首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The objective of this experiment was to determine the standardized ileal digestibility (SID) of amino acids (AA) in 3 sources of distillers dried grains with solubles (DDGS) with different concentrations of fat. Twelve growing barrows (initial body weight: 76.1 ± 6.2 kg) were randomly allotted to a replicated 6 × 4 Youden square design with 6 diets and 4 periods. The fat content of the 3 sources of DDGS were 11.5, 7.5, and 6.9% respectively. Diets contained 60% DDGS and fat concentration of the diets were 7.5, 5.2, and 5.2%, respectively. Two additional diets containing the 2 sources of DDGS with 7.5 and 6.9% fat were also formulated, and corn oil was added to these diets to increase the concentration of fat in the diets to levels that were calculated to be similar to the diet containing conventional DDGS with 11.5% fat. A N-free diet was also formulated to calculate endogenous losses of crude protein (CP) and AA from the pigs. Pigs were fed experimental diets during four 7-d periods. The first 5 d of each period were an adaptation period and ileal digesta were collected on d 6 and 7 of each period. The apparent ileal digestibililty (AID) and SID of CP and all indispensable AA, except AID Pro and SID of Trp, were greater (P < 0.01) in conventional DDGS than in the 2 sources of DDGS with reduced fat. Adding oil to the diets containing the 2 sources of DDGS with reduced fat did not consistently increase SID of AA. In conclusion, conventional DDGS has greater SID values for most AA compared with DDGS that contains less fat and inclusion of additional oil to diets containing low-fat DDGS does not increase AID or SID of AA. The lower AA digestibility in low-fat DDGS could not be overcome by the inclusion of additional fat to the diets.  相似文献   

2.
The objective of this experiment was to determine the standardized ileal digestibility(SID) of amino acids(AA) in 3sources of distillers dried grains with solubles(DDGS) with different concentrations of fat.Twelve growing barrows(initial body weight:76.1 ± 6.2 kg) were randomly allotted to a replicated 6×4 Youden square design with 6 diets and 4 periods.The fat content of the 3 sources of DDGS were 11.5,7.5,and 6.9%respectively.Diets contained 60%DDGS and fat concentration of the diets were 7.5,52,and 5.2%,respectively.Two additional diets containing the 2sources of DDGS with 75 and 6.9%fat were also formulated,and corn oil was added to these diets to increase the concentration of fat in the diets to levels that were calculated to be similar to the diet containing conventional DDGS with 11.5%fat.A N-free diet was also formulated to calculate endogenous losses of crude protein(CP) and AA from the pigs.Pigs were fed experimental diets during four 7-d periods.The first 5 d of each period were an adaptation period and ileal digesta were collected on d 6 and 7 of each period.The apparent ileal digestibililty(AID) and SID of CP and all indispensable AA,except AID Pro and SID of Trp,were greater(P 〈 0.01) in conventional DDGS than in the 2 sources of DDGS with reduced fat.Adding oil to the diets containing the 2 sources of DDGS with reduced fat did not consistently increase SID of AA.In conclusion,conventional DDGS has greater SID values for most AA compared with DDGS that contains less fat and inclusion of additional oil to diets containing low-fat DDGS does not increase AID or SID of AA.The lower AA digestibility in low-fat DDGS could not be overcome by the inclusion of additional fat to the diets.  相似文献   

