首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
殷欣  田亚男  谢琪  林杉 《中国农学通报》2015,31(36):211-219
为了明确尿素和秸秆添加对茶园土壤CO_2和N2O排放的影响,为茶园合理施肥提供理论依据,本研究在室内培养条件下,以华中地区红壤丘陵区茶园土壤为对象,运用静态培养系统研究方法,研究该土壤在尿素输入和作物秸秆添加后CO_2和N_2O的排放特征。培养试验共设置对照、尿素、作物秸秆和尿素+作物秸秆4种处理。结果表明:不同处理下华中地区茶园土壤CO_2和N_2O排放呈显著差异。作物秸秆添加显著提高茶园土壤CO_2的排放,作物秸秆和作物秸秆+尿素处理分别是对照的5.57和4.99倍。尿素输入显著促进茶园土壤N_2O的排放,而秸秆添加却降低N_2O的排放。对照和添加尿素处理土壤N_2O排放通量与铵态氮含量呈显著正相关关系。无秸秆添加处理土壤N_2O排放通量与硝态氮含量呈显著的相关性,而添加秸秆处理二者无显著相关关系。土壤可溶性有机碳含量对CO_2排放有显著影响,二者之间呈极显著线性正相关关系。  相似文献   

2.
干旱地区农田生态系统土壤温室气体排放机制   总被引:3,自引:0,他引:3  
CO2、CH4和N2O是目前几种最主要的温室气体,在对全球气候变暖贡献中,农业作为重要的温室气体排放源对其有不可低估的作用。一般而言,旱地农田生态系统是大气CO2和N2O的排放源,黄土高原等旱地是CH4的吸收汇。CO2排放主要包括植物呼吸作用和土壤呼吸作用;CH4排放包括有机物的还原和氧化吸收两个过程;N2O排放包括硝化作用和反硝化作用两个过程。土壤微生物、土壤水分、土壤温度、土壤质地、施肥等均从不同角度影响着温室气体的释放与吸收。近些年,免耕、秸秆还田、地膜等保护性耕作技术在干旱地区农田生态系统中得到广泛应用。其中免耕可以减少CO2和N2O的排放量,增加土壤对CH4的吸收量;秸秆还田和覆膜对N2O排放的影响结果尚未统一,但秸秆还田促进CO2排 放抑制CH4吸收,而覆膜促进CH4吸收抑制CO2排放。加强且更深入更全面的研究旱地农田生态系统温室气体排放应该作为今后重点研究领域,为全球气候变暖提供更为准确的理论基础。  相似文献   

3.
N2O Emissions from True Meadows Dependent on Location and N Fertilization Agricultural production is thought to be a main anthropogenic emitter of nitrous oxide (N2O), which contributes to global warming and the destruction of the ozone layer. There is still considerable uncertainty about the amount of N2O emission, and the site‐specific parameters that affect N2O emission. From October 1995 until March 1998 experiments were conducted at established field plots (true meadows) at three different sites, i.e. low mountain range (Eifel), lowland (Niederrhein), and moist meadows (Münsterland). Plots were fertilized with calcium ammonium nitrate (CAN) at nitrogen equivalents ranging from 0 to 360 kg N ha–1. N2O fluxes were measured throughout the whole year using the closed‐chamber method. In addition, data on temperature, water‐filled pore space and precipitation were collected. N2O emission rates (mg N2O‐N ha–1 h–1) were highest either after fertilizer application or in winter during frost, depending on the experimental site and N dosage. The annual amount of N losses due to N2O emission was dependent on the experimental site and the type and dosage of fertilizer. Disregarding the 360 kg N ha–1 level of the CAN treatments, the N losses in this experiment were less than 1.5 kg N2O‐N ha–1 yr–1. At low fertilizer dosage there was no reliable correlation between the amount of N that was applied and the amount of N2O that was emitted. However, with high fertilizer levels the N2O emissions increased gradually. Finally, N2O emissions were more influenced by the amount of CAN than by the site.  相似文献   

