首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide‐induced hormesis within entomology and acarology. Hormesis describes a biphasic dose–response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide‐induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide‐induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry  相似文献   

2.
Originally designed to reconcile insecticide applications with biological control, the concept of integrated pest management (IPM) developed into the systems‐based judicious and coordinated use of multiple control techniques aimed at reducing pest damage to economically tolerable levels. Chemical control, with scheduled treatments, was the starting point for most management systems in the 1950s. Although chemical control is philosophically compatible with IPM practices as a whole, reduction in pesticide use has been historically one of the main goals of IPM practitioners. In the absence of IPM, excessive reliance on pesticides has led to repeated control failures due to the evolution of resistance by pest populations. This creates the need for constant replacement of failed chemicals with new compounds, known as the ‘insecticide treadmill’. In evolutionary biology, a similar phenomenon is known as the Red Queen principle – continuing change is needed for a population to persevere because its competitors undergo constant evolutionary adaptation. The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an insect defoliator of potatoes that is notorious for its ability to develop insecticide resistance. In the present article, a review is given of four case studies from across the United States to demonstrate the importance of using IPM for sustainable management of a highly adaptable insect pest. Excessive reliance on often indiscriminate insecticide applications and inadequate use of alternative control methods, such as crop rotation, appear to expedite evolution of insecticide resistance in its populations. Resistance to IPM would involve synchronized adaptations to multiple unfavorable factors, requiring statistically unlikely genetic changes. Therefore, integrating different techniques is likely to reduce the need for constant replacement of failed chemicals with new ones. © 2014 Society of Chemical Industry  相似文献   

3.
Insecticide resistance continues to be one of the most important issues facing agricultural production. The challenges in insecticide resistance and its management are exemplified by the situation with the western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). This highly invasive pest has a great propensity for developing insecticide resistance because of its biological attributes, and cases of resistance to most classes of insecticides used for its management have been detected. To combat insecticide resistance in the western flower thrips, several insecticide resistance management (IRM) programs have been developed around the world, and these are discussed. Successful programs rely on non-insecticidal tactics, such as biological and cultural controls and host plant resistance, to reduce population pressures, rotations among insecticides of different mode of action classes to conserve insecticide efficacy, resistance monitoring, sampling to determine the need for insecticide applications and education to assure proper implementation. More judicious insecticide use is possible with the development of well-founded economic thresholds for more cropping systems. While growers will continue to rely on insecticides as part of western-flower-thrips- and thrips-transmitted virus management, more effective management of these pests will be achieved by considering their management in the context of overall integrated pest management, with IRM being a key component of those comprehensive programs.  相似文献   

4.
BACKGROUND: Insecticide resistance is a likely cause of field control failures of Tuta absoluta, but the subject has been little studied. Therefore, resistance to ten insecticides was surveyed in seven representative field populations of this species. The likelihood of control failures was assessed, as well as weather influence and the spatial dependence of insecticide resistance. RESULTS: No resistance or only low resistance levels were observed for pyrethroids (bifenthrin and permethrin), abamectin, spinosad, Bacillus thuringiensis and the mixture deltamethrin + triazophos (<12.5‐fold). In contrast, indoxacarb exhibited moderate levels of resistance (up to 27.5‐fold), and chitin synthesis inhibitors exhibited moderate to high levels of resistance (up to 222.3‐fold). Evidence of control failures was obtained for bifenthrin, permethrin, diflubenzuron, teflubenzuron, triflumuron and B. thuringiensis. Weather conditions favour resistance to some insecticides, and spatial dependence was observed only for bifenthrin and permethrin. CONCLUSION: Insecticide resistance in field populations of the tomato pinworm prevails for the insecticides nowadays most frequently used against them—the chitin synthesis inhibitors (diflubenzuron, triflumuron and teflubenzuron). Local selection favoured by weather conditions and dispersal seem important for pyrethroid resistance evolution among Brazilian populations of T. absoluta and should be considered in designing pest management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
Insecticide resistance is an ever‐increasing problem that threatens food production globally. Within Australia, the grain industry has a renewed focus on resistance due to diminishing chemical options available to farmers and the increasing prevalence and severity of resistance encountered in the field. Chemicals are too often used as the major tool for arthropod pest management, ignoring the potent evolutionary forces from chemical selection pressures that lead to resistance. A complex array of factors (biological, social, economic, political, climatic) have contributed to current trends in insecticide usage and resistance in the Australian grain industry. We review the status of insecticide resistance and provide a context for how resistance is currently managed. We discuss emerging technologies and research that could be applied to improve resistance management. This includes generating baseline sensitivity data for insecticides before they are launched, developing genetic diagnostics for the full complement of known resistances, expanding resistance monitoring programs, and utilizing new technologies. Additional benefits are likely to be achieved through a combination of industry awareness and engagement, risk modeling, adoption of integrated pest management tactics, greater collaboration between industry stakeholders, and policy changes around chemical use and record keeping. The Australian grain context provides lessons for other agricultural industries. © 2018 Society of Chemical Industry  相似文献   

