首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450–substrate interactions. RESULTS: Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X‐ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also ‘V’‐shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT–CYP6G1 complex and a non‐resistant CYP6A2 homology model implies that tight‐fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. CONCLUSION: The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
BACKGROUND: To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT‐PCR. RESULTS: All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda‐cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non‐specific esterases (NSE) in some of the fenitrothion‐ and pyrethroid‐resistant populations. All populations showed high levels of glutathione‐S‐transferase (GST) activity. GSTe2 gene was found overexpressed in DDT‐resistant populations compared with Rockefeller susceptible strain. CONCLUSIONS: Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展   总被引:1,自引:1,他引:0  
随着拟除虫菊酯类杀虫剂在卫生和农业害虫防治中的广泛应用,昆虫对此类杀虫剂产生抗性的报道越来越多。目前已明确昆虫对拟除虫菊酯类杀虫剂的抗性机制包括表皮穿透率下降、靶标抗性以及代谢抗性,其中代谢抗性机制较为普遍,而且其与昆虫对多种杀虫剂的交互抗性关系密切。目前,随着基因组、转录组以及蛋白质组学等新技术的发展及应用,昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究也取得了很多新进展。昆虫体内细胞色素P450酶(P450s)、羧酸酯酶(CarE)及谷胱甘肽S-转移酶(GSTs)等重要解毒酶系的改变均与昆虫对拟除虫菊酯类杀虫剂的代谢抗性有关,其中这3类解毒酶的活性及相关基因表达量的变化是昆虫对此类杀虫剂产生代谢抗性的主要原因。明确昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制,对合理使用此类杀虫剂及延缓抗药性的产生均具有重要意义。本文在总结拟除虫菊酯类杀虫剂代谢路径及相关生物酶研究概况的基础上,综述了近年来有关昆虫对此类杀虫剂代谢抗性机制研究的主要进展。  相似文献   

4.
5.
Evolutionary plasticity of monooxygenase-mediated resistance   总被引:1,自引:0,他引:1  
The cytochrome P450 monooxygenases are an important metabolic system involved in the detoxification of xenobiotics, and are thus one of the major mechanisms by which insects evolve insecticide resistance. However, comparatively little is known about the evolutionary constraints of this insecticide resistance mechanism. We investigated the genetic basis of resistance in a strain of house fly (NG98) from Georgia, USA that had evolved 3700-fold resistance to the pyrethroid insecticide permethrin, and compared this to other permethrin resistant strains of house flies from the US and Japan. Resistance in NG98 was due to kdr on autosome 3 and monooxygenase-mediated resistance on autosomes 1, 2, and 5. These results indicate that the genes which evolve to produce monooxygenase-mediated resistance to permethrin are different between different populations, and that the P450 monooxygenases have some degree of plasticity in response to selection. Monooxygenase-mediated resistance appears to evolve using different P450s, and possibly different regulatory signals controlling P450 expression, even in strains selected with the same insecticide.  相似文献   

6.
Adult, 20-week-old, rats from a Danish bromadiolone-resistant strain of rats (Rattus norvegicus) over-express the cytochrome P450 genes Cyp2e1, Cyp3a2 and Cyp3a3 upon bromadiolone exposure. Furthermore, adult female rats of this strain over-express the Cyp2c13 gene and suppress Cyp2c12, while males over-express the Cyp2a1 gene. The altered gene expression has been suggested to be involved in the bromadiolone resistance by facilitating enhanced anticoagulant metabolism. To investigate the gene expression of these cytochrome P450 genes in rats of different developmental stages we compared expression profiles from 8-, 12- and 20-week-old resistant rats of the Danish strain to profiles of anticoagulant-susceptible rats of same ages. The three age-groups were selected to represent a group of pre-pubertal, pubertal and adult rats. We found expression profiles of the pre-pubertal and pubertal resistant rats to concur with profiles of the adults suggesting that cytochrome P450 enzymes are involved in the Danish bromadiolone resistance regardless of developmental stage. We also investigated the relative importance of the six cytochrome P450s in the different development stages of the resistant rats. The P450-3a2 and -3a3 isoforms were proposed to be of higher importance in adult male resistance than in pre-pubertal resistance. In contrast, the P450-2c13 and -3a2 isoforms were proposed to be more important in sexual immature female resistance, while the P450-2e1 and -3a3 isoforms were suggested to play a more significant role in adult female resistance.  相似文献   

7.