4.
Nitrogen (N) is the most susceptible nutrient to transformations affecting plant availability. These transformations include mineralization, immobilization, nitrification and denitrification, as well as leaching and ammonia volatilization. Use of stable wastes and other residues for biogas digestion may reduce N-losses. It is the purpose of this paper (i) to assess the effects of biogas digestion on soil mineral N (SMN) content in spring and autumn, (ii) to compare NH3 volatilization following superficial application of different manures to a cereal crop, (iii) to compare greenhouse gas emissions of differently treated liquid slurry after its application via injection into closed slots, and (iv) to compare greenhouse gas emissions of differing manuring treatments within a whole organic stockless cropping system. The SMN content in autumn was not influenced by digestion of slurry. However, if cover crops and crop residues were harvested for digestion instead of leaving it on the field, a strong decrease of the SMN content was measured. Ammonia volatilization after application from digested slurry was higher than the volatilization from undigested slurry, likely due to the effect of the higher ammonia content and higher pH. Organic manuring by application of liquid effluents of the biogas digester, by incorporation of green manures with a narrow C/N ratio or by mulching aboveground biomass of a clover/grass-ley, resulted in a strong increase in N2O emissions. The balance showed a 38% decrease in N2O emissions for a whole arable organic stockless cropping system when crop residues and the clover/grass-ley were harvested, digested, and the effluents were reallocated within the same cropping system, in comparison to mulching and incorporation of the biomass as green manure. Injection of liquid cattle slurry resulted in a strong increase of N2O emissions. The results provide some evidence that denitrification during nitrification was the driving force for the measured emission peaks. It was concluded, that biogas digestion of field residues resulted in a win-win situation, with additional energy yields, a lower nitrate leaching risk and lower nitrous oxide emissions. However, the propensity to ammonia volatilization was higher in digested manures.  相似文献   

5.
Converting pasture to cropping is common in many of the world’s agricultural systems. This conversion results in substantial net mineralisation of soil organic matter that builds up during a phase of pasture. A few studies have shown that this mineralisation leads to increased nitrous oxide (N2O) emissions compared to long-term pasture or long-term cropping. Understanding of interactions leading to these significant emissions is still scarce but is needed to identify mitigation options for this situation. In this study, the Agricultural Production Systems sIMulator (APSIM) was used to investigate the optimal timing of pasture termination (relative to crop planting) and management of nitrogen (N) in crops after pasture termination to maximise crop yield and limit N2O emissions. Beforehand, APSIM’s performance in simulating yields and N2O emissions was tested against data from field experiments conducted in the temperate high-rainfall zone of southern Australia where N2O emissions were monitored with automatic gas collection chambers during the first year of cropping wheat after terminating long-term pasture on two adjacent sites in two consecutive years. Field experiments and simulation scenarios showed very high N2O emissions (up to 48 kg N2O-N ha−1 yr−1) in the first year of wheat after pasture termination, even without N fertiliser application. Measured cumulative N2O emissions, crop yields and soil mineral N and water content dynamics were simulated well with APSIM. Including a routine into APSIM to account for N2O transport through the soil profile improved the simulation of daily N2O emissions considerably, leading to up to 67% of the measured variability in daily N2O emissions being explained by the model. We predicted that a short fallow between termination of pasture and sowing wheat, instead of a long fallow which is the common practice, reduces N2O emissions by more than half in the first year of cropping without a noteworthy impact on crop yield. Reducing N fertiliser applications in the first few years after pasture termination by taking available soil mineral N into account, and applying the fertiliser six to twelve weeks after sowing instead of at sowing was predicted to further reduce N2O emissions. Since the model was calibrated against experimental data during the first year after pasture termination only, experiments determining N2O emissions in the first two or three years after terminating pasture are needed to confirm our predictions.  相似文献   