3.
The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility(SID) of amino acids(AA) in corn distillers dried grains with solubles(DDGS) fed to growing pigs. The second objective was to develop regression equations that may be used to predict the concentration of SID AA in corn DDGS. A source of corn DDGS was divided into 4 batches that were either not autoclaved or autoclaved at130°C for 10, 20, or 30 min. Four diets containing DDGS from each of the 4 batches were formulated with DDGS being the only source of AA and CP in the diets. A N-free diet also was formulated and used to determine the basal endogenous losses of CP and AA. Ten growing pigs(initial BW: 53.5 ± 3.9 kg) were surgically equipped with a T-cannula in the distal ileum and allotted to a replicated 5 × 4 Youden square design with 5 diets and 4 periods in each square. The SID of CP decreased linearly(P 0.05) from 77.9% in non-autoclaved DDGS to 72.1, 66.1, and 68.5% in the DDGS samples that were autoclaved for 10, 20, or 30 min, respectively. The SID of lysine was quadratically reduced(P 0.05) from 66.8% in the non-autoclaved DDGS to 54.9, 55.3, and 51.9% in the DDGS autoclaved for 10, 20, or30 min, respectively. The concentrations of SID Arginine, Histidine, Leucine, Lysine, Methionine, Phenylalanine, or Threonine may be best predicted by equations that include the concentration of acid detergent insoluble N in the model(r2= 0.76, 0.68, 0.67, 0.84, 0.76, 0.73, or 0.54, respectively). The concentrations of SID Isoleucine and Valine were predicted(r2= 0.58 and 0.54, respectively) by the Lysine:CP ratio, whereas the concentration of SID Tryptophan was predicted(r2= 0.70) by the analyzed concentration of Tryptophan in DDGS. In conclusion, the SID of AA is decreased as a result of heat damage and the concentration of SID AA in heat-damaged DDGS may be predicted by regression equations developed in this experiment.  相似文献   

4.
The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility (SID) of amino acids (AA) in corn distillers dried grains with solubles (DDGS) fed to growing pigs. The second objective was to develop regression equations that may be used to predict the concentration of SID AA in corn DDGS. A source of corn DDGS was divided into 4 batches that were either not autoclaved or autoclaved at 130°C for 10, 20, or 30 min. Four diets containing DDGS from each of the 4 batches were formulated with DDGS being the only source of AA and CP in the diets. A N-free diet also was formulated and used to determine the basal endogenous losses of CP and AA. Ten growing pigs (initial BW: 53.5 ± 3.9 kg) were surgically equipped with a T-cannula in the distal ileum and allotted to a replicated 5 × 4 Youden square design with 5 diets and 4 periods in each square. The SID of CP decreased linearly (P < 0.05) from 77.9% in non-autoclaved DDGS to 72.1, 66.1, and 68.5% in the DDGS samples that were autoclaved for 10, 20, or 30 min, respectively. The SID of lysine was quadratically reduced (P < 0.05) from 66.8% in the non-autoclaved DDGS to 54.9, 55.3, and 51.9% in the DDGS autoclaved for 10, 20, or 30 min, respectively. The concentrations of SID Arginine, Histidine, Leucine, Lysine, Methionine, Phenylalanine, or Threonine may be best predicted by equations that include the concentration of acid detergent insoluble N in the model (r2 = 0.76, 0.68, 0.67, 0.84, 0.76, 0.73, or 0.54, respectively). The concentrations of SID Isoleucine and Valine were predicted (r2 = 0.58 and 0.54, respectively) by the Lysine:CP ratio, whereas the concentration of SID Tryptophan was predicted (r2 = 0.70) by the analyzed concentration of Tryptophan in DDGS. In conclusion, the SID of AA is decreased as a result of heat damage and the concentration of SID AA in heat-damaged DDGS may be predicted by regression equations developed in this experiment.  相似文献   

5.
Two experiments were conducted to compare the ileal digestibility of AA in distillers dried grains with solubles (DDGS) sourced from different regions (IL, MN, KY), to compare AA digestibility in DDGS and in distillers dried grains (DDG) and to compare AA digestibility in DDGS from ethanol production (DDGS(ethanol)) and DDGS from beverage production (DDGS(beverage)). In Exp. 1, five samples of DDGS(ethanol) were sourced from Minnesota (MN1, MN2), Illinois (IL1, IL2), and from Kentucky (KY). In Exp. 2, six samples of DDGS(ethanol), 1 sample of DDG, and 1 sample of DDGS(beverage) were used to compare values for apparent ileal digestibility and standardized ileal digestibility (SID) of AA between DDGS(ethanol) and DDGS(beverage) and between DDG and DDGS(ethanol). Results of Exp. 1 showed that the SID of Lys in DDGS from MN2 (72.8%) was greater (P < 0.01) than in DDGS from MN1 (66.8%), IL1 (66.8%), and KY (65.8%) but not different from IL2 (70.1%). Except for Leu and Glu, no differences in SID for any of the other AA were observed among the 5 sources of DDGS. In Exp. 2, the SID for Lys in DDGS(beverage) was greater (P < 0.01) than in DDGS(ethanol) (69.3 vs. 64.8%), but for CP and all other AA except His, no differences between the 2 types of DDGS were observed. The SID for most AA in DDG were greater (P < 0.05) than in DDGS(ethanol), which suggests that the AA in the solubles that are added to DDGS may be less digestible than the AA in DDG. In conclusion, results of these experiments confirm that the digestibility of Lys is more variable among sources of DDGS than the digestibility of other AA. However, the SID of AA among DDGS sources within a region can vary as much as among DDGS sources from different regions, and AA in DDGS(beverage) may be as digestible as AA in DDGS(ethanol). The digestibility of AA in DDG is greater than in DDGS, which indicates that AA in the solubles have a lower digestibility than AA in DDG.  相似文献   