BACKGROUND

Fitness costs associated with insecticide resistance in pest insects have mainly been studied under optimal laboratory conditions. However, resistant insects face more stressors than just insecticides in the field, and how the resistant population reacts to these stressors is of practical importance for the control of pest insects such as the brown planthopper Nilaparvata lugens. The aim of the present study was to explore the impact of population density on the competitiveness of resistant and susceptible individuals.

RESULTS

Two isogenic N. lugens populations, a highly imidacloprid‐resistant population (HZ‐R) with a resistance ratio (RR) of 227.10 and a relatively susceptible population (HZ‐S) with an RR of 2.99, were created from a field‐resistant population (HZ; RR 62.51). The high resistance levels of HZ‐R and HZ were mainly attributable to the overexpression of multiple cytochrome P450 (CYP) genes such as CYP6ER1, CYP6AY1, CYP6CW1 and CYP4CE1 compared with HZ‐S, this being supported by piperonyl butoxide synergism. HZ‐R was observed to be more resistant to thiacloprid and etofenprox compared with HZ and HZ‐S. Most interestingly, in high population density treatments, HZ‐S individuals were much more competitive than HZ‐R individuals.

CONCLUSION

Imidacloprid‐resistant individuals of N. lugens are less competitive than their susceptible counterparts under density pressure. © 2017 Society of Chemical Industry  相似文献   

8.
Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the “phenobarbital-type” induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from “detox” microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers/induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action.  相似文献   

9.
BACKGROUND: The pyrethroid resistance of the diamondback moth Plutella xylostella (L.) is conferred by increased gene expression of cytochrome P450 to detoxify the insecticide and/or through gene mutation of the sodium channel, which makes the individual insensitive to pyrethroids. However, no information is available about the correlation between the increased metabolic detoxification and the target insensitivity in pyrethroid resistance. RESULTS: Frequencies of pyrethroid‐resistant alleles (L1014F, T929I and M918I) and two resistance‐related mutations (A1101T and P1879S) at the sodium channel and expression levels of the cytochrome P450 gene CYP6BG1 were examined individually using laboratory and field strains of P. xylostella. Real‐time quantitative PCR analysis using the laboratory strains revealed that levels of larval expression of the resistant strain, homozygous for the pyrethroid‐resistant alleles other than the M918I, are significantly higher than those of the susceptible strain. In the field strains, the expression levels in insects having the same resistant alleles as those of the resistant strains varied greatly among individuals. The expression levels were not significantly higher than those in the heterozygotes. CONCLUSION: Significant correlation between the target insensitivity and the increased metabolic detoxification in pyrethroid resistance of P. xylostella was observed in the laboratory but not in the field. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Summer-form pear psylla, Psylla pyricola Foerster, from sprayed pear were resistant to endosulfan (2·4-fold), methiocarb (2·5-fold), ethylan (5·8-fold), azinphos-methyl (7·7-fold), and fenvalerate (40·1-fold). Esterase (3·8-fold), glutathione transferase (1·8-fold), and cytochrome P-450 monooxygenase (1·6-fold) detoxification enzyme activity was higher in resistant than in susceptible summer forms. Synergism by piperonyl butoxide and S,S,S-tributylphosphorotrithioate (DEF) was added evidence for cytochrome P-450 monooxygenases and esterases as resistance mechanisms. Reduced penetration may also have contributed to resistance, as indicated by a 1·6-fold slower penetration of azinphos-methyl in resistant than susceptible summer-forms. Similar differences in insecticide toxicity and esterase and glutathione transferase activities were observed between winter-forms of resistant and susceptible pear psylla. Winter-forms of P. pyricola were up to three times more tolerant to insecticides than summer-forms. Higher cytochrome P-450 monooxygenase activity (1·7-fold) and slower azinphosmethyl penetration (2·1-fold) in winter-forms may have contributed to their greater insecticide tolerance; however, sequestration may also have been involved.  相似文献   