6.
Conservation tillage and crop rotations improve soil quality. However, the impact of these practices on greenhouse gas (GHG) emissions and crop yields is not well defined, particularly in dry climates. A rainfed 2-year field-experiment was conducted to evaluate the effect of three long-term (17–18 years) tillage systems (Conventional Tillage (CT), Minimum Tillage (MT) and No Tillage (NT)) and two cropping systems (rotational wheat (Triticum aestivum L.) preceded by fallow, and wheat in monoculture), on nitrous oxide (N2O) and methane (CH4) emissions, during two field campaigns. Soil mineral N, water-filled pore space, dissolved organic carbon (C) and grain yield were measured and yield-scaled N2O emissions, N surplus and Global Warming Potentials (GWP) were calculated. No tillage only decreased cumulative N2O losses (compared to MT/CT) during campaign 1 (the driest campaign with least fertilizer N input), while tillage did not affect CH4 oxidation. The GWP demonstrated that the enhancement of C stocks under NT caused this tillage management to decrease overall CO2 equivalent emissions. Monoculture increased N2O fluxes during campaign 2 (normal year and conventional N input) and decreased CH4 uptake, as opposed to rotational wheat. Conversely, wheat in monoculture tended to increase soil organic C stocks and therefore resulted in a lower GWP, but differences were not statistically significant. Grain yields were strongly influenced by climatic variability. The NT and CT treatments yielded most during the dry and the normal campaign, and the yield-scaled N2O emissions followed the same tendency. Minimum tillage was not an adequate tillage management considering the GWP and the yield-scaled N2O emissions (which were 39% lower in NT with respect to MT). Regarding the crop effect, wheat in rotation resulted in a 32% increase in grain yield and 31% mitigation of yield-scaled N2O emissions. Low cumulative N2O fluxes (<250 g N2O-N ha−1 campaign−1) highlighted the relevance of soil organic C and CO2 emissions from inputs and operations in rainfed semi-arid cropping systems. This study suggests that NT and crop rotation can be recommended as good agricultural practices in order to establish an optimal balance between GHGs fluxes, GWP, yield-scaled N2O emissions and N surpluses.  相似文献   

7.
Nitrogen and carbon emissions and plant nutrient leaching during storage of solid deep litter from dairy cow houses was examined in this study. Included was an assessment of the potential for reducing emission and leaching losses by compaction, mixing and by covering the deep litter. During a composting period of 132 days from October 1998 to March 1999, emissions of NH3, N2O and CH4 and leaching of nutrients during composting were measured. Denitrification was estimated as N unaccounted for in N mass balance calculations. During mixing of the deep litter, N was lost and the emission and leaching losses during composting were consequently low compared with the other treatments. Covering the compost with a porous tarpaulin or compacting the compost reduced emission losses to 12–18% of total-N compared with a loss of 28% during composting of untreated deep litter. Most of the nitrogen loss was due to NH3 volatilization; leaching accounted for about one fifth of the N losses and only a little N was lost due to denitrification. Leaching loss of potassium (K) was 8–16% of the amount present at the start of the experiment; compaction and a cover reduced the volume of liquid leaching from the heaps and K loss. Less than 0.3% of the total-N was emitted as N2O, and CH4 emission was between 0.01 and 0.03% of the C in the stored deep litter. The yield level of barley was poor in this study and the fertilizer effect of compost was low. The yield response of barley showed that compost had a significantly lower fertilizer efficiency than deep litter applied to the field directly after emptying the animal house.  相似文献   

8.
大豆和玉米生长对土壤N2O排放的影响   总被引:1,自引:0,他引:1  
测定了盆栽试验条件下大豆和玉米生长期间的土壤N2O排放。种大豆土壤的N2O排放总量是相同条件下裸土排放总量的5.9倍,在大豆出苗后89 d里,种豆土壤的N2O排放平均速率显著低于裸土,此后种豆土壤的N2O排放速率显著高于裸土,种豆土壤N2O排放总量的93%发生在只占全生育期24%的成熟衰老期。种玉米土壤的N2O排放峰值出现在玉米出苗后13 d,而裸土的N2O排放峰值出现在玉米出苗后81 d,裸土的N2O排放总量是种玉米土壤N2O排放总量的13.5倍;种玉米土壤N2O排放主要发生在前一半时期里,而裸土的N2O排放主要发生在后一半时期里。无论在大豆还是玉米生长期间,裸土的N2O排放速率均与气温呈极显著的正指数相关,而种豆土壤的N2O排放速率与气温呈极显著的负相关,种玉米土壤的N2O排放速率与气温没有显著相关性。由此可见,植物生长和植物类型不仅影响土壤N2O排放的数量,也影响土壤N2O排放与温度之间关系。  相似文献   