6.
BACKGROUND: The tomato red spider mite, Tetranychus evansi (Baker and Pritchard), is a serious pest of solanaceous crops in many African countries. In this study an investigation has been conducted to establish whether mutation of the para‐type sodium channel underlies pyrethroid resistance in T. evansi strains collected in Southern Malawi. RESULTS: Two T. evansi strains from Malawi showed tolerance to the organophosphate chlorpyrifos and resistance (20–40‐fold) to the pyrethroid bifenthrin, but were susceptible to two contemporary acaricides (abamectin and fenpyroximate) in insecticide bioassays. Cloning of a 3.1 kb fragment (domains IIS5 to IVS5) of the T. evansi para gene from pyrethroid‐resistant and pyrethroid‐susceptible strains revealed a single non‐synonymous mutation in the resistant strains that results in an amino acid substitution (M918T) within the domain II region of the channel. Although novel to mites, this mutation confers high levels of resistance to pyrethroids in several insect species where it has always been associated with another mutation (L1014F). This is the first report of the M918T mutation in the absence of L1014F in any arthropod species. Diagnostic tools were developed that allow sensitive detection of this mutation in individual mites. CONCLUSION: This is the first study of pyrethroid resistance in T. evansi and provides contemporary information for resistance management of this pest in Southern Malawi. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Leaf‐cutting ants are generally recognized as important pest species in Neotropical America. They are eusocial insects that exhibit social organization, foraging, fungus‐cultivation, hygiene and a complex nest structure, which render their management notoriously difficult. A lack of economic thresholds and sampling plans focused on the main pest species preclude the management of leaf‐cutting ants; such management would facilitate their control and lessen insecticide overuse, particularly the use of insecticidal baits. Recent restrictions on the use of synthetic compounds for such purposes impose additional challenges for the management of leaf‐cutting ants. Considerable effort has been exerted regarding these challenges, which are addressed herein, but which also remain challenges that are yet to be conquered. © 2013 Society of Chemical Industry  相似文献   

8.
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an economically important pest of a wide range of crops grown throughout the world. Insecticide resistance has been documented in many populations of WFT. Biological and behavioural characteristics and pest management practices that promote insecticide resistance are discussed. In addition, an overview is provided of the development of insecticide resistance in F. occidentalis populations and the resistance mechanisms involved. Owing to widespread resistance to most conventional insecticides, a new approach to insecticide resistance management (IRM) of F. occidentalis is needed. The IRM strategy proposed consists of two parts. Firstly, a general strategy to minimise the use of insecticides in order to reduce selection pressure. Secondly, a strategy designed to avoid selection of resistance mechanisms, considering cross-resistance patterns and resistance mechanisms.  相似文献   

