首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对半喂入联合收获机在收割高产水稻时容易发生脱粒滚筒堵塞、影响作业效率等问题,设计了可沿脱粒滚筒圆弧方向循环运转的回转式栅格凹板脱粒分离装置。对被脱物质点进行了受力分析,建立了回转式凹板的动力学微分方程;在自行设计的回转式栅格凹板脱分装置试验台上进行了二次旋转组合试验,建立了脱粒滚筒转速x_1、回转栅格凹板线速度x_2、夹持喂入链速度x_3等对损失率y_1、破碎率y_2、含杂率y_3和脱粒功耗y4等工作性能指标的回归分析模型,并进行了多目标优化计算。结果表明:动态的回转栅格凹板可有效防止脱粒滚筒堵塞;最佳工作参数组合为x_1=550 r/min,x_2=1m/s,x3_=1.2m/s,对应y_1=2.14%、y_2=0.20%、y_3=0.60%。田间对比试验表明:具有回转式栅格凹板脱分装置的试验机收获高产稻时可全幅快速顺畅作业,工作效率比固定式栅格凹板的对比机提高30%以上。经法定机构检测,各项性能指标符合国家标准规定。  相似文献   

2.
半喂入联合收获机回转式栅格凹板脱分装置设计与试验   总被引:2,自引:0,他引:2  
针对半喂入联合收获机在收获高产水稻时容易发生脱粒滚筒堵塞、影响作业效率等问题,设计了可沿脱粒滚筒圆弧方向循环运转的回转式栅格凹板脱粒分离装置。对被脱物质点进行了受力分析,建立了回转式凹板的动力学微分方程;在自行设计的回转式栅格凹板脱分装置试验台上进行了二次旋转组合试验,建立了脱粒滚筒转速x1、回转栅格凹板线速度x2、夹持喂入链速度x3对损失率y1、破碎率y2、含杂率y3和脱分选功耗y4等工作性能指标的回归分析模型,并进行了多目标优化计算。结果表明:动态的回转栅格凹板可有效防止脱粒滚筒堵塞;最佳工作参数组合为x1=550 r/min,x2=1 m/s,x3=1.2 m/s,对应y1=2.14%、y2=0.2%、y3=0.6%。田间对比试验表明:具有回转式栅格凹板脱分装置的试验机收获高产稻时可全幅快速顺畅作业,工作效率比固定式栅格凹板的对比机提高30%以上。经法定机构检测,各项性能指标符合国家标准规定。  相似文献   

3.
为解决传统半喂入联合收割机收获超级杂交稻时,存在脱不净、夹带损失与籽粒破碎损失之间矛盾,设计了半喂入联合收割机双速回转脱粒分离装置,该装置主要由同轴双速脱粒滚筒和回转式凹板筛构成,阐述双速回转脱分装置结构及工作原理。以低/高速滚筒转速、回转凹板筛线速度、夹持链速度为试验因素,籽粒损失率、破碎率和含杂率为性能指标,进行三因素二次回归正交旋转组合设计试验,运用Design-Expert 6.0.10软件对试验结果进行分析,建立该脱分装置性能指标数学模型,优化确定最佳工作参数组合,并进行双速回转脱分装置与传统单速脱分装置对比试验。结果表明,双速回转脱分装置低/高速滚筒转速为505/680 r/min、回转凹板筛线速度为1.00 m/s和夹持链速度为1.26 m/s时,籽粒损失率、破碎率和含杂率分别为1.94%、0.21%和0.56%,性能指标优于传统单速脱分装置。本研究可为半喂入联合收割机新型脱分装置的设计提供理论依据。  相似文献   

4.
为了适应西南丘陵山区的作业环境,改善脱粒分离损失较大、含杂较高且容易堵塞的问题,提高水稻机械化收获水平,设计了可满足1.0喂入量的小型联合收割机。通过对比试验分析双切流脱粒分离装置脱粒清选性能,对脱粒滚筒不同钉齿布置形式、滚筒线速度进行了优选。试验结果表明:双切流小型联合收割机收获水稻的最佳组合方式为:第1滚筒采用弓齿结构、滚筒线速度为19m/s,第2滚筒采用钉齿结构、滚筒线速度为20m/s时,脱粒分离效果较好。优化后的4LZ-1.0小型收割机在水稻收割试验时,含杂率为1.28%,损失率为1.6%,破碎率为0.17%,生产率为0.12hm2/h,满足设计要求。  相似文献   

