首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 117 毫秒
1.
利用机械动力学仿真软件ADAMS/CAR建立轿车整车动力学模型。在分析了车辆稳定性控制原理的基础上构建了以横摆角速度为控制变量的控制系统,然后通过输入输出接口实现ADAMS/CAR同MATLAB的通信,在MAT-LAB/simulink中建立闭环联合仿真模型。通过仿真验证,车辆动力学稳定性控制系统能够改善汽车的行驶稳定性。  相似文献   

2.
基于LQR控制理论研究了四轮驱动电动汽车的横摆稳定性,以横摆角速度和质心侧偏角为控制目标,计算出最优的直接横摆力矩,通过双轮控制模式进行转矩分配,实现了四轮驱动电动汽车的稳定性控制;基于CarSim/Simulink联合仿真整车模型进行仿真验证,在CarSim中通过参数化建模设置整车参数、驾驶员模型,在Simulink中建立电机模型和控制器模型。研究结果表明,所提出的控制策略可以有效地控制四轮驱动电动汽车的横摆运动,从而提高整车的行驶稳定性。  相似文献   

3.
引入分层控制概念设计了横摆力矩控制和滑移率控制相结合的车辆稳定性控制系统.建立了侧偏角和横摆角速度具有最佳输出响应的车辆理想模型,采用前馈与反馈控制相结合跟踪理想模型的控制策略,基于最优控制理论设计横摆力矩控制器.通过设计理想滑移率分配模块确定下层滑移率控制器理想值,基于模糊控制理论设计滑移率控制器.在Matlab/Simulink平台上建立8自由度非线性车辆模型,分别在低附着和高附着路面条件下进行了仿真分析.结果表明:采用分层控制可以很好地实现车辆所需横摆力矩,有效地控制车辆质心侧偏角和横摆角速度跟踪理想模型,瞬态及稳态响应良好,改善了车辆操纵稳定性.  相似文献   

4.
在MATLAB/SIMULINK中建立了汽车理想二自由度参考模型,得到汽车的理想横摆角速度和理想质心侧偏角,针对汽车ESP系统非线性、时变的特点,在MATLAB/SIMULINK环境下设计基于横摆角速度和质心侧偏角反馈控制的PID控制器和模糊控制器的仿真模型,进行汽车ESP系统的仿真研究。仿真结果表明,通过ESP控制系统,汽车的横摆角速度和质心侧偏角被限定在一个比较小的范围内变化,汽车的稳定性得到显著改善。  相似文献   

5.
分析汽车行驶控制系统的结构,建立各部分机构的数学模型,根据数学模型选择合适的SIMULINK模块,建立汽车行驶控制系统的SIMULINK仿真模型进行仿真分析,通过改变SIMULINK中模块的仿真参数,对行驶系统控制器中的比例调节的性能进行分析,以得到最优的比例调节参数。  相似文献   

6.
基于模型预测控制的汽车底盘协调控制策略   总被引:2,自引:0,他引:2       下载免费PDF全文
通过电子控制系统主动干预车辆的纵向、横向和垂向动力学特性,可以提高车辆的稳定性和操纵性,进而保证车辆的安全行驶。将主动转向、主动横摆力矩控制和主动悬架结合,根据轮胎的力学特性,利用模型预测控制策略,通过轮胎力分配,实现底盘三向动力学的协调控制,并进行了仿真验证,结果表明与两向动力学协调控制相比,该控制策略可以有效提高整车的主动安全性。  相似文献   

7.
为防止FSEC赛车在行驶过程中发生侧滑、甩尾现象,针对双电机独立驱动方程式赛车,提出了利用横摆角速度进行模糊PI控制方法。确定整车横摆力矩分层控制结构,设计了模糊控制器和规则制动力分配方法。模糊控制器根据期望的横摆角速度值和实际的横摆加速度决策出所需的附加横摆力矩,并通过制动力分配方法进行差动驱动实现。应用CarSim搭建车体模型,应用CarSim与MATLAB/Simulink联合仿真对控制方法进行了仿真验证。结果表明:利用横摆角速度控制的横摆力矩模糊PI控制方法可以使赛车按照车手的期望路径稳定行驶,有效提高赛车行驶稳定性。  相似文献   

8.
魏峰 《农机化研究》2024,(7):203-207
首先,对插秧机导航控制原理进行了分析,建立了插秧机行驶模型;然后,通过确定矩形地块边界、直线和转弯路径规划实现了基于计算机网络控制的插秧机自动路径规划系统。系统采用Ω式转弯式覆盖方法,可以较大程度提高作业覆盖率。试验结果表明:插秧机在进行直线行驶的路径和仿真路径一致,只有在转弯时才会出现较小偏差,证明控制系统能够满足实际应用需求。  相似文献   

9.
稳定性控制系统是一种汽车主动安全技术,文章在Matlab/Simulink平台上,建立线性二自由度车辆模型,采用直接横摆力矩控制方法,选取质心侧偏角和横摆角速度作为稳定性控制系统的主控变量,设计了三种具有针对性的基于滑模变结构理论的车辆操纵稳定性控制策略.对三种稳定性控制策略的具体应用进行仿真分析,验证了所设计稳定性控制算法的有效性和鲁棒性.  相似文献   