9.
Helicoverpa armigera is a major pest of agriculture, horticulture and floriculture throughout the Old World and recently invaded parts of the New World. We overview of the evolution in thinking about the application of area‐wide approaches to assist with its control by the Australian Cotton Industry to highlight important lessons and future challenges to achieving the same in the New World. An over‐reliance of broad‐spectrum insecticides led to Helicoverpa spp. in Australian cotton rapidly became resistant to DDT, synthetic pyrethroids, organophosphates, carbamates and endosulfan. Voluntary strategies were developed to slow the development of insecticide resistance, which included rotating chemistries and basing spray decisions on thresholds. Despite adoption of these practices, insecticide resistance continued to develop until the introduction of genetically modified cotton provided a platform for augmenting Integrated Pest Management in the Australian cotton industry. Compliance with mandatory resistance management plans for Bt cotton necessitated a shift from pest control at the level of individual fields or farms towards a coordinated area‐wide landscape approach. Our take‐home message for control of H. armigera is that resistance management is essential in genetically modified crops and must be season long and area‐wide to be effective. © 2016 Society of Chemical Industry  相似文献   

10.
The tomato borer Tuta absoluta (Lepidoptera: Gelechiidae) has been a recognized pest in South America since the 1960s, quickly spreading to the major tomato‐producing countries in the region. A series of studies regarding this pest's biology, ecology and management were conducted to contain tomato losses within acceptable levels. Although cultural control methods were attempted against T. absoluta, as were the development of resistant tomato varieties and the use of pheromones and natural enemies, insecticides are still the main control method used. The sex pheromone of T. absoluta was identified, confirmed and synthesized in the late 1990s and it is currently used for detection and monitoring of this species, but improved sampling plans are still necessary for its use in decision‐making regarding insecticide use. Insecticide use has shifted from earlier reliance on organophosphates, pyrethroids, cartap and abamectin to insect growth regulators and, more recently, to novel insecticides. Unfortunately, the overreliance on insecticide use led to problems with insecticide resistance in the region, which is a current matter of concern not only in South America, but also elsewhere since introduced strains may carry insecticide‐resistance genes at high frequency even without local selection in the site of introduction.  相似文献   

11.
Changes in global temperature and humidity as a result of climate change are producing rapid evolutionary changes in many animal species, including agricultural pests and disease vectors, leading to changes in allele frequencies of genes involved in thermotolerance and desiccation resistance. As some of these genes have pleiotropic effects on insecticide resistance, climate change is likely to affect insecticide resistance in the field. In this review, we discuss how the interactions between adaptation to climate change and resistance to insecticides can affect insecticide resistance in the field using examples in phytophagous and hematophagous pest insects, focusing on the effects of increased temperature and increased aridity. We then use detailed genetic and mechanistic studies in the model insect, Drosophila melanogaster, to explain the mechanisms underlying this phenomenon. We suggest that tradeoffs or facilitation between adaptation to climate change and resistance to insecticides can alter insecticide resistance allele frequencies in the field. The dynamics of these interactions will need to be considered when managing agricultural pests and disease vectors in a changing climate. © 2019 Society of Chemical Industry  相似文献   

12.
This paper presents the results of long‐term monitoring of insecticide resistance in populations of agricultural pests in Russia. Over the last 45 years, resistance developments were recorded for 36 arthropod pest species in 11 agricultural crops and pastures in relation to nearly all commonly used plant protection products. Development of group, cross and multiple resistance has been revealed in populations of many economically important pests. Toxicological and phenotypical (for Colorado potato beetle) methods have been devised to monitor the development of pesticide resistance. Based on experience over the last century, systems aimed at preventing the development of pest resistance to insecticides and acaricides are elaborated. These systems are based on resistance monitoring and using plant protection measures which minimize the toxic pressure on agroecosystems.  相似文献   

13.

BACKGROUND

Bemisia tabaci is a globally significant agricultural pest including in Australia, where it exhibits resistance to numerous insecticides. With a recent label change, buprofezin (group 16), is now used for whitefly management in Australia. This study investigated resistance to pyriproxyfen (group 7C), spirotetramat (group 23) and buprofezin using bioassays and available molecular markers.