9.
In this study, treatments of both trifluralin (at 10, 100 and 1000 μM) and N2O (in the form of gas under pressure) were applied to Begonia flower buds to induce the formation of 2n pollen. Three male fertile species (B. cucullata, B. subvillosa var. leptotricha and B. fischeri) and two male sterile hybrids (B. schmidtiana × B. cucullata and B. subvillosa var. leptotricha × B. cucullata) were treated. Pollen size, which is related to pollen DNA content, increased after both N2O and trifluralin treatments, but the induction of large pollen was genotype dependent. Trifluralin induced large pollen only in the male fertile species, while N2O treatments induced fertile 2n pollen in the male sterile B. schmidtiana × B. cucullata. Cytological studies showed that trifluralin induced multinuclear monads that resulted in 4n gametes in stead of 2n gametes. In general, large pollen obtained after trifluralin treatments showed low germination capability, while large pollen obtained after N2O treatments retained high germination capability. Seedlings with raised ploidy level could only be obtained after crosses were performed with large pollen obtained from N2O treatments. Hence, N2O treatments are preferable to the use of trifluralin to induce 2n gametes in Begonia.  相似文献   

10.
Nowadays agricultural practices are based in the use of N fertilizers which can lead to environmental N losses. These losses can occur as nitrous oxide (N2O) emissions as result of the microbial processes of nitrification and denitrification. N2O together with carbon dioxide (CO2) and methane (CH4) are the strongest greenhouse gases (GHG) associated with agricultural soils. Nitrification inhibitors (NI) have been developed with the aim of decreasing fertilizer-induced N losses and increasing N efficiency. One of the most popular NI is the 3,4-dimethylpyrazol phosphate (DMPP) which have proven to be an advisable strategy to mitigate GHG emissions while maintaining crops yield. A new NI, 3,4-dimethylpyrazole succinic (DMPSA), has been developed. The objective of this study was to compare the impact of the new nitrification inhibitor DMPSA on greenhouse gases emissions, wheat yield and grain protein with respect to DMPP. For this purpose a field-experiment was carried out for two years. Fertilizer dose, with and without NIs, was 180 kg N ha−1 applied as ammonium sulphate (AS) split in two applications of 60 kg N ha−1 and 120 kg N ha−1, respectively. A single application of 180 kg N ha−1 of AS with NIs was also made. An unfertilized treatment was also included. The new nitrification inhibitor DMPSA reduces N2O emissions up to levels of the unfertilized control treatment maintaining the yield and its components. The DMPSA shows the same behavior as DMPP in relation to N2O fluxes, as well as wheat yield and quality. In spite of applying a double dose of N at stem elongation than at tillering, N2O losses from that period are lower than at tillering as a consequence of the influence of soil water content and temperature reducing the N2O/N2 ratio by denitrification. NI efficiency in reducing N2O losses is determined by the magnitude of the losses from the AS treatment.  相似文献   

11.
The long-term effects of undersowing a ryegrass catch crop in cereals was analysed with the FASSET simulation model. The model was tested on a 28-year field experiment with ryegrass catch crops in spring barley. The experiment included treatments with nitrogen (N) fertiliser rates, catch crop use and timing of tillage. The modelled effects of these treatments generally agreed with observations on crop production, soil carbon, soil nitrogen and nitrate leaching. Both the observations and the simulations predicted a yield increase of 7 kg N ha−1 and an increase in nitrate leaching of 13 kg N ha−1 due to a prehistory of 24 years with continuous use of catch crops compared to a prehistory without catch crops.

A range of scenarios was constructed to evaluate the fate of the reduced nitrate leaching on crop N uptake, N leaching, gaseous emissions and change in soil organic N, and how this fate interacts with soils and climate and management. These scenarios showed that 22–30% of the reduced nitrate leaching was subsequently leached during the following decades after termination of catch crop use. Between 35 and 40% of the reduced nitrate leaching was harvested in cereals. The exact distribution depended primarily on the soil texture. The scenarios showed that effects of catch crops should be evaluated on the long-term rather than consider short-term effects only.  相似文献   


