共查询到20条相似文献,搜索用时 0 毫秒
1.
Pregelatinized starch is employed in many food applications due to the instantaneous nature of thickening and stability imparted by modification. Proteins, however, have been excluded as a viscosifying agent due to requisite thermal treatments required to create structure. Whey protein isolate gels were produced while manipulating heating time, pH, and mineral type/content, producing a variety of gel types/networks. Gels were frozen, freeze-dried, and ground into a powder. Once reconstituted in deionized water, gel powders were evaluated based on solubility studies, rotational viscometry, and electrophoresis. The protein powder exhibiting the largest apparent viscosity, highest degree of hydrolysis, and greatest solubility was selected for pH and temperature stability analyses and small amplitude oscillatory rheology. This processing technique manipulates WPI into a product capable of forming cold-set weak gel structures suitable for thickening over a wide range of temperature and pH food systems. 相似文献
2.
3.
适宜物理-酶联合改性提高酸性条件下大豆分离蛋白乳化性 总被引:1,自引:0,他引:1
为提高酸性条件下大豆分离蛋白(soy protein isolates,SPI)的乳化性能,该文研究了物理-酶联合改性对SPI(pH值为4)的乳化性能影响,通过对比确定了物理-酶联合改性,即超声波-酶复合改性和挤压膨化-酶复合改性两种改性方法在酸性条件下的乳化性能效果最好;并通过对改性后 SPI(pH 值为4)进行溶解性、游离巯基、二硫键、粒径、扫描电镜(scanning electron microscope,SEM)和激光共焦扫描显微镜(confocal laser scanning microscopy,CLSM)分析,从蛋白结构变化上进一步揭示了乳化性能提高现象的原因。结果表明:超声波联合植酸酶-酸性蛋白酶改性的 SPI (Uphy-aci-SPI)的乳化活性(emulsifying activity index,EAI)为0.53 m2/g,比未改性SPI(0.18 m2/g)显著提高了196%(P<0.05),乳化稳定性(emulsifying stability index,ESI)为17 min,比未改性SPI(13.5 min)显著提高了25.9%(P<0.05);挤压膨化联合菠萝蛋白酶改性的SPI(Ebro-SPI)的EAI为0.46 m2/g,比未改性SPI显著增加了155%(P<0.05),ESI为17 min,比未改性SPI显著增加了25.9%(P<0.05)。在pH值为4的条件下对物理-酶联合改性的SPI的性质分析发现,物理-酶联合改性的SPI与未改性SPI相比,物理-酶联合改性的SPI的溶解性显著增加(P<0.05);物理-酶联合改性的SPI的乳状液平均粒径减小,CLSM观察乳状液中油与蛋白溶液稳定共融,改善了油滴之间的空间排斥力。物理-酶联合改性的SPI游离巯基的含量显著增加(P<0.05),二硫键含量显著降低(P<0.05)。SEM观察物理-酶联合改性的SPI为结构松散、破碎均一的微观结构。由此可见,乳化性能的提高是通过深层改变蛋白的结构来实现的。该研究可为探索提高酸性条件下SPI的乳化性能的方法提供理论依据。 相似文献
4.
Whey protein isolate (WPI) gels were prepared from solutions containing ribose or lactose at pH values ranging from 6 to 9. The gels with added lactose had no color development, whereas the gels with added ribose were orange/brown. Lactose stabilized the WPI to denaturation, which increased the time and temperature required for gelation, thus decreasing the fracture modulus of the gel compared to the gels with added ribose and the gels with no sugar added. Ribose, however, favored the Maillard reaction and covalent cross-linking of proteins, which increased gel fracture modulus. The decreased pH caused by the Maillard reaction in the gels containing ribose occurred after protein denaturation and gelation, thus having little if any effect on the gelation process. 相似文献
5.