RESULTS

Bioassay and selection testing of B. tabaci populations detected resistance to pyriproxyfen with resistance ratios ranging from 4.1 to 56. Resistance to spirotetramat was detected using bioassay, selection testing and sequencing techniques. In populations collected from cotton, the A2083V mutation was detected in three populations of 85 tested, at frequencies ≤4.1%, whereas in limited surveillance of populations from an intensive horticultural region the frequency was ≥75.8%. The baseline susceptibility of B. tabaci to buprofezin was determined from populations tested from 2019 to 2020, in which LC50 values ranged from 0.61 to 10.75 mg L−1. From the bioassay data, a discriminating dose of 200 mg L−1 was developed. Recent surveillance of 16 populations detected no evidence of resistance with 100% mortality recorded at doses ≤32 mg L−1. A cross-resistance study found no conclusive evidence of resistance to buprofezin in populations with high resistance to pyriproxyfen or spirotetramat.

CONCLUSIONS

In Australian cotton, B. tabaci pest management is challenged by ongoing resistance to pyriproxyfen, while resistance to spirotetramat is an emerging issue. The addition of buprofezin provides a new mode-of-action for whitefly pest management, which will strengthen the existing insecticide resistance management strategy. © 2023 Commonwealth of Australia. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

14.
Abstract

In recent years, nationwide insecticide resistance management (IRM) strategies in Zimbabwe, Egypt and Australia have successfully overcome existing resistance problems on cotton and prevented further outbreaks in some key pests. These strategies, which rely heavily on pragmatic assumptions regarding the efficacy of counter‐measures and the biology of the pest, relate little to theoretical models of resistance management whose tenets have so far not been experimentally appraised. These IRM strategies are compared with a simple but rigid programme used throughout Francophone countries of Africa that has successfully controlled the pest complex on cotton and increased yield without eliciting resistance in any pests. We examine the motivations, philosophies and logistics of these control programmes on cotton, and outline scope for improvements to existing and future IRM.  相似文献   

15.
浙江省水稻二化螟抗药性现状与治理对策   总被引:18,自引:0,他引:18  
二化螟是浙江省水稻的主要害虫。由于连续使用杀虫双超过20a,三唑磷10a防治二化螟,致使二化螟对杀虫单(杀虫双)普遍产生抗药性。1999年测定抗性增加67~587倍,达到高抗和极高抗水平;二化螟对三唑磷在温州和台州等局部地区也达到了68~162倍的高抗水平。为治理二化螟抗药性,必须加强对害虫抗药性的监测,在高抗药性地区停止使用杀虫单(杀虫双)和三唑磷防治二化螟;在低抗药性和敏感地区也应减少使用次数和用量,达到延缓抗药性产生的目的。  相似文献   

16.
BACKGROUND: Asian citrus psyllid (ACP), Diaphorina citri, is a major pest of citrus because it vectors the putative causal agent of huanglongbing disease. Insecticides are currently the basis of psyllid management programs, and the number of annual insecticide applications has increased significantly. In this paper, a series of investigations of insecticide resistance among field populations of adult and immature ACP in Florida is described. RESULTS: In 2009, the highest level of resistance for adult ACP, as compared with the laboratory susceptible (LS) population, was found with imidacloprid with an LD50 resistance ratio (RR50) of 35 in one population. This was followed by chlorpyriphos (RR50 = 17.9, 13.3, 11.8 and 6.9), thiamethoxam (RR50 = 15 and 13), malathion (RR50 = 5.4 and 5.0) and fenpropathrin (RR50 = 4.8). In 2010, mortality of adults from all five sites sampled was lower than with the LS population at three diagnostic concentrations of each insecticide tested. Among nymph populations, indications of resistance were observed with carbaryl (RR50 = 2.9), chlorpyriphos (RR50 = 3.2), imidacloprid (RR50 = 2.3 and 3.9) and spinetoram (RR50 = 4.8 and 5.9). General esterase, glutathione S‐transferase and monooxygenase levels were also elevated in field‐collected adult and nymph ACP as compared with the LS population. CONCLUSION: The present results suggest that varying levels of insecticide susceptibility exist in ACP populations across the citrus‐growing areas of Florida. Increased levels of detoxifying enzymes in these populations may partially explain these differences. The present results indicate that insecticide resistance may become an emerging problem for ACP control if effective resistance management is not practiced. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
昆虫对双酰胺类杀虫剂抗性机制研究进展   总被引:9,自引:6,他引:3  
双酰胺类杀虫剂是以昆虫鱼尼丁受体为作用靶标的新型杀虫剂,由于其作用机制独特,对多种鳞翅目害虫具有良好的防治效果而得到广泛应用。但已经有多种害虫的田间种群对该类药剂产生了抗性,甚至导致田间防治失败。本文在综述昆虫对双酰胺类杀虫剂抗性现状的基础上,重点总结了抗性机制方面的最新研究进展,并对今后的研究方向进行了展望,以期为进一步深入研究双酰胺类杀虫剂的抗性机制提供借鉴。  相似文献   