11.
有机磷类杀虫剂代谢机制研究进展   总被引:3,自引:1,他引:2  
文章对有机磷类杀虫剂代谢机制的研究进展以及昆虫对此类杀虫剂的相关代谢抗性机制进行了总结,阐述了有机磷杀虫剂的生物代谢途径及相关代谢酶系。在生物体中,有机磷类杀虫剂主要发生氧化代谢、水解代谢和轭合代谢等反应。其氧化代谢主要在细胞色素P450酶系(P450s)的催化作用下进行,其中,最重要的氧化反应是硫代有机磷酸酯类杀虫剂氧化脱硫形成生物毒性更高的有机磷氧化物的反应,以及氧化脱芳(烷)基化的反应;有机磷杀虫剂及其氧化产物在生物体内还可发生水解代谢反应,在对氧磷酶PON1等磷酸三酯酶的催化作用下,水解生成低毒性或者无毒的代谢物;有机磷杀虫剂的轭合代谢主要是在谷胱甘肽硫转移酶(GSTs)的催化下进行的。昆虫对有机磷类杀虫剂的代谢抗性与昆虫中参与此类杀虫剂代谢的解毒酶的改变密切相关,其中,与有机磷类杀虫剂代谢相关的P450s基因的过量表达和酶活性增强、丝氨酸水解酯酶的过量表达及基因突变、GSTs基因的过量表达等,均可导致铜绿蝇Lucilia cuprina、桃蚜Myzus persicae等昆虫对二嗪磷和马拉硫磷等有机磷类杀虫剂的代谢抗性。明确有机磷类杀虫剂的结构特点、代谢途径以及昆虫对此类杀虫剂的代谢抗性机制,对掌握有机磷类杀虫剂的毒理学机制,安全有效地使用此类杀虫剂,有效治理害虫对有机磷类杀虫剂的抗药性,以及开发生物选择性好的新型有机磷类杀虫剂,均具有重要意义。  相似文献   

12.
害虫抗药性是导致杀虫剂防效降低的一个重要因素,而抗性机制的阐明是害虫抗药性综合治理的基础。研究表明,代谢能力增强是害虫抗药性产生的重要原因,害虫对杀虫剂等外源物质的代谢需要细胞色素P450酶系(P450s)、羧酸酯酶(CarEs)、谷胱甘肽S-转移酶(GSTs)、UDP-葡萄糖醛酸转移酶(UGTs)和ATP结合盒转运蛋白(简称ABC转运蛋白)等解毒酶和转运蛋白的参与。结合近年来对害虫抗药性分子机制的研究进展,本文综述了上述解毒酶和转运蛋白参与杀虫剂抗药性的分子机制,并对害虫抗药性治理的新方法进行了展望。  相似文献   

13.
本文综述了在杀虫剂抗性中起重要作用的 P4 50酶系研究的最新进展。内容包括 :细胞色素 P4 50酶系基因及其基因的表达与调控 ,P4 50介导抗性的分子基础。细胞色素 P4 50表达表现出发育期、组织、品系特异性及可诱导性。 P4 50表达的调控机制复杂 ,可能受顺式调控元件 (如 CYP6 B1)或反式作用因子 (如CYP6 A1)或顺式、反式因子的共同调控 (如 CYP6 D1)。调控可能涉及转录增强的转录机制或 m RNA稳定性增加的转录后机制。 P4 50的超量表达是 P4 50酶系介导抗性的主要机制 ,P4 50的氨基酸替换也可能在杀虫剂抗性中起作用。  相似文献   

14.
A resistance management programme comparing rotations, mosaics and single use of insecticides for residual house-spraying against the insect vectors of malaria is being carried out in Southern Mexico. The area was chosen because of its prior history of insecticide use, relatively sedentary vector, and physical features of the area which limit inward migration of insects to the study area. A high level of resistance to DDT and low levels of organophosphorus (OP), carbamate and pyrethroid resistance were detected by WHO discriminating-dose assays in field populations of Anopheles albimanus in the pre-spray period in the region where this resistance management project is being undertaken. After the first year of spraying, resistance, as measured by a discriminating-dose assay, was still at a high level for DDT and had risen for all the other insecticides. Biochemical assays showed that DDT resistance was primarily caused by elevated levels of glutathione S-transferase (GST) activity leading to increased rates of metabolism of DDT to DDE. The numbers of individuals with elevated GST and DDT resistance were well correlated, suggesting that this is the only major DDT resistance mechanism in this population. The carbamate resistance in this population was conferred by an altered acetylcholinesterase (AChE) mechanism. The level of resistance in bioassays correlated well with the frequency of individuals homozygous for the altered AChE allele. This suggests that the level of resistance conferred by this mechanism in its heterozygous state is below the level of detection of the bioassay. The low levels of OP and pyrethroid resistance could be conferred by either the elevated esterase or monooxygenase enzymes. The esterases, however, are elevated only with p-nitrophenyl acetate (PNPA), and are unlikely to be causing broad-spectrum OP resistance. The altered AChE mechanism may also be contributing to the OP but not the pyrethroid resistance. There were significant differences in some resistance gene frequencies for insects obtained by different indoor and outdoor trapping methods. To determine whether the different sampling methods were effectively sampling the same interbreeding population, RAPD analysis of insects obtained by different collection methods in different villages was undertaken. There was no observed variability in the RAPD patterns for the different mosquito samples with a number of primers. ©1997 SCI  相似文献   