6.
The objective of this experiment was to measure the digestibilities of energy, CP, and AA in 10 samples of corn distillers dried grain with solubles (DDGS) and in corn fed to growing pigs. Twelve growing barrows (initial BW: 34.0 +/- 1.41 kg) were allotted to an 8 x 12 Youden square design with 8 periods and 12 animals. Ten of 12 diets were based on the 10 DDGS samples (66.7%), 1 diet was based on corn (97%), and the last diet was a N-free diet based on cornstarch and sucrose. Chromic oxide (0.3%) was included in all diets as an inert marker. Pigs were provided their respective diets at a level of 3 times their estimated energy requirement for maintenance. The apparent (AID) and standardized (SID) ileal digestibilities for CP and AA were measured in the 10 samples of DDGS and in corn using the direct procedure, but the apparent total tract digestibilities for DM and GE were estimated using the difference procedure. The concentration of DE in each sample of DDGS and in corn was also calculated. The results of the experiment indicated variation among the different sources of DDGS in AID and SID for Lys, which ranged from 35.0 to 55.9% and 43.9 to 63.0%, respectively. For Met, the SID varied between 73.9 and 84.7%. However, the variability among samples in the SID for CP, and for the indispensable AA other than Lys and Met, was relatively low and ranged between 6 and 8 percentage units (i.e., from 64.0 to 70.6%, 74.1 to 80.1%, and 67.4 to 75.3% for Thr, Trp, and Ile, respectively). The SID for Trp in corn (72.8%) was lower (P < 0.05) than in DDGS, but for the remaining indispensable AA, except Arg, the SID for corn were greater (P < 0.01) than for DDGS. The DE concentration in the 10 samples of DDGS varied (P < 0.001) from 3,382 to 3,811 kcal of DE per kg of DM. For corn, the DE was 3,845 kcal per kg of DM. It is concluded that the AID and SID for Lys vary among samples of DDGS, but for most other AA the AID and SID are relatively similar and vary only 6 to 8 percentage units among different samples. Future work should focus on identifying the reasons for the variation in the digestibility of Lys to avoid processing procedures that are detrimental to Lys digestibility.  相似文献   

7.
Three experiments were conducted to measure energy, P, and AA digestibility in 2 novel co-products from the ethanol industry [i.e., high-protein distillers dried grains (HP DDG) and corn germ]. These products are produced by dehulling and degerming corn before it enters the fermentation process. Experiment 1 was an energy balance experiment conducted to measure DE and ME in HP DDG, corn germ, and corn. Six growing pigs (initial BW, 48.9 +/- 1.99 kg) were placed in metabolism cages and fed diets based on corn, corn and HP DDG, or corn and corn germ. Pigs were allotted to a replicated, 3 x 3 Latin square design. The DE and ME in corn (4,056 and 3,972 kcal/kg of DM, respectively) did not differ from the DE and ME in corn germ (3,979 and 3,866 kcal/kg of DM, respectively). However, HP DDG contained more (P < 0.05) energy (4,763 kcal of DE/kg of DM and 4,476 kcal of ME/kg of DM) than corn or corn germ. Experiment 2 was conducted to measure apparent total tract digestibility (ATTD) and true total tract digestibility of P in HP DDG and corn germ. Thirty growing pigs (initial BW, 33.2 +/- 7.18 kg) were placed in metabolism cages and fed a diet based on HP DDG or corn germ. A P-free diet was used to measure endogenous P losses. Pigs were assigned to treatments in a randomized complete block design, with 10 replications per treatment. The ATTD and the retention of P were calculated for the diets containing HP DDG and corn germ, and the endogenous loss of P was estimated from pigs fed the P-free diet. The ATTD was lower (P < 0.05) in corn germ (28.6%) than in the HP DDG (59.6%). The retention of P was also lower (P < 0.05) in pigs fed corn germ (26.7%) than in pigs fed HP DDG (58.9%). The endogenous loss of P was estimated to be 211 +/- 39 mg per kg of DMI. The true total tract digestibility of P for HP DDG and corn germ was calculated to be 69.3 and 33.7%, respectively. In Exp. 3, apparent ileal digestibility and standardized ileal digestibility values of CP and AA in HP DDG and corn germ were measured using 6 growing pigs (initial BW, 78.2 +/- 11.4 kg) allotted to a replicated, 3 x 3 Latin square design. The apparent ileal digestibility for CP and all AA except Arg and Pro, and the standardized ileal digestibility for CP and all AA except Arg, Lys, Gly, and Pro were greater (P < 0.05) in HP DDG than in corn germ. It was concluded that HP DDG has a greater digestibility of energy, P, and most AA than corn germ.  相似文献   