5.
二、半喂入联合收割机的脱粒、清选与茎秆处理部分: (一)脱粒喂入装置: 1.组成:脱粒喂入装置由喂入链、压草板、夹持弹簧、链台、加强板等组成。 2.功用:夹持输送作物茎秆,为主滚筒脱粒创造良好的条件,防止作物茎秆卷入脱粒室。 3.技术要求:(1)喂入链润滑良好,链条  相似文献   

6.
为满足我国现阶段高产水稻的高效收获要求,提出了一种喂入量为7~9kg的履带式新型斜置切纵流双滚筒联合收获机的总体配置方案,论述了斜置切纵流双滚筒脱粒分离装置中切流脱粒滚筒、切流凹板筛、锥形螺旋过渡喂入装置、斜置纵轴流滚筒和纵轴流凹板筛的结构设计,确定了各个工作部件的工作参数。田间试验表明:该装置在收获水稻喂入量为8.57kg/s时,脱粒损失率为0.79%,籽粒破碎率为0.1%,各项性能指标均达到设计要求;同时,在喂入量增大时,该装置各工作部件功耗较为平稳,适应性较强。  相似文献   

7.
切纵流双滚筒联合收获机脱粒分离装置   总被引:4,自引:0,他引:4  
提出了一种喂入量为4~5 kg/s的履带式切纵流双滚筒联合收获机的总体配置方案,论述了切纵流双滚筒脱粒分离装置切流脱粒滚筒、切流凹板、过渡口、纵轴流滚筒和纵轴流凹板等结构与运动参数的设计。田间试验与性能测试表明:该机收获水稻时喂入量达到4.86 kg/s时,整机损失率为1.47%,破碎率为0.2%,各项技术指标达到了设计要求。  相似文献   

8.
1.水稻联合收割机有哪几种 水稻联合收割机由于结构不同可分如下几种。(1)根据脱粒时,稻草是否进入脱粒滚筒去脱粒,把水稻联合收割机分为全喂入式和半喂入式两种。全喂入式是在脱粒时把割下禾全部进入滚筒脱粒,而半喂入式是在脱粒时用夹持链夹住稻草根部,仅穗部进入滚筒脱粒。(2)根据水稻联合收割机动力来源的不同,把水稻联合收割机分为自走式和背负式(又名悬挂式)两种。自走式是该联合收割机有自己的动  相似文献   

9.
联合收获机脱粒滚筒凹板间隙调节装置设计与试验   总被引:4,自引:0,他引:4  
为解决联合收获机在田间作业时因喂入量波动而导致作业性能下降及脱粒滚筒堵塞等问题,用凹板筛后侧油缸油压力表征脱粒滚筒负荷,设计了由凹板间隙调节系统和凹板筛后侧油压力采集系统组成的脱粒滚筒负荷监测和凹板间隙调节装置。田间试验中,采用油压传感器测量凹板筛后侧油压力,并通过STM32单片机对测得的油压信号进行采集并保存,分别分析了喂入量和凹板间隙对油压力以及脱粒分离性能的影响。结果表明,凹板筛后侧油缸油压力和脱粒分离损失率随喂入量增大而增大,喂入量从3.4 kg/s增大到6.0 kg/s时,凹板筛后侧油缸油压力从732 N增加到1 114 N,脱粒分离总损失率由0.54%增加到1.08%。在额定喂入量为6.0 kg/s条件下,凹板筛后侧左右两个油缸的油压波动范围为450~660 N,且两侧油缸压力一致。另外,凹板筛后侧油缸油压力随凹板间隙增大而减小,脱粒分离总损失率随着凹板间隙的增大而增大,凹板间隙从35 mm增大到45 mm时,凹板筛后侧油缸油压力从1 114 N降到758 N,脱粒分离总损失率由1.08%增加到1.31%。在喂入量为6.0 kg/s、凹板间隙为35 mm时,脱粒分离总损失率仅为1.08%,整机性能最佳,此时凹板筛后侧油缸油压力的变化范围为900~1 320 N。  相似文献   

10.
横轴流双滚筒脱粒分离装置设计与试验   总被引:7,自引:2,他引:5  
详细论述了一种横轴流双滚筒脱粒分离装置的总体结构、脱粒滚筒与凹板的设计方案,脱粒滚筒采用短纹杆-板齿结构,分离滚筒采用带螺旋叶片钉齿滚筒结构.室内台架试验表明,该装置可适合较大喂入量、难脱水稻脱粒分离,具有脱净率高、夹带损失率小、脱出物中含杂率小且分布均匀等特点.田间性能测试表明:当收获单产11 625 kg/hm~2的梗稻,喂入量为4.32 kg/s时,该机总损失率为1.94%、脱粒损失率0.89%、破碎率0.84%、含杂率0.20%.各项技术指标均达到了设计要求.  相似文献   

