinus mandshurica) plantation located at the Maoershan Experiment Station, Heilongjiang Province, northeast of China. The relationships of fine root biomass, SRL and RLD with available nitrogen in soil, average soil temperature per month in 10 cm depth and soil moisture content were analyzed. Seasonal variation of fine root biomass was significant (P < 0.05). The peak values of fine root biomass were observed both in spring and in autumn, but SRL and RLD were the highest in spring and lowest in autumn. Specific root length and root length density were higher in spring and summer, which means that fine root diameter was thinner. In autumn, both parameters decreased significantly due to secondary incrassation of fine root diameter or the increase of tissue density. Seasonal dynamics of fine roots was associated with available nitrogen in soil, soil temperature in 10 cm depth and moisture content. Fine root biomass has a significant relationship with available NH4 +-N in soil. Available NO3 -N in soil, soil temperature in 10-cm depth and moisture content have a positive correlation with fine root biomass, SRL and RLD, although these correlations are not significant (P > 0.05). But the compound effects of soil available N, soil temperature and soil moisture content are significant to every root parameter. The variations of these three root parameters in different seasons show different physiological and ecological functions in different growing periods. Translated from Scientia Silvae Sinicae, 2006, 42(9): 7–12 [译自: 林业科学]  相似文献   

8.
Tree pruning is a common management practice in agroforestry for mulching and reducing competition between the annual and perennial crop. The below-ground effects of pruning, however, are poorly understood. Therefore, nutrient dynamics and root distribution were assessed in hedgerow plantings of Acacia saligna (Labill.) H.L. Wendl. after tree pruning. Pruning to a height of 1.5 m was carried out in March and September 1996. In July and October 1996, the fine root distribution (< 2 mm) and their carbohydrate contents were determined at three distances to the tree row by soil coring. At the same time, foliar nutrient contents were assessed, whereas nutrient leaching was measured continuously. The highest root length density (RLD) was always found in the topsoil (0–0.15 m) directly under the hedgerow (0–0.25 m distance to trees). Pruning diminished the RLD in the acacia plots at all depths and positions. The relative vertical distribution of total roots did not differ between trees with or without pruning, but live root abundance in the subsoil was comparatively lower when trees were pruned than without pruning. In the dry season, the proportion of dead roots of pruned acacias was higher than of unpruned ones, while the fine roots of unpruned trees contained more glucose than those of pruned trees. Pruning effectively reduced root development and may decrease potential below-ground competition with intercropped plants, but the reduction in subsoil roots also increased the danger of nutrient losses by leaching. Leaching losses of such mobile nutrients as NO3 were likely to occur especially in the alley between pruned hedgerows and tended to be higher after pruning. The reduced size of the root system of pruned acacias negatively affected their P and Mn nutrition. Pruning also reduced the function of the trees as a safety net against the leaching of nutrients for both NO3 and Mn, though not for other studied elements. If nutrient capture is an important aim of an agroforestry system, the concept of alley cropping with pruning should be revised for a more efficient nutrient recycling in the system described here.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Variability of fine root (diameter < 2 mm) distribution was investigated in four 55 to 56-year-old Maritime pine (Pinus pinaster) stands using a combination of trench wall observations and destructive sampling. Our objectives were to assess patterns of fine root distribution, to estimate tree fine root biomass and to explore interactions with understorey vegetation in a gradient of relevant site conditions. Results showed that root density decreased with soil depth in all stands, and variability appeared to be highest in litter and subsoil layers especially where compacted soil layers occurred. Roots were clustered in patches in the top 0–50 cm of the soil or were present as root channels at greater depths. Cluster number, cluster size and number of root channels were comparable in all four stands. Overall fine root biomass at depths of 0–120 cm ranged from 2.7 to 7.2 Mg ha−1 and was highest for the two driest stands. The use of trench wall records made it possible to reduce the variability of these estimates. Understorey species represented as much as 90% of the total number of fine roots in the upper layers, and the understorey formed a considerable proportion of the total ecosystem biomass, suggesting that understorey species are likely competitors for nutrients in this ecosystem. Further studies should focus on the interaction of the understorey and pine roots and the ecological significance of clustered roots and nutrient distributions.  相似文献   