Modification of the rheological properties of whey protein isolate through the use of an immobilized microbial transglutaminase 总被引:1,自引:0,他引:1
A process was developed in which calcium-independent, microbial transglutaminase (mTgase) was immobilized to controlled-pore glass. Avidin was adsorbed to glass beads that had been derivatized and biotinylated. The enzyme was biotinylated and adsorbed to the avidin affinity matrix. Solutions of 8% whey protein isolate (WPI) were then incubated with the mTgase beads, resulting in limited cross-linking of whey proteins. As incubation time increased, intrinsic viscosity increased, gelation temperature decreased, and stronger, more brittle gels were formed upon heating. This process allowed for recycling of the enzyme, eliminated the requirement for a downstream inactivation step, and permitted control over the extent of cross-linking. The functional properties of several batches of WPI were modified using <10 mg of the same enzyme, illustrating the capacity of immobilized enzymes to be used more frequently in applications of this nature. 相似文献
6.
O'Loughlin IB Murray BA Kelly PM FitzGerald RJ Brodkorb A 《Journal of agricultural and food chemistry》2012,60(19):4895-4904
The effects of heat-induced denaturation and subsequent aggregation of whey protein isolate (WPI) solutions on the rate of enzymatic hydrolysis was investigated. Both heated (60 °C, 15 min; 65 °C, 5 and 15 min; 70 °C, 5 and 15 min, 75 °C, 5 and 15 min; 80 °C, 10 min) and unheated WPI solutions (100 g L(-1) protein) were incubated with a commercial proteolytic enzyme preparation, Corolase PP, until they reached a target degree of hydrolysis (DH) of 5%. WPI solutions on heating were characterized by large aggregate formation, higher viscosity, and surface hydrophobicity and hydrolyzed more rapidly (P < 0.001) than the unheated. The whey proteins exhibited differences in their susceptibility to hydrolysis. Both viscosity and surface hydrophobicity along with insolubility declined as hydrolysis progressed. However, microstructural changes observed by light and confocal laser scanning microscopy (CLSM) provided insights to suggest that aggregate size and porosity may be complementary to denaturation in promoting faster enzymatic hydrolysis. This could be clearly observed in the course of aggregate disintegration, gel network breakdown, and improved solution clarification. 相似文献
7.
Although extrusion technology has contributed much to increasing the effective utilization of whey, the effect of extrusion conditions on the functional properties of the proteins is not well understood. In this work, the impact of extrusion temperature on the physical and chemical properties, molecular structures, and protein quality of texturized whey protein isolate (WPI) was investigated at a constant moisture content and compared with WPI treated with simple heat only. The Bradford assay methods, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and reversed-phase high-performance liquid chromatography techniques were used to determine protein solubility and to analyze compositional changes in the two major whey proteins, α-lactalbumin and β-lactoglobulin. Circular dichroism and intrinsic tryptophan fluorescence spectroscopic techniques were applied to study the secondary and tertiary structures of the proteins. This study demonstrated that extrusion temperature is a critical but not the sole determining factor in affecting the functional properties of extruded WPI. 相似文献
8.
The objective was to examine the effect of the additives acetic acid, lactic acid, sodium bicarbonate, sodium chloride, and sodium hydroxide on the hydrolysis of whey protein isolate with subcritical water. A screening experimental design was used to study the effect of temperature, time, and additives. The most influential additive, sodium bicarbonate, along with temperature and time was used in a second experimental design to predict the treatment conditions to maximize the degree of hydrolysis and production of free amino acids. The maximum degree of hydrolysis achieved was 50% at a concentration of 1.24 M sodium bicarbonate, 291 °C, and 28 min. The highest concentration of total amino acids was 83.0 mg/g of whey protein isolate with 0.83 M sodium bicarbonate at 264 °C for 29 min. Compared to water alone, sodium bicarbonate increased the degree of hydrolysis 4-fold and the production of amino acids by 44% and decreased peptides' molecular weight. 相似文献
9.