15.
Cytochrome P450-dependent monooxygenases are important in the activation and detoxification of numerous insecticides. In this study, a Drosophila melanogaster Cyp6d4 null mutant was used to determine the role of this P450 in insecticide metabolism. This null mutant was generated by imprecise excision of a mobile P element located upstream to the P450 gene Cyp6d4. Comparative analysis between the non-functional mutant and relevant control strains shows that Cyp6d4 does not appear to be involved in the metabolism of chlorfenapyr, cypermethrin, diazinon, imidacloprid, malathion, oxamyl, parathion, or pyrethrum extract, even though these insecticides are known to be activated or detoxified by P450-monooxygenases. No obvious abnormalities in development were seen in the Cyp6d4 null mutant, indicating that Cyp6d4 is not critical for the metabolism of vital endogenous substrates.  相似文献   

16.
BACKGROUND: Anticoagulant resistance in Norway rats, Rattus norvegicus (Berk.), has been suggested to be conferred by mutations in the VKORC1 gene, encoding the target protein of anticoagulant rodenticides. Other factors, e.g. pharmacokinetics, may also contribute to resistance, however. To examine the involvement of pharmacokinetics in bromadiolone resistance in male and female rats, liver expression profiles of seven cytochrome P450 genes from a Danish bromadiolone-resistant rat strain (with an Y139C-VKORC1 mutation) were compared with profiles from an anticoagulant-susceptible strain. RESULTS: In the presence of bromadiolone, the Cyp2e1, Cyp2c13, Cyp3a2 and Cyp3a3 genes were significantly overexpressed, while Cyp2c12 expression was suppressed in resistant female rats compared with susceptible females. Relative to susceptible males, resistant males showed significant overexpression of the Cyp2a1, Cyp2e1, Cyp3a2 and Cyp3a3 genes. On exposure to bromadiolone, females had higher Cyp2e1 expression than males, which possibly explains why female rats are generally more tolerant to anticoagulants than male rats. CONCLUSION: Results suggest that bromadiolone resistance in a Danish strain of Norway rats involves enhanced anticoagulant metabolism catalysed by cytochrome P450-2e1, -3a2 and -3a3. This pharmacokinetically based bromadiolone resistance is to some extent sex differentiated, as female resistance furthermore seems to involve overexpression of cytochrome P450-2c13 and suppression of P450-2c12, whereas male resistance appears to involve P450-2a1 overexpression.  相似文献   

17.
Larvae of eight strains of Aedes aegypti were exposed to DDT and compared for resistance, DDT uptake, in-vivo breakdown of DDT and residual unmetabolised DDT. Resistance varied widely between strains, three being fully susceptible, two almost immune and three of intermediate resistance. Breakdown of DDT by dehydrochlorination to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (pp'-DDE) occurred in all strains and was greater in the five resistant types, but there was no significant correlation between the extent of breakdown in the resistant strains and the level of resistance. Moreover the overall difference between susceptible and resistant strains disappeared when they were compared at a low, almost sublethal, concentration of DDT. Larvae of resistant strains carried a greater absolute quantity of unmetabolised DDT in the body and were able to tolerate levels of DDT that were lethal to susceptible larvae. However the two most resistant strains (T8 and B51) contained significantly less DDT plus pp'-DDE than strains of intermediate resistance (T30 and BSJ) from which they had been derived. Addition of the synergist chlorfenethol to DDT increased its knockdown effect on all resistant strains, suggesting that dehydrochlorination was a factor in resistance. Three strains, two DDT-resistant and one DDT-susceptible, were tested with 1,1-bis(4-ethoxyphenyl)-2,2-dimethylpropane (I), an insecticide that cannot be dehydrochlorinated. All the strains were relatively tolerant to it although the DDT-susceptible strains were less tolerant. Addition of the synergist sesamex decreased the level of tolerance to I in all strains which suggested that microsomal oxidation made some contribution to it. It is concluded that three factors contribute to larval DDT resistance in A. aegypti; (a) increased metabolism to pp'-DDE; (b) increased tolerance to unmetabolised internal DDT; and (c) reduced content of DDT+pp'-DDE (only in the most resistant strains and due either to reduced absorption or increased excretion). These factors are discussed in relation to known larval resistance genes RDDT1 and y.  相似文献   