10.
The long‐term effects of lime application on fine roots of Norway spruce, Picea abies (L.) Karst, and Scots pine, Pinus sylvestris (L.), have been studied in five experimental forest stands subjected to different lime applications 5 to 18 years before the present study was undertaken. The effects of liming does not seem to significantly influence fine‐root development in forest stands in the long term. The only response to liming in measured root variables was a tendency to increased specific root length (SRL = fine‐root length/fine‐root dry weight, m/g). A correlation between increased SRL, decreased root biomass and increased stem volume growth was indicated. Changes in water extractable amounts of mineral elements—P, K, Ca, Mg, Mn, S, Al and Fe‐in bulk soil and rhizosphere soil from the mineral soil layers were studied in a control area and an area treated with 3830 kg CaCO3 ha‐1. Few significant differences were found between treatments, and then mainly in the case of Ca.  相似文献   

11.
Picea mongolica is an endemic but endangered species in China. The spruce forest is only found in sandy forest-steppe ecotones. In this study, we examined the initial response of the quantity and refilling process of fine roots in an artificial canopy gap with a diameter of 36 m in a P. mongolica forest. Under the canopy, the fine root length densities of trees, shrubs and herbs were 2,622, 864 and 3,086 m·m–2, respectively. The fine root biomass of trees, shrubs and herbs were 148, 62 and 65 g·m–2, respect...  相似文献   

12.
The magnitude of root competition 17 year-old coconut palms suffer from three year-old inter-planted multipurpose trees, Vateria indica L., Ailanthus triphysa (Dennst.) Alston. or Grevillea robusta A. Cunn. and kacholam (Kaempferia galanga L.), a herbaceous medicinal plant, was evaluated based on the extent of absorption of applied 32P by the palms in sole and mixed crop situations. The multipurpose tree (MPT) species were grown under two planting geometries (single row and double row). The hypothesis that, when grown together, widespread root proliferation of coconut and multipurpose trees occurs in the well-fertilised kacholam beds was tested by root excavation. Interplanted MPTs substantially altered absorption of 32P by coconut. Both Ailanthus and Vateria exerted a modest depressing effect, while Grevillea enhanced 32P uptake by coconut. Single rows of MPTs also favoured 32P recovery by coconut, presumably because of the increased root densities in the subsoil. Ailanthus, Vateria and Grevillea absorbed substantial 32P. Overall, high 32P absorption in the coconut-Grevillea plots indicates complementary root-level interactions between these species. 32P absorption by MPTs was generally higher closer to the trees owing to the greater root concentration of the MPTs, which in turn suggests possible root interference between MPTs and coconut. Hence selection of tree species with low root competitiveness and/or trees with complementary root interaction is of strategic importance in agroforestry. Kacholam showed substantial 32P content in its foliage. This 32P appears to have been translocated by coconut into the kacholam beds where new coconut roots were abundant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Planting trees, in farm forestry enterprises, to control rising watertables is an increasing practice for both economic and environmental benefits. One central biophysical issue which determines the effectiveness of trees to control groundwater is the ability of trees to grow roots through degraded soils and take up groundwater. We investigated the effect of soil properties, especially the presence of shallow watertables and site preparation practice, on the vertical and horizontal distributions of Eucalyptus grandis W. Hill ex Maiden and Corymbia maculata (Hook.) K.D. Hill and L.A.S. Johnson roots. In order to improve the reliability of root data, we measured root growth and distribution by three different methods – (i) number of roots intercepting the vertical plane of the soil profile, (ii) root length density in soil cores taken at different depths but in the horizontal plane of the profile, and (iii) root length density in soil cores in the vertical plane at different radial positions from trees and compared the results. Two experimental sites were established in flood-irrigated, farm forestry plantations on contrasting soils in the Murray Riverina region of south-eastern Australia. At one site (Norwood Park), we studied a 58-month-old stand of E. grandis growing in clay loam overlaying medium clay, saline, sodic and alkaline subsoil with a saline (11.5 dS m−1) watertable at 2.8 m depth. Here, there were few roots growing above the watertable. The Karawatha site had adjacent stands of 46-month old E. grandis and C. maculata growing in a sandy, neutral and non-saline soil with a shallow (3.1 m deep) non-saline (2.8 dS m−1) watertable. Here roots proliferated above the watertable in both species but to a much greater extent under C. maculata than under E. grandis. Root distributions in the surface soil were similar at all sites but differences in root growth in the capillary zones paralleled differences in groundwater uptake by trees. We conclude (i) that appropriate matching of species with site characteristics, especially soil and groundwater properties, will enhance tree growth and groundwater uptake and (ii) that extensive planting of C. maculata over non-saline watertables maximises the chances of achieving the multiple objectives of regional groundwater control, fast growth rates and reduced irrigation demand.  相似文献   