Lipid oxidation in corn oil-in-water emulsions stabilized by casein,whey protein isolate,and soy protein isolate 总被引:4,自引:0,他引:4
Proteins can be used to produce cationic oil-in-water emulsion droplets at pH 3.0 that have high oxidative stability. This research investigated differences in the physical properties and oxidative stability of corn oil-in-water emulsions stabilized by casein, whey protein isolate (WPI), or soy protein isolate (SPI) at pH 3.0. Emulsions were prepared with 5% corn oil and 0.2-1.5% protein. Physically stable, monomodal emulsions were prepared with 1.5% casein, 1.0 or 1.5% SPI, and > or =0.5% WPI. The oxidative stability of the different protein-stabilized emulsions was in the order of casein > WPI > SPI as determined by monitoring both lipid hydroperoxide and headspace hexanal formation. The degree of positive charge on the protein-stabilized emulsion droplets was not the only factor involved in the inhibition of lipid oxidation because the charge of the emulsion droplets (WPI > casein > or = SPI) did not parallel oxidative stability. Other potential reasons for differences in oxidative stability of the protein-stabilized emulsions include differences in interfacial film thickness, protein chelating properties, and differences in free radical scavenging amino acids. This research shows that differences can be seen in the oxidative stability of protein-stabilized emulsions; however, further research is needed to determine the mechanisms for these differences. 相似文献
10.
Alting AC Hamer RJ de Kruif CG Visschers RW 《Journal of agricultural and food chemistry》2000,48(10):5001-5007
Cold gelation of whey proteins is a two-step process. First, protein aggregates are prepared by a heat treatment of a solution of native proteins in the absence of salt. Second, after cooling of the solution, gelation is induced by lowering the pH at ambient temperature. To demonstrate the additional formation of disulfide bonds during this second step, gelation of whey protein aggregates with and without a thiol-blocking treatment was studied. Modification of reactive thiols on the surface of the aggregates was carried out after the heat-treatment step. To exclude specific effects of the agent itself, different thiol-blocking agents were used. Dynamic light scattering and SDS-agarose gel electrophoresis were used to show that the size of the aggregates was not changed by this modification. The kinetics of gelation as determined by the development of pH and turbidity within the first 8 h of acidification were not affected by blocking thiol groups. During gelation, formation of large, covalently linked, aggregates occurred only in the case of unblocked WPI aggregates, which demonstrates that additional disulfide bonds were formed. Results of permeability and confocal scanning laser microscope measurements did not reveal any differences in the microstructure of networks prepared from treated or untreated whey protein aggregates. However, gel hardness was decreased 10-fold in gels prepared from blocked aggregates. Mixing different amounts of blocked and unblocked aggregates allowed gel hardness to be controlled. It is proposed that the initial microstructure of the gels is primarily determined by the acid-induced noncovalent interactions. The additional covalent disulfide bonds formed during gelation are involved in stabilizing the network and increase gel strength. 相似文献
11.
The interactions of proteins during the heat treatment of whey-protein-isolate (WPI)-based oil-in-water emulsions with and without added hydroxylated lecithin were studied by examining the changes in droplet size distribution and the quantity and type of adsorbed and unadsorbed proteins. Heat treatment at 90 degrees C of WPI emulsions resulted in an increase in total adsorbed protein; unadsorbed beta-lactoglobulin (beta-lg) was the main protein interacting with the adsorbed proteins during the first 10 min of heating, but after this time, unadsorbed alpha-lactalbumin (alpha-la) also associated with the adsorbed protein. In emulsions containing hydroxylated lecithin, the increase in total adsorbed protein during heat treatment was much lower and the unadsorbed beta-lg did not appear to interact with the adsorbed proteins during heating. However, the behavior of alpha-la during heat treatment of these emulsions was similar to that observed in the emulsions containing no hydroxylated lecithin. In the presence of NaCl, the particle size of the emulsion droplets and the quantities of adsorbed protein increased markedly during heating. Emulsions containing hydroxylated lecithin were less sensitive to the addition of NaCl. These results suggest that the binding of hydroxylated lecithin to unfolded monomers or intermediate products of beta-lg reduces the extent of heat-induced aggregation of beta-lg and consequently decreases the interactions between unadsorbed beta-lg and adsorbed protein. This was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated whey protein and hydroxylated lecithin solutions. 相似文献
12.