12.
The European Water Framework Directive (2000) offers a new challenge for farmers and water policy makers. It requires the establishment of quantitative environmental diagnosis of water quality. This can be done using crop models properly tested in the short and long-terms and taking into account current farming practices. The aim of this paper is to check the robustness of a crop model (STICS) for predicting the nitrogen uptake and nitrate leaching in various fields during 8 successive years. The model was evaluated on the soil–crop database of a small catchment in northern France. It includes data of crop production and N uptake, water and mineral nitrogen contents in soil measured three times a year at 36 sampling sites representative of crops (wheat, sugar beet, pea, barley, oilseed rape) and soil parent materials (loam, loamy clay and rocks, sandy loam and limestone, sand). A few crop parameters of STICS were recalibrated on independent databases in order to improve the predictions obtained with the standard parameterization. STICS was then evaluated either by resetting simulations each year (RS) or during continuous simulations (CS) over the 8 years. A reasonable agreement was obtained between observed and simulated values, except for soil N mineral content at harvest and N content in crop residues. The model efficiencies using CS mode were 0.53, 0.94 and 0.38 for N uptake, soil water and mineral N in late autumn, respectively. The mean calculated drainage was 192 mm y−1 and N leaching was estimated at 20 kg N ha−1 y−1, respectively. Averaging the outputs according to soil and crop type improved the quality of fit. The outputs of CS simulations were close to those obtained with RS. The mean nitrate concentration in water drainage was estimated as 46 and 45 mg NO3 l−1 with RS and CS, respectively. Continuous simulations did not induce a substantial drift in mineral N in late autumn and can be trusted for predicting nitrate leaching. However, the leaching predictions were more sensitive to spatially variable parameters such as maximal rooting depth and potential mineralisation rate for CS than for RS. This emphasizes the difficulty in extrapolating the model over the long-term for large spatial areas. Another important uncertainty concerns fertiliser use efficiency, which had a small effect on leaching but a marked influence on gaseous N losses. Further assessments of the model will concern the whole N balance prediction over the long-term.  相似文献   

13.
保护性耕作是改善农田土壤肥力的重要举措,然而其对作物氮吸收与产量的作用尚不明确。为此,本试验于2016—2017年稻季在湖北省武穴市花桥镇,设置常规翻耕与免耕两种耕作方式以及前茬作物秸秆全量还田与不还田两种秸秆还田方法,研究耕作与秸秆还田方式对稻田土壤N2O排放、根系酶活性、水稻氮吸收与产量的影响。结果表明,耕作方式显著影响土壤N2O排放,但不影响根系硝酸还原酶与谷氨酰胺合成酶活性、水稻氮吸收与产量。与翻耕处理相比,免耕处理2016年和2017年土壤N2O排放量分别显著提高了12.5%~18.2%和21.1%~38.6%。秸秆还田显著影响土壤N2O排放量、根系酶活性、水稻氮吸收与产量。相对于秸秆不还田处理,秸秆还田处理2016年和2017年土壤N2O排放量分别显著提高了38.5%~45.5%和13.1%~29.5%。秸秆还田处理相对于不还田处理根系硝酸还原酶与谷氨酰胺合成酶活性分别显著增加了6.7%~45.9%和9.0%~46.7%,水稻氮吸收量提高了12.5%~26.0%,产量增加了9.4%~12.6%。本文认为,虽然秸秆还田提高了水稻氮吸收与产量,但也促进了土壤N2O的排放,因此在评估保护性耕作稻田温室效应时应加强对温室气体(CH4和N2O)排放和土壤碳固定影响的长期监测,以期为发展低碳稻作提供理论依据和技术支撑。  相似文献   

14.
The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation.  相似文献   

15.
Irrigation induces processes that may either decrease or increase greenhouse gas emissions from cropping systems. To estimate the net effect of irrigation on the greenhouse gas emissions, it is necessary to consider changes in the crop yields, the content of soil organic carbon and nitrous oxide emissions, as well as in emissions from the use and production of machinery and auxiliary materials. In this study the net greenhouse gas emissions of a cropping system on a sandy soil in northeast Germany were calculated based on a long-term field experiment coupled with two-year N2O flux measurements on selected plots. The cropping system comprised a rotation of potato, winter wheat, winter oil seed rape, winter rye and cocksfoot each under three nitrogen (N) fertilization intensities with and without irrigation. Total greenhouse gas emissions ranged from 452 to 3503 kg CO2-eq ha−1 and 0.09 to 1.81 kg CO2-eq kg−1 yield. Application of an adequate amount of N fertilizer led to a decrease in greenhouse gas emissions compared to zero N fertilization whereas excessive N fertilization did not result in a further decrease. Under N fertilization there were no significant differences between irrigation and non-irrigation. Increases in greenhouse gas emissions from the operation, production and maintenance of irrigation equipment were mainly offset by increases in crop yield and soil organic carbon contents. Thus, on a sandy soil under climatic conditions of north-east Germany it is possible to produce higher yields under irrigation without an increase in the yield-related greenhouse gas emissions.  相似文献   