14.
Fine-root dynamics (diameter < 2.0 mm) were studied on-farm in associations of Coffea arabica with Eucalyptus deglupta or Terminalia ivorensis and in a pseudo-chronosequence of C. arabica-E. deglupta associations (two, three, four and five years old). Coffee plants were submitted to two fertilisation types. Cores were taken in the 0–40 cm soil profile two years after out-planting and subsequently in the following year in depth layers 0–10 and 10–20 cm, during and at the end of the rainy season, and during the dry season. Fine root density of coffee and timber shade trees was greater in the coffee fertilisation strip as compared to unfertilised areas close to the plants or in the inter-rows. Coffee fine roots were more evenly distributed in the topsoil (0–20 cm) whereas tree fine roots were mostly found in the first 10 cm. Although the two tree species had approximately the same fine root length density, lower coffee / tree fine root length density ratios in T. ivorensis suggest that this shade tree is potentially a stronger competitor with coffee than E. deglupta. Coffee and tree fine root length density for 0–10 cm measured during the rainy season increased progressively from two to five-year-aged associations and coffee fine root length density increased relatively more than E. deglupta fine root length density in the four and five-year-aged plantations suggesting that contrary to expectations, coffee fine roots were displacing tree fine roots.  相似文献   

15.
Improved or planted fallows using fast-growing leguminous trees are capable of accumulating large amounts of N through biological N2-fixation and subsoil N capture. During the fallow phase, the cycling of nutrients is largely efficient. However, there are few estimates of the fate of added N during the cropping phase, after the 'safety net' of fallow-tree roots is removed. Nitrate-N at the end of the fallow phase, which is pre-season to the subsequent crop, was monitored in seven land use systems in successive 20-cm soil layers to 120 cm depth at Domboshawa, Zimbabwe in October 2000. Thereafter, nitrate-N dynamics was monitored during cropping phase until April 2001 at 2-week intervals in plots that had previously 2-year planted fallows of Acacia angustissima and Sesbania sesban, and in a continuous maize control. Pre-season nitrate concentrations below 60 cm soil depth were <3 kg N ha−1 layer−1 for S. sesban, A. angustissima, Cajanus cajan and natural woodland compared with the maize (Zea mays L.) control, which had >10 kg N ha−1 layer−1. There was a flush of nitrate in the S. sesbania and A. angustissima plots with the first rains. Topsoil nitrate had increased to >29 kg N ha−1 by the time of establishing the maize crop. This increase in nitrate in the topsoil was not sustained as concentrations decreased rapidly due to leaching. Nitrate then accumulated below 40 cm, early in the season when maize root length density was still low (<0.1 cm cm−3) and inadequate to effectively intercept the nitrate. It is concluded that under light soil and high rainfall conditions, there is an inherent problem in managing nitrate originating from mineralization of organic materials as it accumulates at the beginning of the season, well ahead of peak demand by crops, and is susceptible to leaching before the crop root system develops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
An investigation was conducted to quantify fine roots and roots nodules over the four seasons in forestry and agroforestry alder (Alnus rubra) stands in North Wales. Soil samples collected in each season were excavated at three sampling points (0.30 m, 0.57 m and 1.00 m distance from the base of each tree) from nine trees of the agroforestry and forestry plots. Result showed that the density of live fine root had significant differences in between seasons and treatments (P < 0.001). The mean weight density of live fine root over the four seasons in agroforestry and forestry was 0.27±0.01 kg·m-3 and 0.54±0.03 kg·m-3, respectively. Weight density of dead root in each system remained constant throughout the year. The mean weight density of dead root was also significantly different (P < 0.01) between forestry and agroforestry systems. Weight density of live and dead root nodule was both constant throughout the year and between the different sampling distances. The mean weight densities of live and dead root nodule over the four seasons were 0.09±0.03 kg·m-3 and 0.05±0.03 kg·m-3 in agroforestry and 0.08±0.02 kg·m-3 and 0.03±0.01 kg·m-3 in the forestry plots, respectively.  相似文献   