To identify the parameters that affect enzymatic hydrolysis at high substrate concentrations, whey protein isolate (1-30% w/v) was hydrolyzed by Alcalase and Neutrase at constant enzyme-to-substrate ratio. No changes were observed in the solubility and the aggregation state of the proteins. With increasing concentration, both the hydrolysis rate and the final DH decreased, from 0.14 to 0.015 s(-1) and from 24 to 15%, respectively. The presence of 0.5 M NaCl decreased the rate of hydrolysis for low concentrations (to 0.018 s(-1) for 1% WPI), resulting in similar rates of hydrolysis for all substrate concentrations. The conductivity increase (by increasing the protein concentration, or by addition of NaCl) has significant effects on the hydrolysis kinetics, but the reason for this is not yet well understood. The results show the importance of conductivity as a factor that influences the kinetics of the hydrolysis, as well as the composition of the hydrolysates. 相似文献
13.
Ma H Forssell P Partanen R Buchert J Boer H 《Journal of agricultural and food chemistry》2011,59(4):1406-1414
Whey protein isolate (WPI) was chemically modified by vanillic acid in order to enhance its cross-linkability by laccase enzyme. Incorporation of methoxyphenol groups created reactive sites for laccase on the surface of the protein and improved the efficiency of cross-linking. The vanillic acid modified WPI (Van-WPI) was characterized using MALDI-TOF mass spectrometry, and the laccase-catalyzed cross-linking of Van-WPI was studied. Furthermore, the vanillic acid modification was compared with the conventional approach to improve laccase-catalyzed cross-linking by adding free phenolic compounds. A small extent of the vanillic acid modification significantly improved the cross-linkability of the protein and made it possible to avoid color formation in a system that is free of small phenolic compounds. Moreover, the potential application of Van-WPI as emulsifier and the effect of cross-linking on the stability of Van-WPI emulsion were investigated. The post-emulsification cross-linking by laccase was proven to enhance the storage stability of Van-WPI emulsion. 相似文献
14.
The conjugation reaction between whey protein isolate (WPI) and dextran in aqueous solutions via the initial stage of the Maillard reaction was studied. The covalent attachment of dextran to WPI was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with both protein and carbohydrate staining. The formation of WPI-dextran conjugates was monitored by a maximum absorbance peak at approximately 304 nm using difference UV spectroscopy. The impact of various processing conditions on the formation of WPI-dextran conjugates was investigated. The conjugation reaction was promoted by raising the temperature from 40 to 60 degrees C, the WPI concentration from 2.5 to 10%, and the dextran concentration from 10 to 30% and lowering the pH from 8.5 to 6.5. The optimal conjugation conditions chosen from the experiments were 10% WPI-30% dextran and pH 6.5 at 60 degrees C for 24 h. WPI-dextran conjugates were stable under the conditions studied. 相似文献
15.
In a previous study, peptides aggregating at pH 7.0 derived from a whey protein hydrolysate made with Bacillus licheniformis protease were fractionated and identified. The objective of the present work was to investigate the solubility of the fractionated aggregating peptides, as a function of concentration, and their aggregating capacities toward added intact proteins. The amount of aggregated material and the composition of the aggregates obtained were measured by nitrogen concentration and size exclusion chromatography, respectively. The results showed that of the four fractions obtained from the aggregating peptides, two were insoluble, while the other two consisted of 1:1 mixture of low and high solubility peptides. Therefore, insoluble peptides coaggregated, assumedly via hydrophobic interactions, other relatively more soluble peptides. It was also shown that aggregating peptides could aggregate intact protein nonspecifically since the same peptides were involved in the aggregation of whey proteins, beta-casein, and bovine serum albumin. Both insoluble and partly insoluble peptides were required for the aggregation of intact protein. These results are of interest for the applications of protein hydrolysates, as mixtures of intact protein and peptides are often present in these applications. 相似文献
16.