11.
针对荞麦机械化收获破碎率高、含杂率大、容易发生“绕辫子”而堵塞脱粒滚筒等问题,研制了一种伸缩杆齿式脱粒装置,利用纹杆滚筒和栅格凹板对作物的揉搓、梳刷作用实现脱粒,而与纹杆滚筒相配合的伸缩式杆齿,能够很好地将作物进行翻腾、向后推送,避免了秸秆缠绕,提高了脱粒效果。将该脱粒装置安装于荞麦脱粒性能试验台,选取滚筒转速、脱粒间隙和喂入量作为试验因素建立了3因素正交试验,通过极差分析得到最佳工作参数组合为滚筒转速350 r/min、脱粒间隙10 mm、喂入量1.0 kg/s,该条件下,籽粒破碎率为3.42%、籽粒损失率为0.14%,满足荞麦机械化收获指标,为伸缩杆齿式脱粒装置的应用和荞麦联合收获机的研发提供理论依据。  相似文献   

12.
针对荞麦机械化收获破碎率高、含杂率大、容易发生“绕辫子”而堵塞脱粒滚筒等问题,研制一种伸缩杆齿式脱粒装置,利用纹杆滚筒和栅格凹板对作物的揉搓、梳刷作用实现脱粒,而与纹杆滚筒相配合的伸缩式杆齿,能够很好地将作物进行翻腾、向后推送,避免了秸秆缠绕,提高了脱粒效果。将该脱粒装置安装于荞麦脱粒性能试验台,选取滚筒转速、脱粒间隙和喂入量作为试验因素建立了三因素正交试验,通过极差分析得到最佳工作参数组合为滚筒转速350r/min,脱粒间隙10mm,喂入量1.0kg/s,该条件下,籽粒破碎率为3.42%,籽粒损失率为0.14%,满足荞麦机械化收获指标,为伸缩杆齿式脱粒装置的应用和荞麦联合收获机的研发提供理论依据。  相似文献   

13.
在切纵流双滚筒脱粒分离性能试验装置上,进行喂入量为6kg/s的水稻脱粒分离性能试验,研究其最佳脱粒分离的结构参数和运动参数。试验结果表明,切纵流双滚筒联合收割机收获水稻的最佳组合方式为:切流滚筒间隙27mm,纵轴流滚筒间隙14mm,切流滚筒线速度为25.9 5m/s,纵轴流滚筒线速度为28.23m/s,纵轴流滚筒齿杆间距为140mm。并对切流滚筒脱粒分离籽粒的轴向分布、纵轴流滚筒脱粒分离籽粒的轴向和径向分布进行了研究,为后续清选装置的研究提供了设计依据。  相似文献   

14.
单切双横流脱粒分离装置参数试验与优化   总被引:4,自引:0,他引:4  
李耀明  周伟  徐立章  孙韬  唐忠 《农业机械学报》2015,46(5):62-67,92
为解决全喂入式联合收获机收获秆青叶茂难脱高产水稻时脱粒分离损失大且容易出现堵塞的问题,设计了单切双横流脱粒分离装置,在单切双横流脱粒分离装置试验台上,通过对比试验分别对凹板筛栅条轴向间距、顶盖导向板个数和滚筒轴间距进行了优选,得到优选结构参数为:第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流凹板筛栅条轴向间距分别为10 mm、16 mm和16 mm,第Ⅱ横轴流和第Ⅲ横轴流顶盖导向板的个数都为4个,第Ⅰ切流和第Ⅱ横轴流以及第Ⅱ横轴流和第Ⅲ横轴流滚筒轴间距分别为645 mm和667.5 mm;在得到的优选结构参数下,以喂入量、脱粒间隙和滚筒转速为试验因素进行正交试验,并运用模糊综合评价法和极差分析得出试验范围内切双横流水稻脱粒分离装置的优选工作参数为:喂入量为5 kg/s,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒间隙分别为40 mm、35 mm和40 mm,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流滚筒转速分别为550 r/min、600 r/min和750 r/min。在此参数下,得到单切双横流脱粒分离装置的性能指标为:未脱净率0.05%,夹带损失率0.36%,脱粒总损失率0.41%,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒滚筒功耗分别为3.33 k W、21.26 k W和12.58 k W,脱粒滚筒总功耗37.17 k W,脱出物杂余质量分数14.37%。  相似文献   

