首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four groups of nine Saanen goat does with a naturally acquired mixed trichostrongylid infection were grazed on four paddocks. Two groups received a daily dose of Duddingtonia flagrans at the rate of 5 x 10(7) chlamydospores per animal per day for the 26-day grazing period. After a 19-day pasture resting period, 20 worm free 12-week-old tracer kids were introduced to the paddocks for 14 days prior to removal for worm burden analysis. Four groups of five does and four kids were drenched then turned out onto the paddocks and faecal egg count (FEC) monitored. The FEC between groups was comparable throughout the initial grazing period. There were significant reductions in number of Teladorsagia circumcincta (54.8%, P=0.004) and Haemonchus contortus (85.0%, P=0.02) worms recovered from tracer animals. FEC of animals subsequently grazing pasture were significantly reduced (P=0.036) with reductions of 44% observed 4 weeks post-turnout. No significant difference was observed after 6 weeks grazing. This trial has demonstrated the potential of D. flagrans to reduce larval numbers on pasture grazed by goats under New Zealand conditions.  相似文献   

2.
Previous observations showed that Duddingtonia flagrans chlamydospores were visualized in McMaster chambers containing faeces of treated sheep. This trial explored the McMaster technique as a tool to quantify chlamydospores in sheep faeces. A range of individual chlamydospore doses (from 19.5 x 10(6) to 177.5 x 10(6)) were offered orally to nine lambs for 7 consecutive days. A faecal sample (5 g) was daily obtained from the rectum of each animal (from days 1 to 13) to perform the McMaster technique using a sugar flotation fluid with 1.27 g/mL density. Each chlamydospore counted in the McMaster chamber was considered as 50 chlamydospores per g of faeces (CPG). The results confirmed that the estimated CPG was associated with the daily dose offered to the animals (r(2)=0.90; P<0.001). Furthermore, the total chlamydospore dose received by each animal was strongly associated to the total quantity of CPG obtained from the bulk faeces (TCtot) (r(2)=0.96; P<0.0001). Quantification of CPG can be used as a helpful tool to determine the number of chlamydospores reaching the faeces in orally dosed animals. This could be used to evaluate the efficacy of D. flagrans for the control of gastrointestinal nematode larvae in sheep faeces.  相似文献   

3.
A field study was undertaken to determine the effects of feeding Duddingtonia flagrans to young Merino sheep on pasture. A total of 60 mixed sex lambs 4-5 months old were divided into six even groups on the basis of liveweight. On Monday to Friday, each week for 6 months, three groups were offered barley grains on which D. flagrans had been cultured while the other three groups remained untreated. Every 4 weeks liveweights were recorded and faecal samples collected for nematode egg count estimation. Feeding D. flagrans reduced faecal egg counts and tended to improve liveweight gains, but considerable differences were observed between groups within treatment. These differences are thought to result from variations between the groups in consumption of the treated barley with the "best" consumers showing the greater effects of treatment.  相似文献   

4.
A field study was conducted on three Swiss farms to investigate the efficacy of Duddingtonia flagrans against naturally acquired infections of gastrointestinal nematodes in adult dairy sheep. On each farm the ewes were divided into two equal groups. One group received Duddingtonia during a period of 4 months at a daily dose rate of 10(6) chlamydospores per kilogram body weight, the second group acted as controls. At an overall moderate infection level in all farms D. flagrans did not have a significant effect on the observed parasitological parameters with the exception of a significantly reduced herbage infectivity in one farm. In contrast, the results from faecal cultures indicated a mean suppression of larval development during the fungus-feeding period between 82, 89 and 93% on the three farms, respectively. The discrepancy observed between the fungus efficacy in coprocultures and on pasture, which was also observed in several other studies deserves further research.  相似文献   