16.
Effect of different tillage practices on soil structure and nitrogen dynamic in loess soils with and without longterm application of farmyard manure
Field trials were conducted in 1979 and 1980 on two farms with and without longterm application of farmyard manure respectively, to study the effect of different tillage practices (ploughing at low soil moisture in summer and autumn and ploughing at highsoil moisture in autumn) on soil structure and nitrogen dynamic. Soil structure measurements showed great differences between ploughing at low and high soil moisture contents. Ploughing soil at high moisture contents caused a rise in penetrometer resistance as in bulk density and a decrease of macropors as well as in oxygen concentration in top soil and in tillage pan. But little differences were observed between ploughing in summer and autumn at low soil moisture contents.
Ploughing soil at high moisture contents caused a higher soil compaction on the farm without longterm application of farmyard manure compared to the farm with longterm application of farmyard manure.
The differences in soil nitrate content were strongly correlated with soil compaction. Very large differences in soil nitrate content between ploughing at low and high soil moisture contents were always observed in May, when the soil temperature was higher than 15°C These differences in soil nitrate content are due to reduced nitrogen mineralization and an increase of denitrification activity after ploughing at high soil moisture contents.  相似文献   

17.
The soil organic matter content represents a huge reservoir of plant nutrients and an effective safeguard against pollution; beside it can sequestrate atmospheric CO2. Since 1966 up to now in the Southeast Po valley (Italy), the soil organic C (SOC) and total N (TN) dynamics in the 0–0.40 m soil layer under a maize–wheat rainfed rotation are studied as influenced by organic and mineral N fertilizations. Every year in the same plots cattle manure, cattle slurry, and crop residues (i.e. wheat straw and maize stalk) are ploughed under to 0.40 m depth at a same dry matter rate (6.0 and 7.5 t DM ha−1 year−1 after wheat and maize, respectively) and are compared to an unamended control. Each plot is splitted to receive four rates of mineral fertilizer (0–100–200–300 kg N ha−1). In the whole experiment, in 2000 SOC concentration was lower than in 1966 (6.77 and 7.72 g kg−1, respectively), likely for the deeper tillage that diluted SOC and favoured mineralization in deeper soil layer. From 1972 to 2000 SOC stock did not change in the control and N fertilized plots, while it increased at mean rates of 0.16, 0.18, and 0.26 t ha−1 year−1 with the incorporation of residues, slurry and manure, corresponding to sequestration efficiencies of 3.7, 3.8 and 8.1% of added C with the various materials. TN followed the same SOC dynamic, demonstrating how it depends on the soil organic matter. Manure thus confirmed its efficacy in increasing both SOC content and soil fertility on the long-term. In developed countries, however, this material has become scarcely available; slurry management is expensive and implies high environmental risks. Moreover, in a C balance at a farm (or regional) scale, the CO2 lost during manure and slurry stocking should be considered. For these reasons, the incorporation of cereal residues, even if only a little of their C content was found capable of soil accumulation, appears the best way to obtain a significant CO2 sequestration in developed countries. Our long-term experiment clearly shows how difficult it is to modify SOC content. Moreover, because climate and soil type can greatly influence SOC dynamic, to increase CO2 sequestration in cropland, it is important to optimize the fertilization within an agricultural management that includes all the agronomic practices (e.g. tillage, water management, cover crops, etc.) favouring the organic matter build up in the soil.  相似文献   