8.
Dried corn distillers grains with solubles (DDGS) fed to swine may adversely affect carcass quality due to the high concentration of unsaturated fat. Feeding CLA enhances pork quality when unsaturated fat is contained in the diet. The effects of CLA on growth and pork quality were evaluated in pigs fed DDGS. Diets containing 0, 20, or 40% DDGS were fed to pigs beginning 30 d before slaughter. At 10 d before slaughter, one-half of each DDGS treatment group was fed 0.6% CLA or 1% choice white grease. Carcass data, liver- and backfat-samples were collected at slaughter. Longissimus muscle area, 10th-rib back-fat depth, last rib midline backfat depth, LM color, marbling, firmness and drip loss, and bacon collagen content were not altered by DDGS or CLA. Outer layer backfat iodine values were increased (P 0.05) for pigs fed DDGS. Feeding CLA decreased (P 相似文献   

9.
Gaining a detailed knowledge on the impact of a feedstuff on pig growth and physiological responses is critical for its effective utilization. Thus, the purpose of this study was to investigate the effect of distillers dried grains with solubles derived from co‐fermentation of wheat and corn (wcDDGS) on performance, carcass and visceral organ weights, whole‐body O2 consumption and heat production (HP) in growing barrows. The experimental diets were as follows: corn–soybean meal diet (Control), Control + 15% wcDDGS and Control + 30% wcDDGS. In Exp. 1, 48 pair‐housed pigs of average BW 18.6 ± 1.5 kg (mean ± SD) were allotted to the 3 diets (n = 8). Pigs had free access to water and feed for a 28‐day period during which ADG and ADFI were calculated weekly. Thereafter, 1 pig/pen was killed to measure carcass and visceral organ weights. Overall, wcDDGS linearly decreased (p < 0.05) ADFI and ADG but had no effect on G:F (p > 0.10). The ADFI was 1.55, 1.45 and 1.36 kg/day for diets containing 0, 15 and 30% wcDDGS respectively; corresponding values for ADG were 0.79, 0.75 and 0.67 kg/day respectively. A linear decline (p = 0.01) in eviscerated hot carcass weight was observed as dietary wcDDGS increased. In Exp. 2, 18 pigs of average BW 20.4 ± 2.4 kg (mean ± SD) were individually housed in metabolism crates and fed the 3 diets (n = 6) at 550 kcal ME kg BW?0.60day for a 16‐day period followed by measurement of O2 consumption using an indirect calorimeter. Diet had no effect (p > 0.10) on whole‐body O2 consumption and HP. In conclusion, increasing wcDDGS content in growing pig diets linearly reduced ADFI, ADG and eviscerated hot carcass weight but had no effect on G:F, visceral organ weights or HP.  相似文献   

