首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of contrasting moisture regimes on the CO2 emission from the gray forest soils (Haplic Luvisols (Loamic, Cutanic, Humic)) under a grass vegetation and bare fallow was studied in a field simulation experiment in June–September, 2015 (Moscow region). Two short soil droughts (53 and 34 days) and a long one (94 days) were simulated on plots isolated from precipitation. A variant with regular irrigation, where the soil moisture was maintained 60–70% of their water holding capacity, was used as a control. Over the whole observation period, the CO2 emissions from the soils studied decreased by a factor of 1.8 compared to the control only in the variant with the grass vegetation under prolonged drought. During the first hours after irrigation of the dry plots, the soil respiration intensified due to the “Birch effect”. The magnitude of this effect was 84–104% in the soils under the grass vegetation and 114–133% in the fallow areas. Owing to this phenomenon, the total CO2 emission from the soils subjected to two short droughts was equal to the CO2 flux under regular moistening for the grass plots and exceeded it by almost 1.3 times for the fallow plots as compared to the control. However, the share of extra CO2 flux induced by moistening of the dry soils did not exceed 8–10% of the total CO2 emission over the whole observation period.  相似文献   

2.
Modern light chestnut and chestnut soils and their analogues buried under steppe kurgans in the southeastern part of the Russian Plain were studied in order to determine the rates of the CO2 production by these soils under the native (with the natural moisture content) and moistened (60% of the total water capacity) conditions. It was found that the rates of the CO2 production by the soil samples in the native state are relatively close to one another and vary from 0.3 to 1.4 μg of C/100 g of soil/h. The rates of the CO2 production in the moistened state increased by two orders of magnitude for the modern surface soils and by an order of magnitude for the buried soils.  相似文献   

3.
This paper tracks the annual dynamics of carbon dioxide production (emission and profile concentration) by soils of the arboretum in the Moscow State University Botanical Garden that are planted with Siberian spruce and common pine. The high biological activity of the studied soils is caused by the high content of organic matter, slightly alkaline reaction, and good structure and texture. Differences in CO2 production by the soils of a spruce and pine forest (1.5–2 times higher in the latter) can be explained by different structures of soil profiles rather than a temperature regime. The seasonal dynamics of CO2 production are the same for both soils and associated with seasonal changes in climatic parameters. In the cold season, there is noticeable production of carbon dioxide by soils.  相似文献   

4.
The humus status and CO2 production have been assessed in soils of natural and anthropogenic landscapes in southern regions of the Far East with different types of redox conditions. A higher production of CO2 is typical of burozems and soddy-eluvial-metamorphic soils with oxidative and contrast redox conditions. These are soils with medium or high humus content, high potential humification capacity, and medium enrichment with catalase. A decrease in the content of humus in the plow horizons of soils in agrogenic landscapes is revealed compared to their natural analogues. The studied soils mainly have humus of the fulvate–humate type. The fractions strongly bound to the mineral soil component prevail in humic acids. In waterlogged mucky-humus gley soils, the anaerobic conditions hamper the biological activity and transformation of organic matter, which favors its accumulation. A low production of CO2 is observed in soils with reducing conditions. To determine the differences between the CO2 emission parameters in soils of agrogenic and natural landscapes, monitoring studies should be extended.  相似文献   

5.
The stocks of organic carbon and mean rates of the CO2 emission during the growing season (May–September) and the entire year were estimated in a sequence of grass ecosystems along the transect encompassing chestnut and meadow-chestnut steppe soils, marsh and meadow alluvial soils, and a haloxerophytic community on a typical solonchak. The total stocks of organic carbon comprised 6.17–9.70 kg С/m2 in steppe, 7.41–10.04 kg С/m2 in floodplain, and 4.74 kg С/m2 in haloxerophytic ecosystems. The portion of humus carbon in the upper 50-cm-thick soil layer comprised 79–92% of the total carbon stock. The mean daily CO2 emission (С–CO2/(m2 day)) from alluvial soils was moderate (3.3–4.9) or low (1.5–2.5). The dependence of the CO2 emission on the moistening of steppe soils, temperature of alluvial soils, and temperature and moistening of solonchak was revealed. In comparison with the CO2 emission from the zonal chestnut soil, its mean values during the growing season and the entire year were 1.2 times higher for the meadowchestnut soil, 3.3 times higher for the marsh alluvial soil, 2.3 times higher for the meadow alluvial soil, and 1.7 times higher for the solonchak. The portion of the CO2 emission beyond the growing season in the mean annual emission averaged 19.8–24.2% and depended on the type of grass ecosystem and on weather conditions of particular years. The sink of carbon in the grass ecosystems exceeded carbon emission, especially in the steppe ecosystems.  相似文献   