15.
针对目前水稻轴流联合收获机脱粒分离装置工作时功率消耗大、脱出物含杂率高、增加清选工作负荷等实际问题,自行研制了一种钉齿式轴流装置,并进行了水稻脱粒分离试验。分别建立了喂入量、滚筒转速和凹板间隙与功耗、含杂率、断穗率、总损失率4个性能评价指标的数学模型;得出了影响性能评价指标的因素主次顺序;借助Matlab软件进行了多目标优化,得到了该装置的最佳工作参数组合:喂入量2kg/s,滚筒转速600r/min,凹板间隙30mm,并进行了验证试验。由此为我国水稻联合收获机的研发和传统机型改造提供了理论依据。  相似文献   

16.
小麦联合收割机在作业中,常因滚筒堵塞导致作业进度下降.滚筒堵塞的原因有小麦秸秆喂入量过大、脱粒装置上的滚筒转速低,滚筒凹板间的间隙太小、小麦秸秆潮湿等.预防滚筒堵塞故障发生,可采取以下措施. (1)适当降低小麦联合收割机的前进速度,以减少滚筒、凹板间的秸秆输入量.  相似文献   

17.
约翰迪尔1076联合收割机1076联合收割机是引进美国约翰迪尔公司专有技术研制开发的一款大型的传统式联合收割机,它采用了目前国际先进的WTS技术——切流式脱粒滚筒加逐稿器与板齿横向分离滚筒组合式脱粒分离装置,分离能力提高,该装置在国内属于首创。割幅:4.57或5.34m;喂入量:7.0kg/s(小麦);总损失率:不大于1.5%(小麦);破损率:不大于1.0%(小麦);含杂率:不大于2.0%(小麦);地隙:0.482m;脱粒装置形式:纹杆式或钉齿式;滚筒宽度×直径:1.28×0.61m;分离机构形式:五键式逐稿器;分离面积:5.38m2;清选机械形  相似文献   

18.
稻麦半喂入脱粒部件的试验研究   总被引:1,自引:0,他引:1  
本文分析研究了半喂入脱粒部件的滚筒型式、夹持链速度、滚筒转速,脱粒方式及工作量等的结构和动力参数对脱粒损失和功率消耗的影响,以及三种不同型式的凹板对脱粒损失和籽粒清洁度的影响。 试验表明,半喂入脱粒方式以侧脱为最佳、夹持链输送速度在0.75~0.8米/秒时,滚筒的线速度在14~17米/秒时,工作最在2公斤/秒以内,脱稻、麦均能达到理想效果。在现有结构上再增加工作量脱小麦有一定困难。 另外,通过高速摄影,观察了弓齿型滚筒脱稻、麦时的脱粒全过程。清楚的反映出脱水稻是靠弓齿的梳刷作用,脱小麦是靠弓齿的打击作用。  相似文献   

19.
传统脱粒机脱粒的破碎率高、分离不彻底、脱净率低、滚筒易堵塞。基于此,文章设计了一款新型轴流式脱粒水稻脱粒分离装置。脱粒滚筒采用横向轴流式,脱粒滚齿采用V型脱粒齿,顶角设为22°,以搓擦脱粒的方式进行水稻的脱粒,脱净率高于97.5%,破碎率低于0.3%。此外,该装置采用V型带进行动力传输,配合导向轮机构,可使破碎的稻杆及时从排草口排出,极大地减少了脱粒堵塞的问题;创新设计二级分离机构:上部分由脱粒滚筒与栅格筛结构的凹板筛进行一级脱粒,下部分用编织筛结构的清梁筛与风机结合进行二级分离,大幅度提高了脱净率,脱粒效果显著,脱粒效率高。  相似文献   

20.
针对谷子机械收获过程中谷码率高、破损率高、未脱净损失率高的问题,设计了一种纵轴流双柔性碾搓式谷子脱粒装置。该装置采用纵轴流脱粒滚筒,脱粒滚筒上通过安装柔性橡胶辊降低了谷子籽粒破损率,从而实现谷子柔性低损伤脱粒,橡胶圈外表面的波浪形凸起对谷子具有很好的碾搓脱粒性能。柔性凹板筛由空心圆柱旋转筛分单元两两相互交错组成,每组两排空心圆柱旋转筛分单元相互交错配合,形成适合谷子籽粒分离的U形孔,凹板筛支撑装置具有微动性与柔性凹板筛配合形成柔性微动凹板筛,有利于谷子籽粒分离和降低谷码率。选取喂入量、滚筒转速和脱粒间隙为试验因素,以谷码率、破损率、未脱净损失率和功耗为指标,进行了三元二次回归正交旋转组合试验确定了喂入量、滚筒转速和脱粒间隙的最佳参数组合。结果表明:当喂入量1.4 kg/s、滚筒转速735 r/min和凹板间隙9 mm时,谷子籽粒破损率为0.35%,谷码率为1.78%,未脱净损失率为0.64%,功耗为10.6 kW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号