10.
This experiment used indirect calorimetry to determine the net energy (NE) content of five corn distillers dried grains with solubles (corn DDGS) containing different oil levels and to compare the NE obtained using indirect calorimetry with that calculated using previously published prediction equations. There were two samples of high‐oil DDGS, one sample of medium‐oil DDGS and two samples of low‐oil DDGS. Twelve barrows (initial BW of 32.8 ± 2.0 kg) were used in a repeated 3 × 6 Youden square design with three periods and six diets. The diets were comprised of a corn–soybean meal basal diet and five diets containing 29.25% of one of the corn DDGS added at the expense of corn and soybean meal. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to feed and environmental conditions. On day 8, the pigs were transferred to respiration chambers and fed one of the six diets at 2300 kJ ME/kg BW0.6/day. Faeces and urine were collected from day 9 to 13 and heat production (HP) was also measured. From day 14 to 15, the pigs were fed 893 kJ ME/kg BW0.6/day to allow them to adapt from the fed to the fasted state. On the last day of each period (day 16), the pigs were fasted and fasting HP was measured. The digestible energy value was 16.0, 17.1 and 15.3 MJ/kg DM, the metabolizable energy value was 14.6, 15.5 and 13.7 MJ/kg DM and the NE value was 10.7, 11.0 and 9.4 MJ/kg DM, for the high‐oil, medium‐oil and low‐oil corn DDGS, respectively. The NE obtained with indirect calorimetry in the present study did not differ from values calculated using previously published prediction equations.  相似文献   

11.
An experiment was conducted to measure DE and ME and the apparent total tract digestibility (ATTD) of energy, N, and P in distillers dried grains with solubles (DDGS) fed to growing pigs. Ten sources of DDGS were obtained from ethanol plants in South Dakota and Minnesota, and 11 diets were formulated. One diet was based on corn (96.8%), limestone, salt, vitamins, and microminerals. Ten additional diets were formulated by mixing the corn diet and each of the 10 sources of DDGS in a 1:1 ratio. Eleven growing pigs (initial BW of 29.3 +/- 0.42 kg) were allotted to an 11 x 11 Latin square design, with 11 periods and 11 pigs. Each of the 11 diets was fed to each pig during 1 period. Pigs were placed in metabolism cages that allowed for the total, but separate, collection of feces and urine. Samples were analyzed for GE, N, and P and energy and N balances, and the ATTD of GE, N, and P were calculated for each diet. By subtracting the contribution from the corn diet to the DDGS-containing diets, the energy and N balances and the ATTD for GE, N, and P for each source of DDGS were calculated. Results of the experiment showed that the DE and ME differed (P < 0.001) among the 10 sources of DDGS (3,947 to 4,593 kcal of DE/kg of DM and 3,674 to 4,336 kcal of ME/kg of DM). The average DE and ME in DDGS were 4,140 and 3,897 kcal/kg of DM, respectively. These values were not different from the DE and ME in corn (4,088 and 3,989 kcal/kg of DM, respectively). Based on the analyzed GE and nutrient composition of DDGS and the calculated values for DE and ME, prediction equations for DE and ME were developed. These equations showed that DE and ME in DDGS may be predicted from the concentration of ash, ether extract, ADF, and GE. The retention of N from DDGS was greater (P < 0.001) than from corn, but when calculated on a percentage basis, the N retention did not differ between DDGS and corn. The ATTD of P in DDGS was 59.1% on average for the 10 samples. This value was greater (P < 0.001) than the ATTD of P in corn (19.3%). It is concluded that the DE and ME in DDGS is not different from the DE and ME in corn. However, if DDGS is included in diets fed to growing swine, a greater portion of the organic P will be digested and absorbed, thus reducing the need for adding inorganic P to the diets.  相似文献   

12.
13.
文章综述了玉米DDGS对生长育肥猪的营养价值,不同添加量对生长育肥猪生产性能的影响,以及玉米DDGS中高含量多不饱和脂肪酸对猪胴体脂肪酸组成以及碘值的影响。  相似文献   