6.
The emission of carbon dioxide (CO2) from podzols (Albic Podzols (Arenic)) and the factors controlling its spatiotemporal variability in the forest ecosystems of the Pasvik Reserve in the Kola Subarctic are characterized. Relatively favorable climatic conditions beyond the polar circle in summer are responsible for intensive soil respiration. The type of forest affects the emission of CO2 from the soil surface. The lowest rate of the CO2 emission is typical of the soils under lichen pine forest (105–220 mg C/(m2 h) or 180 g C/m2 during the summertime). Higher rates are observed for the soils under green moss pine (170–385 mg C/(m2 h) or 360 g C/m2 during the summertime) and birch (190–410 mg C/(m2 h) or 470 g C/m2 during the summertime) forests. This may related to a higher contribution of root respiration (44, 88, and 67%, respectively). Soil respiration and the contribution of root respiration to it increase with an increase in the canopy density; mass of small roots; microbial biomass; depth of the stony layer; soil moistening; and the contents of available carbon, nitrogen, phosphorus, and potassium compounds. At the same time, they decrease with an increase in the portion of lichens in the ground cover. The seasonal dynamics are characterized by the CO2 emission maximums in the summer and fall and minimum in the spring. The daily dynamics are smoothed under conditions of the polar day.  相似文献   

7.
Studies performed on dark gray loamy forest soils in an oak forest in the southern forest steppe and on sandy soddy-podzolic soil in a pine forest in the southern taiga showed that the annual emission of CO2 from the soil surface in the pine forest was 16.3 t CO2/ha, including 10.1 t CO2/ha due to root respiration and 6.2 t CO2/ha due to soil microbial respiration. In the southern forest steppe, the corresponding values were 17.8 t CO2/ha due to root respiration at the optimum water content (20%) and 28.3 t CO2/ha due to soil microbial respiration. With the insufficient soil water content (12.5%), 10.3 and 17.8 t CO2/ha were due to root respiration and soil microbial respiration, respectively. Under strong drought conditions (water content of 10%), the emission of CO2 decreased to 8.2 and 16.3 t/ha due to root respiration and soil microbial respiration, respectively.  相似文献   

8.
The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO2 efflux data. The obtained results show that CO2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO2 efflux. The non-linear relationship between soil moisture content and CO2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.  相似文献   

9.
Traditional chemical methods and 13C-NMR spectroscopy were used to study the humus in chestnut paleosols buried under kurgans of different ages (the 16th–15th centuries BC; the 1st, 2nd–3rd, and 13th–14th centuries AD) and under the Anna Ioanovna Rampart (1718–1720) and in their recent analogues on virgin plots. It was found that the decrease in the humus content of the paleosols as a result of the diagenetic processes is exponentially related to the age of the soil burial. The loss of humus from the upper 30 cm of the paleosol buried 3500 yrs ago amounted to 76 ± 14%, and this system did not reach a stationary state. The constants of the humus mineralization in the paleosols were determined. A tendency for an increase in the degree of the organic matter humification in the chestnut soils during the past 3500 yrs was found. With an increase in the age of the burial, the portion of aromatic structures in the structure of the humic acids increased and the portion of aliphatic fragments decreased. The cyclic changes in the composition of the humus related to the secular variations in the climatic humidity were identified.  相似文献   

10.
The effects of intense moistening and alternating freezing-thawing cycles on the N2O emission from soils of an oak forest (brown forest soil in Lower Saxony, Germany) and southern tundra (cryozem in the area of Tal’nik Station near the city of Vorkuta) were studied in a model experiment. A sharp rise in the N2O emission reaching 350–670 μg N/m2 per h was recorded during the thawing of the brown forest soil, and the loss of nitrogen initiated by the freezing-thawing cycles comprised 74% of the total N2O emission during the whole experiment. No significant fluxes of N2O from the tundra soil were recorded during the experiment.  相似文献   