5.
嗜线虫真菌Duddingtonia flagrans是目前发现的一种最具有动物胃肠道线虫病生物防治应用潜力的真菌。为了解该菌捕杀绵羊粪便中感染性幼虫效果与剂量的关系,为今后该制剂应用和质量检验标准的制定提供依据,用不同剂量的厚垣孢子,分别以不经消化道直接加入感染羊粪便,或作添加剂通过饲喂进入消化道后采集直肠粪便,经培养检测感染性幼虫数量的变化。结果表明,嗜线虫真菌Duddingtonia flagrans具有良好的捕杀胃肠道线虫感染性幼虫的生物学特性。以制剂厚垣孢子4&#215;103/g剂量加入感染羊粪便,或以每天5&#215;105/kg体质量的剂量饲喂绵羊,可使粪便培养物中线虫感染性幼虫数减少83.6%~87.5%。  相似文献   

6.
The effectiveness of selective anthelmintic treatments and use of nematophagous fungi Duddingtonia flagrans in reducing levels of gastrointestinal nematodes in goats was investigated at Onderstepoort, South Africa. Nineteen (19) naturally infected indigenous male goats, aged 10 months, were separated into four groups and grazed in separate previously ungrazed paddocks for two worm seasons (February 2002-March 2003). Two groups of goats were fed D. flagrans chlamydospores daily and two groups did not receive fungi. The FAMACHA system was used to determine which goats required anthelmintic treatments. Twice as many goats in the no-fungi fed group required treatments as compared with the fungi fed group. Mean FAMACHA scores in the no-fungi fed group were higher during most of the sampling occasions compared to the group fed fungi, but the difference was not significant. The group-mean faecal egg counts and PCV% were comparable between the two treatment groups throughout the study. Haemonchus was the predominant parasite genus in composite group faecal cultures. Group-mean body weights and body condition scores were higher for the no-fungi fed group from May 2002 up to the end of the study, though statistical differences were not significant. Mean worm burdens indicated that the most abundant species infecting animals were Haemonchus contortus and Trichostrongylus spp. and were higher in the fungi fed group. More animals required individual anthelmintic treatments in the no-fungi fed group. The requirement for extra treatments in the no-fungi fed group must, however, be considered against the financial cost of the fungi, the requirement of daily feeding of the fungi, the lower performance and higher worm burdens in the fungi fed group.  相似文献   

7.
The ability of the nematode-killing fungus Duddingtonia flagrans to reduce number of infective larvae of three species of gastro-intestinal parasitic nematodes developing in dung was investigated in both goats and sheep. Groups of lambs and kids (12-20 weeks old) were given mono-specific infections of Haemonchus contortus, Ostertagia (Teladorsagia) circumcincta or Trichostrongylus colubriformis. Following patency of the infections (t1) faecal samples were collected for determination of faecal nematode egg count (FEC) and culture of parasite larvae. Groups of animals were then dosed on 2 consecutive days with one of the two dose rates of the fungus (250,000 or 500,000 spores/kg liveweight). One (t2) and 5 (t3) days after the second dose of fungus samples were again collected for FEC and culture. The number of larvae recovered from the faecal cultures at t1 and t3 were used as controls to assess the efficacy of the experimental treatment at t2. Average efficacy was 78% with group means ranging from 40 to 93%. Dose rate of fungus appeared to influence efficacy against O. circumcincta but not against H. contortus or T. colubriformis. Overall, there were no differences in the efficacy of the fungus against any of the parasite species or in either host animal. The results of this trial indicate the potential use of this fungus as a broad spectrum anti-parasite agent for use in both goats and sheep.  相似文献   