14.
共轭亚油酸可缓解玉米DDGS对猪肉品质带来的不利影响   总被引:1,自引:0,他引:1  
对猪饲喂玉米DDGS可使猪肉脂肪增加从而影响猪肉品质.当在猪日粮中添加一定量的共轭亚油酸(CLA)可以提高猪肉中多不饱和脂肪酸的含量.从而可以提高猪肉的品质。本试验在猪屠宰30d前给其饲喂含0、20%、40%的玉米DDGS,在屠宰10d前将每个处理组的一半猪只饲喂含0.6%的CLA日粮。屠宰时采集胴体、猪内脏和背最长肌等样本。数据显示.DDGS组和CLA组猪肉的背最长肌面积、第10肋骨处背膘厚度、最后肋之间的膘部中线、背最长肌肉颜色、大理石花纹、剪切力和滴水损失以及培根胶原蛋白含量均没有显著差异。其中0、20%和40%DDGS组的猪肉外层背碘值(IV)分别为65.07、69.75和74125,都较添加CLA组的要高(P≤0.05)。另外。0.6%CLA组和空白对照组猪肉外层背脂的脂肪酸IV分别为68.31和71.11,两者差异显著(P≤0.05),40%含量DDGS组的猪肉培根瘦肉率(38%)较CLA组(48%)低(P≤0.05)。DDGS组的猪脂肪或肝脏中的脂肪酸合成酶的丰度、肉毒碱棕榈酰基转移酶1A、乙酰辅酶A-羧化酶、硬脂酰辅酶A脱氢酶、甘油醛3-磷酸脱氢酶mRNA的表达的没有显著差异(P〉0.05).CLA组猪肉脂肪中的A9去饱和酶指数有所下降(P≤0.05)。这些数据说明,猪日粮中饲喂DDGS可以降低猪肉的品质。对育成猪饲喂20%或者更高含量的DDGS可以降低猪肉培根瘦肉率.但通过添加0.6%的CLA可以部分缓解这些不利的影响。  相似文献   

15.
An experiment evaluated the ileal apparent and standardized AA and apparent energy digestibilities in grower-finisher pigs of 5 sources of distillers dried grains with solubles (DDGS) from corn. The 5 DDGS sources were analyzed for AA, GE, NDF, ADF, and color score. Diets were formulated to contain 15% CP from the test DDGS sources (approximately 60% of the diet). A low-protein (5% casein) diet was used to estimate basal endogenous AA losses. The experiment was conducted in 2 replicates of a 6 x 6 Latin Square design, with 6 treatments and six 1-wk periods. The experiment used 12 crossbred barrows [(Yorkshire x Landrace) x Duroc], averaging 28 kg of BW and 60 d of age, and surgically fitted with a T-cannula in the distal ileum. After a 10-d recovery period, treatment diets were fed in meal form, initially at 0.09 kg . BW(0.75). Feed intake was equalized between pigs within each period and increased for each subsequent period. Periods included 5 d of diet acclimation followed by two 12-h ileal digesta collections, one on d 6 and one on d 7. Apparent and standardized digestibility of AA was calculated using chromic oxide (0.4%) as an indigestible marker. The results demonstrated that apparent and standardized lysine digestibilities ranged from 24.6 to 52.3% and 38.2 to 61.5%, respectively. Average apparent essential AA digestibility was lower (P < 0.05) in sources 1 and 5, the 2 sources that were darkest in color. Apparent and standardized digestibility of the averaged nonessential AA were lower (P < 0.05) in source 5 than in all other sources. Source 5, the darkest colored DDGS, had a 10% lower (P < 0.05) average apparent and standardized essential AA digestibility and was more than 15% lower (P < 0.05) in lysine digestibility than the 3 lightest colored sources. Apparent ileal energy digestibility did not differ among the 5 sources. Lysine content and digestibility seemed to be reduced to a greater extent by the darker colored DDGS than the other essential AA, suggesting that the Maillard reaction reduced total lysine content and lowered its digestibility. These results, therefore, imply that darker colored DDGS sources may have lower (P < 0.05) analyzed lysine contents, as well as lower (P < 0.05) lysine and essential AA digestibilities, than lighter colored DDGS sources.  相似文献   