11.
Paleosols of the unique fortress of Arkaim located in the steppe zone of the southern Transural region (Chelyabinsk oblast) were investigated. The dating of the buried soils was performed using the radiocarbon method. The time of building this archeological monument is the Middle Bronze Age (the Sintashta culture; the calibrated dating with 1σ confidence is 3700–4000 years ago). Seven pits of paleosols and ten pits of background ordinary chernozems were studied. The soils are loamy and sandy-loamy. The morphological and chemical properties of the buried and background ordinary chernozems are similar; they differ by the lower content of readily soluble salts in the paleosols as compared to the background ones. The sporepollen spectrum of the Arkaim paleosol is transitional from the steppe to the forest-steppe type. During the existence of this settlement, pine forests with fern ground cover grew, and hygrophytic species (alder and spruce) that nowadays are not recorded in the plant cover occurred. The main feature of the paleosols is the presence of pollen of xerophytic and halophytic herbaceous plants there. The few pollen grains of broad-leaved species testify to a higher heat supply as compared to the current one. Judging by the results of the spore-pollen and microbiomorphic analyses, the climate during the time of building the walls of the settlement was somewhat moister and warmer (or less continental) than the present-day climate. The duration of this period appeared to be short; therefore, soil properties corresponding to the changed environment could not be formed. They reflect the situation of the preceding period with the climatic characteristics close to the present-day ones.  相似文献   

12.
Carbon dioxide (CO2) emission from the soil surface in forest biogeocenoses of the Zvenigorod Biological Station of Moscow State University in summer varies on average from 120 to 350 mg C–CO2/(m2 h) and depends on the hydrothermal conditions (soil moisture and temperature) and the type of phytocenosis. The intensity of CO2 emission in the biogeocenosis does not depend on its parcel structure and varies with respect to plant microgroups: it is maximum in oxalis pine–spruce and maple–lime forests and bracken spruce–birch forests and minimum in areas of forest fall without vegetation. The upper (from 0 to 20 cm thick) soil layer provides up to 50% of the total soil CO2 emission. The role of microbial respiration in the total CO2 emission from soils is determined by weather conditions and varies from 9–33% in a dry summer to 55–75% in a summer with favorable temperature and moisture.  相似文献   

13.
Paleosols buried under steppe kurgans of the Golden Horde period (13th–14th centuries AD) in the Lower Volga basin are characterized by an increased humus content, lower salinity and gypsum content, and higher magnetic susceptibility of the soil material in comparison with the paleosols buried in the preceding period and the background surface soils. A comparative analysis of the morphological, chemical, and magnetic properties of the buried and surface soils allows us to conclude that an increase in climatic humidity within this dry region took place in the period of the high Middle Ages, with a peak in the 13th–14th centuries AD. The climatic change was manifested in the soil evolution at the taxonomic levels of soil genera and soil subtypes (in the ecotone zones). On the basis of measured magnetic susceptibility values, the mean annual precipitation levels in the Golden Horde period have been reconstructed. According to our estimates, the mean annual precipitation in the Lower Volga basin in that time was 30–80 mm higher than at present. The favorable paleoenvironmental and paleosol conditions of the Golden Horde period were important factors that affected the ethnic and political situation in the Lower Volga region.  相似文献   

14.
Fragments of buried Late Pleistocene (30000-year-old) and Early Holocene (10000-year-old) paleosols contained viable complexes of microscopic fungi. The mycobiota of these paleosols represents a pool of fungal spores that is lower in number and species diversity as compared to that in the recent humus horizons and higher than that in the inclosing layers. The central part of the paleosol profiles is greatly enriched in microscopic fungi. In the intact humus horizons of the Late Holocene (1000–1200 years) paleosols, actively functioning fungal complexes are present. These horizons are characterized by their higher level of CO2 emission. The buried horizons, as compared to the recent mineral ones, contain a greater fungal biomass (by several times) and have a higher species diversity of microscopic fungi (including fungi that are not isolated from the recent horizons). Nonsporulating forms are also present there as sterile mycelium. The seasonal dynamics of the species composition and biomass of the fungal complexes were more prominent and differed from those inherent to the surface soil horizons. In the buried humus horizons, the dynamics of the fungal biomass were mainly due to the changes in the content of spores. The data on the composition of the fungal complexes in the buried soils confirm (due to the presence of stenotopic species) the results of paleobotanic analyses of the past phytocenoses or do not contradict them.  相似文献   