10.
四轮转向车辆后轮转角与横摆力矩联合模糊控制   总被引:2,自引:1,他引:1  
为提高车辆在极限工况下的稳定性,充分考虑悬架、转向系统以及轮胎等部件的非线性,运用多体动力学仿真分析软件ADAMS/Car建立了四轮转向车辆的虚拟样机模型.确定了质心侧偏角和横摆角速度具有理想输出响应的控制目标.针对车辆的非线性,提出了后轮转角与横摆力矩联合控制的模糊控制策略,并设计了对应的非线性模糊控制系统.最后应用ADAMS/Car和Matlab/Simulink联合仿真技术,对控制系统的性能进行了仿真验证.仿真结果表明:后轮转角与横摆力矩联合模糊控制可有效防止车辆在极限转向工况下发生侧滑失稳.  相似文献   

11.
基于广义预测控制的汽车横摆稳定性控制   总被引:1,自引:0,他引:1  
汽车在紧急避障操纵时容易丧失稳定性,通过四轮差动制动的方式对汽车施加附加横摆力矩可以实现汽车的横摆稳定性控制。由于汽车动力学模型的非线性以及参数和环境的不确定性,使用最优控制方法决策的附加横摆力矩在实际中往往无法保持最优。由此提出广义预测控制(GPC)方法决策附加横摆力矩。建立了七自由度非线性车辆模型作为预测模型,并通过实车试验对其精度进行了验证。通过Simulink/Carsim环境中的虚拟试验对GPC方法的控制效果进行了验证,结果表明GPC方法比LQR方法能更有效地提高汽车的主动安全性。  相似文献   

12.
建立了Magic Formula(MF)轮胎模型、三自由度整车模型以及车辆参考模型,采用车辆横摆角速度和质心侧偏角的状态差异法,设计了基于PID控制理论为核心的车辆横摆角速度和质心侧偏角的综合反馈控制,并对模型进行了离线仿真和在线实时仿真,结果证明,所设计的控制器对汽车稳定性控制效果明显,实时仿真与离线仿真结果吻合。  相似文献   

13.
以动力学仿真软件ADAMS建立轮毂电动汽车动力学模型,基于多重假设建立了二自由度4WS车辆模型。根据二自由度车辆模型建立以横摆角速度和质心侧偏角为控制对象的模糊控制策略。以ADAMS/View中的动力学模型和所建立的模糊控制策略进行联合仿真,对比分析角阶跃输入下横摆角速度和质心侧偏角的值。验证了模糊控制下的整车稳定性能比未控制的整车稳定性能好。  相似文献   

14.
基于主动转向技术的汽车制动稳定性控制   总被引:1,自引:0,他引:1  
以汽车制动稳定性控制原理和相关汽车动力学模型为基础,通过对汽车在两侧路面附着系数相差较大的对开路面的制动状况进行理论分析,提出利用主动转向技术控制汽车紧急制动时的稳定性,并使汽车在制动偏驶后能通过转向控制快速恢复到正确的行驶车道.在理论分析的基础上结合所提出的模糊控制策略和控制方式,设计模糊控制器进行仿真实验,并用实验结果进行了验证,结果表明利用所提出的汽车制动稳定性模糊控制策略,能减少汽车制动时的失稳状况,对于提高汽车的行驶安全性具有一定的作用.  相似文献   

15.
为了优化稳定性控制算法,提出并仿真分析了一种新型的车辆稳定性分层控制策略。该控制策略由上下两层组成,上层控制器基于最优控制理论的横摆力矩控制策略,下层控制器采用最优分配法,将修正横摆力矩合理分配到各车轮上。基于MATLAB/Simulink建立了八自由度非线性车辆模型,并对该模型进行了实车实验验证,然后基于该模型对该控制策略进行了仿真分析,验证了此分层控制策略的有效性。仿真结果表明,在大侧向加速度和大侧偏角的极限工况下,所设计的新型控制系统能够有效地改善车辆的操纵稳定性。  相似文献   

16.
运用模糊控制理论在所建立的车辆非线性模型的基础上,设计了用于车辆横向稳定性的3种模糊控制器———基于横摆角速度的反馈控制、基于质心侧偏角的反馈控制以及基于这两个参数的联合反馈控制,并应用MATLAB/S imu link对所设计的3种模糊控制器分别进行了仿真分析,结果表明,3种控制器均能改善车辆的横向稳定性,能够提高车辆行驶的安全性,并且,联合控制的控制效果要优于单独控制。  相似文献   

17.
为提高多轮轮毂电机驱动车辆动力学综合控制性能,提出了一种基于分层模型的直接横摆力矩控制策略。上层为运动跟踪控制层,设计了基于车轮转角的前馈控制器,对车辆横摆角速度稳态增益进行调节,同时将滑模控制进行改进,设计了滑模条件积分控制器进行反馈控制,使横摆角速度追踪其期望值;下层为转矩优化分配层,基于稳定性优先原则,建立了以减小轮胎负荷率为目标的优化函数,并且将控制分配问题转换为二次规划问题进行求解。依托某型8×8轮毂电机驱动样车进行实车试验,结果表明,在连续转向工况和双移线工况下,所提出的控制策略使车辆最大横摆角速度偏差分别降至理想横摆角速度的6%和9%以内。此外,该策略能够有效控制轮胎负荷率,实现转向行驶时的转矩优化分配,改善了车辆操纵稳定性。  相似文献   

18.
本文通过利用Adams/CAR建立了整车动力学仿真模型;基于DYC控制方法和线性二次型最优控制理论,在Matlab中建立前馈-反馈复合控制系统和与ADAMS联合的控制模块,实现ADAMS与Matlab的车辆稳定性控制联合仿真;通过调节控制系统参数,对湿滑路面的阶跃工况进行仿真,分析联合仿真的结果,使控制器对车辆的稳定性控制效果达到最佳.结果表明,本控制系统能有效提高车辆的操作稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号