18.
To examine the role of xenobiotic relevant genes in bromadiolone resistance in wild Norway rats (Rattus norvegicus) we compared the constitutive liver gene expression and expression upon bromadiolone administration in bromadiolone resistant and anticoagulant susceptible female rats using a LNA microarray and quantitative PCR. Resistant rats showed significantly higher constitutive expression of the cytochrome P450 genes Cyp2c13 and Cyp3a2 and lower expression of Cyp2e1 and Gpox1 compared to the susceptible rats. The Cyp1a2, Cyp2c13, Cyp2e1, Cyp3a2 and Cyp3a3 genes were significantly higher expressed in resistant than susceptible rats upon bromadiolone exposure. To establish how bromadiolone affected xenobiotic gene expression in the two strains we compared bromadiolone expression profiles to saline profiles of both strains. Bromadiolone mediated significant up-regulation of Cyp2e1 and Cyp3a3 expression in the resistant rats whereas the rodenticide conferred down-regulation of Cyp2e1, Cyp3a3 and Gpox1 and induction of Cyp2c12 expression in susceptible rats. Cyp2c13 and Cyp3a2 expression were markedly suppressed in both strains upon treatment. This suggests that xenobiotic relevant enzymes play a role in bromadiolone resistance in the Norway rat. A high constitutive expression of Cyp2c13 and Cyp3a2 and induction of Cyp1a2, Cyp2e1 and Cyp3a3 expression during bromadiolone exposure may increase the resistance to bromadiolone presumably by facilitating increased detoxification and decreased liver injury.  相似文献   

19.
The western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is a serious pest on a wide range of crops throughout the world. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance to insecticides. Pesticide resistance can have a negative impact on integrated pest management programmes with chemical control as one of the components. Resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity, and a haplodiploid breeding system. The mechanisms conferring insecticide resistance in insects can be divided into four levels. First, an altered behaviour can aid the insect to avoid coming into contact with the insecticide. Second, a delayed penetration through the integument will reduce the effect of the insecticide at the target site. Third, inside the insect, detoxification enzymes may metabolise and thereby inactivate the insecticide. Fourth, the last level of resistance mechanisms is alterations at the target site for the insecticide. Knowledge of resistance mechanisms can give information and tools to be used in management of the resistance problem. Recently, studies have been carried out to investigate the underlying mechanisms conferring resistance in F. occidentalis. It appears that resistance in F. occidentalis is polyfactorial; different mechanisms can confer resistance in different populations and different mechanisms may coexist in the same population. Possible resistance mechanisms in F. occidentalis include: reduced penetration, detoxification by P450-monooxygenases, esterases and glutathione S-transferases, and alterations of acetylcholinesterase, the target site for organophosphate and carbamate insecticides. Target site resistance to pyrethroids (knockdown resistance) may also be a resistance mechanism in F. occidentalis.  相似文献   

20.
为阐明草地贪夜蛾Spodoptera frugiperda对溴氰虫酰胺的解毒代谢分子机制,通过LC50的溴氰虫酰胺诱导草地贪夜蛾3龄幼虫后,利用酶活测定和转录组测序鉴定解毒代谢相关基因,并采用实时荧光定量PCR技术对细胞色素P450单加氧酶(cytochrome P450 monooxygenase,P450)基因进行验证分析。结果表明,经LC50的溴氰虫酰胺处理后,草地贪夜蛾3龄幼虫体内3种解毒代谢酶活性较对照均有所升高,但仅P450活性较对照显著升高,而谷胱甘肽S-转移酶和羧酸酯酶与对照无显著差异。经LC50的溴氰虫酰胺处理后草地贪夜蛾3龄幼虫转录组中共筛选到1 408个差异表达基因,其中上调表达的基因有935个,下调表达的基因有473个。药物代谢-细胞色素P450通路、药物代谢-其他酶通路及细胞色素P450对异生物质的代谢通路中有超过20个基因存在差异表达。在草地贪夜蛾转录组中筛选鉴定到121个P450基因,其中,属于CYP2、CYP3、CYP4以及Mito家簇的基因分别有9、45、58和9个,而经LC5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号