8.
Consequences of nematode infections due to Haemonchus contortus are a serious constraint for the sheep industry worldwide. Development of anthelmintic resistance and increasing concern about the impact of anthelmintic use dictate the need of alternative control. Such an alternative is using the nematode trapping fungus Duddingtonia flagrans to reduce infective larvae levels on pasture. Two trials were conducted to determine the effect of D. flagrans in reducing infective larvae (predominantly H. contortus) in feces. The first trial determined the dose effect of D. flagrans in reducing infective larvae in feces. Eighteen ewes were dewormed to remove existing infections and randomly assigned to six treatment groups: 5 x 10(4), 1 x 10(5), 2.5 x 10(5), 5 x 10(5), 1 x 10(6) or no (control) spores of D. flagrans per kg of body weight mixed in their feed for 7 days. Fecal samples were collected daily from these and from infected donor ewes. Feces from individual-treated ewes were mixed with equal amounts of donor ewe feces, theoretically approximating oral dose spore concentrations of 2.5 x 10(4), 5 x 10(4), 1.25 x 10(5), 2.5 x 10(5), 5 x 10(5) and no spores, and were cultured. Across dosages and during the 7 days of fungus feeding, percent reduction of infective larvae ranged from 76.6 to 100.0%. The second trial determined the effect of D. flagrans at the dose of 10(5) spores per kg body weight on reducing infective larvae in feces from naturally infected lambs. Twenty lambs were randomly assigned to either treatment or control groups based on fecal egg count. Treatment lambs were fed spores mixed in feed for 7 days. Feces were collected daily and cultured. During the 7 days of fungus feeding, the percent reduction of infective larvae ranged from 82.8 to 99.7%. Results of these trials demonstrated that the nematode trapping fungus D. flagrans was highly effective in reducing infective larvae in sheep feces and should be considered as a biological control agent for integrated nematode control programs.  相似文献   

9.
Gastrointestinal nematodes are of concern in sheep production because of production and economic losses. Control of these nematodes is primarily based on the use of anthelmintic treatment and pasture management. The almost exclusive use of anthelmintic treatment has resulted in development of anthelmintic resistance which has led to the need for other parasite control options to be explored. The blood sucking abomasal parasitic nematode Haemonchus contortus causes severe losses in small ruminant production in the warm, humid sub-tropic and tropics. This study evaluated the effectiveness of a nematode trapping fungus, Duddingtonia flagrans, in reducing availability of parasitic nematode larvae, specifically H. contortus, on pasture. Chlamydospores of D. flagrans were mixed with a supplement feed which was fed daily to a group of crossbred ewes for the duration of the summer grazing season. A control group was fed the same supplement feed without chlamydospores. A reduction in infective larval numbers was observed in fecal cultures of the fungus-fed group. Herbage samples from the pasture grazed by the fungus-fed group also showed a reduction in infective larvae. There were no significant (P > 0.05) differences in overall fecal egg count, packed cell volume or animal weight between fungus-fed and control groups. Tracer animals were placed on the study pastures at the end of the study to assess pasture infectivity. Although tracer animals were only two per group, those that grazed with the fungus-fed group had substantially reduced (96.8%) nematode burdens as compared to those from the control group pasture. Results demonstrated that the fungus did have activity against nematode larvae in the feces which reduced pasture infectivity and subsequently nematode burdens in tracer animals. This study showed that D. flagrans, fed daily to grazing ewes, was an effective biological control agent in reducing a predominantly H. contortus larval population on pasture.  相似文献   

10.
The aim of this study was to determine the trapping efficacy of Duddingtonia flagrans against Haemonchus contortus at the temperature ranges experienced around lambing in the major sheep producing regions of Australia. Faeces were collected from Merino wethers, maintained in an animal house and which had received either D. flagrans chlamydospores for a 6-day period (DF) or not (NIL). Faeces were incubated at one of four daily temperature regimens which were composed of hourly steps to provide 6-19 degrees C, 9-25 degrees C, 14-34 degrees C and 14-39 degrees C to mimic normal diurnal air temperature variation. Enumeration of the number of preinfective and infective larvae that had migrated from or remained in faecal pellets was used to calculate percentage recovery and trapping efficacy of D. flagrans. Recovery of H. contortus larvae of both stages was significantly lower in DF faeces but the magnitude of the effect was considerably greater for infective larvae. Mean recovery of infective larvae from NIL and DF faeces was 10.6 and 0.4%, respectively, indicating a mean trapping efficacy of 96.4%. The lowest trapping efficacy (80.7%) was observed at 6-19 degrees C but total recovery of infective larvae, from DF faeces, was greatest at the two highest temperature regimens, although still less than 0.9%. The results of this study indicate that typical Australian lambing temperatures should not be a barrier to the use of D. flagrans as an effective biocontrol of H. contortus in Australia.  相似文献   