15.
《CATENA》2001,43(3):203-215
The carbonate profiles of Chernozems bear important information on soil processes and can be successfully used for paleoenvironmental reconstruction. In the Northern Caucasus region, Russia, carbonate profiles of Chernozems were compared under anthropogenic (irrigation) and natural changes of moisture regime. The results for irrigation served as the basis for understanding the response to natural climatic changes. A soil chronosequence, consisting of soils buried under archaeological mounds dated to >5000, 3800–4000 and 1600–1700 BP and modern surface soils, was studied in a similar way. The soils buried >5000 and 3800–4000 BP had distinctive migrational and segregational carbonate accumulations (CAs). The migrational forms occurred in the surface horizons and contained 89–92% calcite with the highest dissociation temperatures. In the soils buried 1600–1700 BP the carbonate profile was clearly defined in terms of migrational CAs; they occurred only in the deeper horizons, had no clear boundaries and were diffused throughout the soil mass. In the modern surface soils the migrational CAs have almost disappeared, and the segregational CAs have the largest halos of recrystallised carbonates. The values of δ13C for CAs in the soils buried >5000 and 3800–4000 BP were lighter than in the soils buried 1600–1700 BP and the modern surface soils (−10.6‰ to −9.9‰ and −9.6‰ to −8.8‰, respectively). We conclude that the climate of the region during the second half of the Holocene changed from relatively dry and warm in the Atlantic period (>5000 BP) to more humid and cooler in the early Subboreal (5000–4000 BP). Since 4000 BP the climatic conditions have remained relatively stable with some changes in moisture regime resulting from human activities in recent centuries.  相似文献   

16.
The input of labeled C into the pool of soil organic matter, the CO2 fluxes from the soil, and the contribution of root and microbial respiration to the CO2 emission were studied in a greenhouse experiment with continuous labeling of oat plants with 13CO2 using the method of the natural 13C abundance in the air. The carbon of the microbial biomass composed 56 and 39% of the total amounts of 13C photoassimilates in the rhizosphere and in the bulk soil, respectively. The contribution of root respiration to the CO2 emission from the soil reached 61–92%, including 4–23% of the rhizomicrobial respiration. The contribution of the microbial respiration to the total CO2 emission from the soil varied from 8 to 39%. The soil organic matter served as the major carbon-containing substrate for microorganisms in the bulk soil and in the rhizosphere: 81–91% of the total amount of carbon involved in the microbial metabolism was derived from the soil organic matter.  相似文献   

17.
A comparative analysis of the state of microbial communities in kurgans, paleosols buried under them, and background surface soils in the dry steppe zone of the Lower Volga region has been performed. It is shown that the population density of microorganisms of various trophic groups in the kurgans is an order of magnitude lower than that in the A1 horizon of the corresponding buried paleosols and background surface soils within the areas of chestnut, light chestnut, and solonetzic soils. The respiration activity of the microbial communities in the upper layer of the kurgans is comparable with that in the A1 horizons of the background surface soils; it decreases in the deeper layers of the kurgans. In the A1 horizon of the buried paleosols, the respiration activity is approximately the same as in the deep layers of the kurgans. In the buried paleosols, the spatial variability in the numbers of soil microorganisms is approximately the same or somewhat higher than that in the background surface soils. The spatial variability in the respiration activity of the buried paleosols is two to four times higher than that in the background surface soils.  相似文献   