18.
BACKGROUND: Resistance to numerous insecticide classes in Bemisia tabaci Gennadius has impaired field control efficacy in south‐eastern China. The biotype and resistance status of B. tabaci collected from these areas was investigated. RESULTS: Two different biotypes of B. tabaci (B‐biotype and Q‐biotype) were detected in south‐eastern China, and the samples collected from geographical regions showed a prevalence of the Q‐biotype and the coexistence of B‐ and Q‐biotypes in some regions. Moderate to high levels of resistance to two neonicotinoids were established in both biotypes (28–1900‐fold to imidacloprid, 29–1200‐fold to thiamethoxam). Medium to high levels of resistance to alpha‐cypermethrin (22–610‐fold) were also detected in both biotypes. Four out of 12 populations had low to medium levels of resistance to fipronil (10–25‐fold). Four out of 12 populations showed low levels of resistance to spinosad (5.7–6.4‐fold). All populations tested were susceptible to abamectin. CONCLUSION: The Q‐biotype B. tabaci is supplanting the B‐biotype which used to be ubiquitous in China. Field populations of both B‐ and Q‐biotypes of B. tabaci have developed high levels of resistance to imidacloprid and thiamethoxam. Abamectin is the most effective insecticide against adult B. tabaci from all populations. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Resistance has evolved to single transgenic traits engineered into crops for arthropod and herbicide resistances, and can be expected to evolve to the more recently introduced pathogen resistances. Combining transgenes against the same target pest is being promoted as the solution to the problem. This solution will work if used pre‐emptively, but where resistance has evolved to one member of a stack, resistance should easily evolve for the second gene in most cases. We propose and elaborate criteria that could be used to evaluate the value of stacked traits for pest resistance management. Stacked partners must: target the same pest species; be in a tandem construct to preclude segregation; be synchronously expressed in the same tissues; have similar tissue persistence; target pest species that are still susceptible to at least two stacked partners. Additionally, transgene products must not be degraded in the same manner, and there should be a lack of cross‐resistance to stacked transgenes or to their products. With stacked herbicide resistance transgenes, both herbicides must be used and have the same persistence. If these criteria are followed, and integrated with other pest management practices, resistance may be considerably delayed. © 2016 Society of Chemical Industry  相似文献   

20.
Resistance to three organophosphate and four pyrethroid insecticides was monitored from 1992 to 2000 in field populations of adult whiteflies, Bemisia tabaci, from Pakistan using a leaf-dip method. There was generally a very high resistance to dimethoate and deltamethrin, and a moderate resistance to monocrotophos during 1992 to 1996. From 1997 to 2000, resistance to these insecticides dropped to low levels because of less reliance on them for whitefly control, and introduction of new chemistries with novel modes of action that had no cross-resistance to conventional insecticides. Concurrently, whitefly resistance to acephate, fenpropathrin, lambda-cyhalothrin and bifenthrin mostly remained low. An insecticide resistance management strategy is recommended that particularly emphasizes the rotation of still-effective insecticides from different chemical classes along with the use of novel chemicals and other tactics of integrated pest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号