11.
本试验选用耐高温高压的菌种袋作为玉米粒培养基的培养容器,对Duddingtonia flagrans厚壁孢子进行批量培养,然后经孢子洗脱液将孢子洗脱后,将其制备成冻干制剂,并在内蒙古地区的呼和浩特市和林格尔、包头市萨拉齐、呼伦贝尔西旗等地养殖场共165头绵羊中进行了临床应用研究。通过设立不同的试验组和对照组,使用常用驱虫药伊维菌素进行驱虫试验,同时配合口服捕食线虫性真菌Duddingtonia flagrans厚壁孢子,在不同时间进行动物直肠采粪,对粪便进行第三期幼虫培养,然后检测比较不同组别粪便中感染性幼虫的数量,评价捕食线虫性真菌临床应用模式效果。结果显示,将伊维菌素与D.flagrans冻干制剂联合应用于绵羊的寄生性线虫病防治,可使粪便中幼虫数量降低100%,效果优于单独用药组。结果表明,捕食线虫性真菌Duddingtonia flagrans冻干生物制剂与驱虫药物联合使用的临床应用模式,可以取得较好的家畜线虫病临床防控效果,值得进一步在生产实践中进行深入研究和推广。  相似文献   

12.
Long-term field studies were conducted on two government managed small ruminant research farms, located in different geo-climatic regions and approximately 300 km separate from each other, on Peninsula Malaysia. The Infoternak trial (48 weeks) and the Chalok trial (43 weeks) each compared nematode parasite control in separately managed groups of young sheep, either short-term rotationally grazed around a suite of 10 paddocks in addition to receiving a daily supplement of Duddingtonia flagrans spores (Fungus Group); or similar groups of sheep being rotationally grazed alone (Control Group). The prevailing weather conditions at Infoternak farm were of below average rainfall conditions for the most of the trial. As a consequence, only very low worm infections (almost exclusively Haemonchus contortus) were acquired by the 17 sets of tracer lambs that grazed sequentially with the experimental lambs. However on all except 2 occasions in the early part of the trial, the mean tracer worm burdens were significantly lower (P < 0.05) and the experimental lambs grew significantly better (P = 0.054) in the Fungus Group. Rainfall at Chalok farm during the course of the trial was also below average. As a consequence infectivity of pastures was assumed to be relatively low based on faecal egg counts (epg) of the experimental sheep, which following an anthelmintic treatment prior to allocation, remained very low in both treatment groups. Faecal egg counts of undosed replacement lambs in the latter half of the Chalok study, showed a progressive increase in the Control Group to levels exceeding 3000 epg, whereas the Fungus Group remained static at approximately 500 epg. These results show that the deployment of the nematophagous fungus, D. flagrans, can improve the level of parasite control of sheep in the tropics above that which can be achieved by the short-term rotational grazing strategy alone.  相似文献   

13.
Field trials, conducted over 3 consecutive years, were aimed at assessing farmer opinions of the practicality and effectiveness of using Duddingtonia flagrans to control nematode parasites in their flocks on the Swedish island of Gotland. These trials were also monitored by intensive parasitological investigation. On Gotland, lambing occurs in spring, and around mid-summer (late June), ewes and lambs are moved to saved pastures due to pasture deterioration caused by dry conditions. Weaned lambs are then returned to original lambing pastures in early autumn for finishing. One farm (B) was used for 2001-2003 and a second farm (N) was also used in 2002 and 2003. On each farm, two flocks (each of 20 ewes + twin lambs) were managed separately, namely: fungus group which received a daily supplement + fungal spores from lambing until the summer move (6 weeks) and: control group which received supplement only. For Farm B, the numbers of lambs that were marketed prior to the end of the grazing season, were 13, 18, 19 for the fungus treatment whereas corresponding numbers for the control treatment were 8, 16 and 11 for years 2001, 2002 and 2003, respectively. Final weights of the remaining lambs at the end of each year were also consistently heavier, and the numbers of lambs retained for finishing during winter were less, on the fungus treatment compared with the control treatment. On Farm N, similar results were recorded, with more lambs marketed earlier in the fungus group (25 and 19) compared with the control (19 and 15) in 2002 and 2003, respectively. The weights of the remaining lambs at the end of the trial in 2003 showed a 4.5 kg weight gain advantage of the fungus group compared to the controls. Tracer tests during autumn 2001 on Farm B, showed that Teladorsagia circumcincta plus Trichostrongylus spp. levels were significantly less on the fungus treatment (P=0.018). The summer/autumn of 2002 was one of the driest on record for Gotland. This resulted in very low levels of infective larval availability. But on both farms, T. circumcincta numbers were less on the fungus than on the control paddocks (P=0.048 on Farm B). In 2003 very low numbers of infective larvae were recorded in the autumn tracers for both treatments on both farms. Both farmer co-operators were encouraged with these results and consider that biological control of nematode parasites in their flocks, using D. flagrans, is of practical value.  相似文献   