18.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

19.
The sustainability of growing a maize—winter wheat double crop rotation in the North China Plain (NCP) has been questioned due to its high nitrogen (N) fertiliser use and low N use efficiency. This paper presents field data and evaluation and application of the soil–vegetation–atmosphere transfer model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses to optimise the N fertiliser rate for maize and winter wheat under different field managements including straw incorporation.The model sensitivity analysis indicated that a few measurable crop parameters impact the simulated yield, while most of the studied topsoil parameters affect the simulated nitrate leaching. The model evaluation was overall satisfactory, with root mean squared residuals (RMSR) for simulated aboveground biomass and nitrogen content at harvest, monthly evapotranspiration, annual drainage and nitrate leaching out of the root zone of, respectively, 0.9 Mg ha−1, 20 kg N ha−1, 30 mm, 10 mm and 10 kg N ha−1 for the calibration, and 1.2 Mg ha−1, 26 kg N ha−1, 38 mm, 14 mm and 17 kg N ha−1 for the validation. The values of mean absolute deviation, model efficiency and determination coefficient were also overall satisfactory, except for soil water dynamics, where the model was often found erratic. Re-validation run showed that the calibrated Daisy model was able to simulate long-term dynamics of crop grain yield and topsoil carbon content in a silty loam field in the NCP well, with respective RMSR of 1.7 and 1.6 Mg ha−1. The analyses of the model and the field results showed that quadratic, Mitscherlich and linear-plateau statistical models may estimate different economic optimal N rates, underlining the importance of model choice for response analyses to avoid excess use of N fertiliser. The analyses further showed that an annual fertiliser rate of about 300 kg N ha−1 (100 for maize and 200 for wheat) for the double crop rotation with straw incorporation is the most optimal in balancing crop production and nitrate leaching under the studied conditions, given the soil replenishment with N from straw mineralisation, atmospheric deposition and residual fertiliser.This work provides a sound reference for determining N fertiliser rates that are agro-environmentally optimal for similar and other cropping systems and regions in China and extends the application of the Daisy model to the analyses of complex agro-ecosystems and management practices under semi-arid climate.  相似文献   

20.
The expansion of biogas feedstock cultivation may affect a number of ecosystem processes and ecosystem services, and temporal and spatial dimensions of its environmental impact are subject to a critical debate. However, there are hardly any comprehensive studies available on the impact of biogas feedstock production on the different components of nitrogen (N) balance. The objectives of the current study were (i) to investigate the short-term effects of crop substrate cultivation on the N flows in terms of a N balance and its components (N fertilization, N deposition, N leaching, NH3 emission, N2O emission, N recovery in harvested product) for different cropping systems, N fertilizer types and a wide range of N rate, and (ii) to quantify the N footprint of feedstock production in terms of potential N loss per unit of methane produced. In 2007/08 and 2008/09, two field experiments were conducted at two sites in Northern Germany differing in soil quality, where continuous maize (R1), maize–whole crop wheat followed by Italian ryegrass as a double crop (R2), and maize–grain wheat followed by mustard as a catch crop (R3) were grown on Site 1 (sandy loam), and R1 and a perennial ryegrass ley (R4) at Site 2 (sandy soil rich in organic matter). Crops were supplied with varying amounts of N (0–360 kg N ha−1, ryegrass: 0–480 kg N ha−1) supplied as biogas digestate, cattle slurry, pig slurry or calcium-ammonium nitrate (CAN).Mineral-N fertilization of maize-based rotations resulted in negative N balances at N input for maximum yield (Nopt), with R2 having slightly less negative balances than R1 and R3. In contrast, N balances were close to zero for cattle slurry or digestate treatments. Thus, trade-offs between substrate feedstock production and changes of soil organic matter stocks have to be taken into consideration when evaluating biogas production systems. Nitrogen losses were generally dominated by N leaching, whereas for the organically fertilized perennial ryegrass ley the ammonia emission accounted for the largest proportion. Nitrogen balance of the ryegrass ley at Nopt was close to zero (CAN) or highly positive (cattle slurry, digestate). Nitrogen footprint (NFP) was applied as an eco-efficiency measure of N-loss potential (difference of N input and N recovery) related to the unit methane produced. NFP ranged between −11 and +6 kg N per 1000 m3 methane at Nopt for maize-based rotations, without a significant impact of cropping system or N fertilizer type. However, for perennial ryegrass ley, NFP increased up to 65 kg N per 1000 m3. The loose relation between NFP and observed N losses suggests only limited suitability for NFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号