18.
Statistical analysis of a vast body of data collected during five field seasons (2011–2015) was performed to characterize the biological activity of soils in the northern taiga ecosystems of Western Siberia. Automorphic forest soils, hydromorphic (oligotrophic bog) soils, and semihydromorphic (flat-topped and large peat mounds) soils were characterized. Statistically significant differences of average levels of CO2 emission from the soils were identified at the ecosystem level. The CO2 emission from podzols of automorphic forest ecosystems at the peak of the growing season (205 ± 30 to 410 ± 40 mg CO2/(m2 h)) was significantly higher than the emission from semihydromorphic soils of peat mounds (70 ± 20 to 116 ± 10 mg CO2/(m2 h)). The presence and depth of permafrost was a significant factor that affected ecosystem diversity and biological activity of northern taiga soils. Statistically significant differences in the total, labile, and microbial carbon pools were observed for the studied soils. Labile and microbial carbon pools in the organic layer (10 cm) of forest podzols amounted to 0.19 and 0.66 t/ha, respectively; those in the organic layer (40 cm) of peat cryozems of flat-topped peat mounds reached 1.24 and 3.20 t/ha, and those in the oligotrophic peat soils (50 cm) of large peat mounds were 2.76 and 1.35 t/ha, respectively. The portion of microbial carbon in the total carbon pool (Cmicr/Ctot, %) varied significantly; according to the values of this index, the soils were arranged into the following sequence: oligotrophic peat soil < peat cryozem < podzol.  相似文献   

19.
Seasonal changes of the soil CO2 concentration and the rate of CO2 fluxes emission from the soil formed on the sediments of the former Lake Texcoco, which occupied a significant part of the Mexico Valley until the mid-17th century, were studied. The soils (Fluvic Endogleyic Phaeozems) were characterized by a low CO2 fluxes rate, which is related to their high alkalinity. The mean values of soil respiration were 6.0–14.1 mg C/(m2 h) depending on vegetation type, which corresponds to 60–157 g C/(m2 yr). The contribution of plants to the CO2 fluxes insignificantly varied by seasons and depended on the species composition of vegetation. The soil CO2 concentration and soil respiration in eucalypt (Eucalyptus globulus Labill.) plantation were two times higher than those in the grass–subshrub area, the ground cover of which consisted of Distichlis spicata (L.) Greene and Suaeda nigra (Raf.) J.F. Macbr. species. This can be related to the significant volumes of gas production during the respiration of eucalypt roots and associated rhizosphere community. The contribution of the root systems of grass cover to the soil CO2 fluxes in eucalypt plantation slightly varied within the year and was equal to 24% on the average. In the grass–subshrub area, its value varied from 41% in the cold season to 60% in the warm season. The spatial variability of soil CO2 concentration and its flux rate to the atmosphere was due to the differences in plant species composition and hydrothermal conditions, and their temporal trend was closely related to the seasonal accumulation of plant biomass and soil temperature.  相似文献   

20.
A high soil nitrogen (N) content in irrigated areas quite often results in environmental problems. Improving the management practices of intensive agriculture can mitigate greenhouse gas (GHG) emissions. This study compared the effect of maize stover incorporation or removal together with different mineral N fertilizer rates (0, 200 and 300 kg N ha?1) on the emission of nitrous oxide (N2O) and carbon dioxide (CO2) on a sprinkler-irrigated maize (Zea mays L.). The trail was conducted in the Ebro Valley (NE Spain) in a high nitrate-N soil (i.e. 200 g NO3–N kg?1). Nitrous oxide and CO2 emissions were sampled weekly using a semi-static closed chamber and quantified using the photoacoustic technique in 2011 and 2012. Applying sidedress N fertilizer tended to increase N2O emissions whereas stover incorporation did not have any clear effect. Nitrification was probably the main process leading to N2O. Denitrification was limited by the low soil moisture content (WFPS <?54%), due to an adequate irrigation management. Emissions ranged from ??0.11 to 0.36% of the N applied, below the IPCC (2007) values. Nitrogen fertilization tended to reduce CO2 emission, but only in 2011. Stover incorporation increased CO2 emission. Nitrogen use efficiency decreased with increasing mineral fertilizer supply. The application of N in high N soils of the Ebro Valley is not necessary until the soil restores a normal mineral N content, regardless of stover management. This will combine productivity with keeping N2O and CO2 emissions under control provided irrigation is adequately managed. Testing soil NO3 ?–N contents before fertilizing would improve N fertilizer recommendations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号