14.
Two experiments were performed in 2002 and 2003 to evaluate the effect of biological control of gastrointestinal nematodes in sheep through the daily feeding of 500,000 chlamydospores of Duddingtonia flagrans/kg bodyweight to lactating ewes during the first 9 weeks with their young lambs on pasture. In both experiments four groups of eight ewes and their April-borne lambs were used. They were turned out on four separate plots (plots A) at the beginning of May, moved to similar separate plots after 3 (plots B) and 6 weeks (plots C), respectively, and weaning occurred after 9 weeks. In both experiments, two groups were fed spores daily while the two other groups served as controls. The effect of D. flagrans application was evaluated through faecal egg counts of ewes and lambs, the yield of faecal cultures in ewes, pasture larval counts and worm counts of lambs and tracer lambs. The results demonstrated no effect of D. flagrans application during the first 5 (2002) or 4 (2003) weeks. Subsequently, fungus application strongly reduced the yield in faecal cultures of the ewes. This was, however, not reflected in the pasture larval counts, but lower worm burdens were observed in tracer lambs of 'treated' plots C in 2002 than on those of 'control' plots. In 2003 worm burdens in 'treated' lambs returned to plots B were lower than those of 'control' lambs and a tendency for the same was observed for plots C. However, in all groups, lambs and tracer lambs developed severe haemonchosis.  相似文献   

15.
为快速获得大量捕食性真菌Duddingtonia flagrans原生质体并使其再生,本试验研究了酶质量浓度、酶解温度、菌龄、酶解时间对D.flagrans原生质体产生的影响,以确定D.flagrans原生质体最佳快速制备条件。结果表明,在溶壁酶2mL/L、蜗牛酶8g/L、纤维素酶8g/L时,35℃恒温条件下,酶解菌龄为2d的菌丝7h,捕食性真菌D.flagrans产生原生质体数量最多且能够再生。这为下一步转化并标记和克隆捕食性相关基因奠定了重要基础。  相似文献   

16.
A series of experiments was carried out to examine the effects of two different isolates of the nematode-trapping fungus Duddingtonia flagrans to reduce the number of free-living larvae of the bovine lungworm, Dictyocaulus viviparus. A laboratory dose-titration assay showed that isolates CI3 and Troll A of D. flagrans significantly reduced (P < 0.05 to P < 0.001) the number of infective D. viviparus larvae in cultures at dose-levels of 6250 and 12,500 chlamydospores/g of faeces. The larval reduction capacity was significantly higher for Troll A compared to CI3 when lungworm larvae were mixed in faecal cultures with eggs of Cooperia oncophora or Ostertagia ostertagi and treated with 6250 chlamydospores/g of faeces. Both fungal isolates showed a stronger effect on gastrointestinal larvae than on lungworm larvae. Two plot trials conducted in 1996 and 1997 involved deposition of artificial faecal pats containing free-living stages of D. viviparus and C. oncophora on grass plots. Herbage around the pats was collected at regular intervals and infective larvae recovered, counted and identified. These experiments showed that both D. flagrans isolates reduced the number of gastrointestinal as well as lungworm larvae in faecal pats. During both plot trials, the transmission of C. oncophora larvae, but not D. viviparus, from faecal pats to the surrounding herbage was clearly affected by climatic conditions. After collection of faecal pats from the grass plots one month after deposition, the wet and dry weight of pats as well as organic matter content were determined. No differences were found between the fungus-treated and non-treated control pats. This indicated that the rate of degradation of faeces was not affected by the addition of the fungus.  相似文献   