17.
Trenching and shoot removal showed the relative influences of living roots and the canopy cast by teak (Tectona grandis L.F.) coppice regrowth on the growth and yield of interplanted maize (Zea mays L.). Teak and maize were planted at 1.8 × 1.8 m and 0.3 × 1.8 m spacing respectively.Competition for light started about four weeks after planting and caused etiolated height growth of maize. When combined with root competition it caused stunted growth. Shading also substantially reduced total dry matter production, grain yield, number of cobs per plant, average cob weight, and weight of grains per cob of maize (P<0.01). Living teak roots alone did not have a significant effect (P>0.05) on maize height growth, total dry matter production, grain yield, number of cobs per plant,average cob weight and weight of grains per cob. However, combined with shading, living roots of teak appreciably reduced total dry matter yield and average cob weight of maize (P<0.01).  相似文献   

18.
The biomass and the spatial distribution of fine and small roots were studied in two Japanese black pine (Pinus thunbergii Parl.) stands growing on a sandy soil. More biomass of fine and small roots was found in the 17-year-old than in the 40-year-old stand. There were 62 g m−2 of fine roots and 56 g m−2 of small roots in the older stand, which represented mean values of 608 g for fine and 552 g for small roots per tree, respectively. In the younger stand, a total of 85 g m−2 of fine roots and 66 g m−2 of small roots were determined, representing a mean of 238 g for fine and 186 g for small roots per tree, respectively. Fine and small root biomasses decreased linearly with a soil depth of 0–50 cm in the older stand. In the younger stand, the fine and small roots developed only up to a depth of 30 cm. Horizontal distributions (with regard to distance from a tree) of both root groups were homogeneous. A positive correlation in the amount of biomass of fine and small roots per m2 relative to tree size was found. Fine and small root biomasses increased consistently from April to July in both stands. The results also indicated earlier growth activity of the fine roots than small roots at the beginning of the growing season. The seasonal increases in fine and small root biomasses were slightly higher in the younger stand than the older stand.  相似文献   

19.
Swamy  S.L.  Mishra  A.  Puri  S. 《New Forests》2003,26(2):167-186
A study of an agrisilviculture system comprising Gmelina arborea and soybean (Glycine max) was conducted in the subhumid region of Central India. Above- and below-ground biomass production and distribution of coarse and fine roots were studied in 4-year-old G. arborea, planted at a spacing of 2 × 2 m, 2 × 3 m, 2 × 4 m and 2 × 5 m. The total biomass varied from 10.89 Mg ha–1 to 3.65 Mg ha–1 depending on the tree density. Among the different tree components, stemwood contributed maximum biomass (54.3–79.4%), followed by branches and leaves. Root distribution pattern showed that most of the coarse roots were distributed in the top 40 cm of soil, whereas fine roots were concentrated in the top 20 cm. Coarse root biomass decreased with an increase in spacing. The spread of roots was asymmetrical in trees planted at 2 × 2 m and 2 × 3 m spacings, while it was symmetrical in trees planted at wide spacings. No significant difference was observed in the fine root biomass in different stands. The root:shoot ratio increased with an increase in spacing. Crop (soybean) growth and productivity varied significantly and it increased with a decrease in tree density. Soybean yield varied between 1.5 Mg ha–1 to 2.1 Mg ha–1. The role of root architecture of G. arborea trees on productivity of crops under agri-silviculture system is discussed.  相似文献   

20.
Measurements were carried out to survey the quantity of above- and below-ground biomass and its distribution of five Japanese black pines (Pinus thunbergii Parl.) growing on a sandy soil. The roots, divided into diameter groups, were surveyed using two methods—soil coring and excavation. Average dry weight of total biomass of the trees was 176,185 g. Roots represented 13.2%, below-ground stump 6.5%, stem 70.4% and branches with needles 9.9% of total biomass. Roots made up about two thirds and stump one third of below-ground biomass. Total length of below-ground biomass (except roots with diameter < 0.1 cm) was 479.1 m/tree. Roots with diameter of 0.1–0.2 cm represented only 0.7% of below-ground biomass, however as much as 49.9% of their total length. Roots with diameter over 10.0 cm constituted as much as 21.6% of below-ground biomass, however were only 0.3% of its total length. Root systems had well developed tap roots to maximal depth of 231 cm. The results indicated that mass and length of roots with diameter 0.5–2.0 cm had a close correlation with branch mass. Mass and length of roots with diameter 2.0–10.0 cm closely correlated to stem mass. Stem mass, root mass and root length closely correlated to DBH. A rather low correlation was found between DBH and mass of branches and below-ground stump. DBH was a suitable variable for predicting total biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号