16.
17.
An experiment was conducted to investigate pig performance, carcass quality, and palatability of pork from pigs fed distillers dried grains with solubles (DDGS), high-protein distillers dried grains (HPDDG), and corn germ. Eighty-four pigs (initial BW, 22 +/- 1.7 kg) were allotted to 7 dietary treatments with 6 replicates per treatment and 2 pigs per pen. Diets were fed for 114 d in a 3-phase program. The control treatment was based on corn and soybean meal. Two treatments were formulated using 10 or 20% DDGS in each phase. Two additional treatments contained HP-DDG in amounts sufficient to substitute for either 50 or 100% of the soybean meal used in the control treatment. An additional 2 treatments contained 5 or 10% corn germ, which was calculated to provide the same amount of fat as 10 or 20% DDGS. Results showed that for the entire experiment, pig performance was not affected by DDGS or HP-DDG, but final BW increased (linear, P < 0.05) as corn germ was included in the diets. Carcass composition and muscle quality were not affected by DDGS, but LM area and LM depth decreased (linear, P < 0.05) as HP-DDG was added to the diets. Lean meat percentage increased and drip loss decreased as corn germ was included in the diets (quadratic, P < 0.05). There was no effect of DDGS on fat quality except that belly firmness decreased (linear, P < 0.05) as dietary DDGS concentration increased. Including HP-DDG or corn germ in the diets did not affect fat quality, except that the iodine value increased (linear, P < 0.05) in pigs fed HP-DDG diets and decreased (linear, P < 0.05) in pigs fed corn germ diets. Cooking loss, shear force, and bacon distortion score were not affected by the inclusion of DDGS, HP-DDG, or corn germ in the diets, and the overall palatability of the bacon and pork chops was not affected by dietary treatment. In conclusion, feeding 20% DDGS or high levels of HP-DDG to growing-finishing pigs did not negatively affect overall pig performance, carcass composition, muscle quality, or palatability but may decrease fat quality. Feeding up to 10% corn germ did not negatively affect pig performance, carcass composition, carcass quality, or pork palatability but increased final BW of the pigs and reduced the iodine value of belly fat.  相似文献   

18.
19.
20.
A study with 3 experiments was conducted to determine the AA digestibility and energy concentration of deoiled (solvent-extracted) corn distillers dried grains with solubles (dDGS) and to evaluate its effect on nursery pig growth performance, finishing pig growth performance, and carcass traits. In Exp. 1, a total of 5 growing barrows (initial BW = 30.8 kg) were fitted with a T-cannula in the distal ileum and allotted to 1 of 2 treatments: 1) a diet with dDGS as the sole protein source, or 2) a N-free diet for determining basal endogenous AA losses in a crossover design at 68.0 kg of BW. Apparent and standardized (SID) ileal digestibility of AA and energy concentration of dDGS were determined. In Exp. 2, a total of 210 pigs (initial BW = 9.9 kg) were used in a 28-d experiment to evaluate the effect of dDGS on nursery pig performance. Pigs were allotted to 5 dietary treatments (0, 5, 10, 20, or 30% dDGS) formulated to contain equal ME (increased added fat with increasing dDGS) and SID Lys concentrations based on the values obtained from Exp. 1. In Exp. 3, a total of 1,215 pigs (initial BW = 29.6 kg) were used in a 99-d experiment to determine the effect of dDGS on growth and carcass characteristics of finishing pigs. Pigs were allotted to dietary treatments similar to those used in Exp. 2 and were fed in 4 phases. The analyzed chemical composition of dDGS in Exp. 1 was 35.6% CP, 5.29% ash, 4.6% fat, 18.4% ADF, and 39.5% NDF on a DM basis. Apparent ileal digestibility values of Lys, Met, and Thr in dDGS were 47.2, 79.4, and 64.1%, respectively, and SID values were 50.4, 80.4, and 68.9%, respectively. The determined GE and DE and the calculated ME and NE values of dDGS were 5,098, 3,100, 2,858, and 2,045 kcal/kg of DM, respectively. In Exp. 2, nursery pig ADG, ADFI, and G:F were similar among treatments. In Exp. 3, increasing dDGS reduced (linear; P < 0.01) ADG and ADFI but tended to improve (linear; P = 0.07) G:F. Carcass weight and yield were reduced (linear; P < 0.01), loin depth tended to decrease (linear; P = 0.09), and carcass fat iodine values increased (linear; P < 0.01) as dDGS increased. No difference was observed in backfat, percentage of lean, or fat-free lean index among treatments. In conclusion, dDGS had greater CP and AA but less energy content than traditional distillers dried grains with solubles. In addition, when dietary fat was added to diets to offset the reduced ME content, feeding up to 30% dDGS did not affect the growth performance of nursery pigs but did negatively affect the ADG, ADFI, and carcass fat quality of finishing pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号