17.
18.
The small lungworm Muellerius capillaris is very prevalent in goats and causes production losses. Its control is particularly difficult. The nematophagous fungus Duddingtonia flagrans has been shown to be effective in trapping a large range of gastro-intestinal nematode larvae but its trapping activity against small lungworm remains to be assessed. The purpose of this work was firstly, to evaluate the ability of first-stage larvae of M. capillaris (L1) to induce trap formation in in vitro conditions and secondly, to determine the effect of D. flagrans on the L1 infectivity to snails. In experiments on agar, the presence of L1 failed to induce any D. flagrans traps whereas in the same conditions, gastro-intestinal third-stage larvae induced 44-135 traps/cm(2) depending on the species. Moreover, when the traps were pre-induced by Haemonchus contortus larvae, the L1 of M. capillaris were not trapped. For the in vivo trial, two goats naturally infected with M. capillaris received D. flagrans chlamydospores at the daily dose rate of 5x10(5) spores/kg BW for 8 days. Faeces were collected individually before, during and 11 days after spore administration. On each day of harvest, the initial larval output was determined. The remaining faeces were subjected to coproculture at 21 degrees C for 7 days. At the end of this period, L1 were collected and used to infect snails (30 snails per goat isolate each snail given 40 L1 by direct deposit of the larvae on the foot of the snail). These snails were artificially challenged in contrast to others that were exposed to natural infection by exposure to faeces carrying first-stage M. capillaris larvae. The natural infection used the same number of snails, i.e. 30 snails deposited on the faeces of each goat. After 3 weeks at room temperature, the infective larvae present in the snail foot were counted. There was no difference in the survival of the L1 in faeces after coproculture whether the faeces contained D. flagrans or not. The infectivity of the extracted larvae from the two goats before and after fungal administration was the same. The number of infective larvae per snail obtained after "natural" infection showed variations that were not related to the presence of D. flagrans mycelium in faeces. These trials clearly indicate that D. flagrans was unable to trap or to alter the infectivity of M. capillaris first-stage larvae and thus cannot be considered as a non-chemotherapeutic alternative approach to the control of the small lungworm in goats.  相似文献   

19.
An experiment was carried out in 1997 to test the efficacy of an isolate of the microfungus Duddingtonia flagrans against free-living stages of horse strongyles under conditions in the field and to assess the eventual effect of the fungus on the normal degradation of faeces. Faecal pats were made from faeces of a naturally strongyle infected horse, which had been fed fungal material at a dose level of 106 fungal unit/kg bwt. Control pats without fungi were made from faeces collected from the same animal just before being fed fungi. Faecal cultures set up for both groups of faeces to monitor the activity of the fungus under laboratory conditions showed that the fungus significantly reduced the number of infective third-stage larvae (L3) by an average of 98.4%. Five faecal pats from each batch of faeces were deposited on pasture plots at 3 times during spring-summer. The herbage around each pat was sampled fortnightly to recover L3 transmitted from faeces. The results showed that the herbage infectivity around fungus-treated pats was reduced by 85.8-99.4%. The remaining faecal material at the end of each sampling period was collected, and the surviving L3 were extracted. Significantly fewer larvae were recovered from the fungus-treated pats. Analysis of wet and dry weight of the collected pats, as well as their organic matter content, were performed to compare the degradation of faeces of both groups. The results indicated that the presence of the fungus did not alter the degradation of the faeces.  相似文献   

20.
Larval counts were made on herbage samples collected from 14 calf pastures and 14 cow pastures at each of three different localities in Lower Saxony, Western Germany, in September 1974. Significantly higher numbers of larvae of the genera Ostertagia, Cooperia and Nematodirus were demonstrated on calf pastures than on cow pastures in all three areas. The results suggest that, in the absence of available “clean” pasture, improved control of trichostrongyle infection during late summer and autumn might be achieved by the transfer of calves to cow pastures at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号