鹰嘴豆作为植物蛋白的优质来源,营养价值高,但功能性质较差无法满足现代食品工业需求。该研究利用介质阻挡放电(Dielectric Barrier Discharge,DBD)等离子体对鹰嘴豆分离蛋白(Chickpea Protein Isolates,CPI)进行改性处理,研究不同处理时间(0、1、2、3、4 min)对CPI溶解性、乳化特性、结构的影响及其之间的相关性。结果表明:经等离子体处理后,鹰嘴豆分离蛋白溶液的pH值降低,电导率增加。溶解性、乳化活性和乳化稳定性得到显著的改善(P < 0.05)。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析表明等离子体处理并未改变CPI的组成成分及种类,但7S和11S等主要亚基条带强度增加。等离子体处理后α-螺旋含量、自由巯基含量和表面疏水性显著增加(P < 0.05),无规卷曲含量降低(P < 0.05),表明蛋白的高级结构发生改变。扫描电镜显示随着处理时间的延长,样品的尺寸减小,表面结构变得更为松散。利用Pearson相关性分析和主成分分析表明,不同处理时间后,蛋白结构的变化与功能性质的改善呈现较强的相关性。等离子体处理4 min后,CPI的溶解性及乳化特性达到较优效果,研究结果可为开发利用鹰嘴豆分离蛋白和指导实际生产实践提供技术支持。 相似文献
17.
18.
Preparation and functional properties of rice bran protein isolate 总被引:39,自引:0,他引:39
Wang M Hettiarachchy NS Qi M Burks W Siebenmorgen T 《Journal of agricultural and food chemistry》1999,47(2):411-416
Rice bran protein isolate (RBPI) containing approximately 92.0% protein was prepared from unstabilized and defatted rice bran using phytase and xylanase. The yield of RBPI increased from 34% to 74.6% through the use of the enzymatic treatment. Nitrogen solubilities of RBPI were 53, 8, 62, 78, 82, and 80% at pHs 2.0, 4.0, 6.0, 8.0, 10.0, and 12.0, respectively. Differential scanning calorimetry showed that RBPI had denaturation temperature of 83.4 degrees C with low endotherm (0.96 J/g of protein). RBPI had similar foaming properties in comparison to egg white. But emulsifying properties of RBPI were significantly lower than those of bovine serum albumin. The result of amino acid analysis showed that RBPI had a similar profile of essential amino acid requirements for 2-5-year-old children in comparison to that of casein and soy protein isolate. 相似文献
19.
Wilcox CP Clare DA Valentine VW Swaisgood HE 《Journal of agricultural and food chemistry》2002,50(13):3723-3730
A method was developed for the production of a hydrolyzed/polymerized whey protein derivative with altered solution and gelation properties using a combination of recombinant DNA and immobilized enzyme technologies. The recombinant fusion proteins trypsin-streptavidin (TrypSA) and streptavidin-transglutaminase (cSAcTG) were produced in Escherichia coli, extracted, and then immobilized by selective adsorption on biotinylated controlled-pore glass. Recirculation through a TrypSA reactor induced limited proteolysis of whey proteins. Hydrolysates were then recirculated through a cSAcTG reactor for incremental periods of time to arrive at increasing degrees of polymerization. The polymers were subsequently analyzed for viscosity/flow behavior, gelation properties, and fracture properties using shear rate ramps/intrinsic viscosity, small-strain oscillatory rheology, and vane viscometry, respectively. By combining limited proteolysis with controlled cross-linking, it was possible to create derivatives of whey proteins with enhanced functional properties. Increases in the degree of whey protein modification were correlated with greater apparent viscosity and intrinsic viscosity, lowered gel point temperatures, and stronger, more brittle gels. This method allowed for recycling of the enzyme, eliminated the requirement for a downstream inactivation step, and permitted control over the extent of modification. Utilization of a similar process may allow for the production of designer proteins engineered with specific functionalities. 相似文献
20.
The objective of this work was to identify the dominant aggregating peptides from a whey protein hydrolysate (degree of hydrolysis of 6.8%) obtained with Bacillus licheniformis protease. The aggregating peptides were fractionated with preparative reversed-phase chromatography and identified with liquid chromatography-mass spectrometry. The results showed that the dominant aggregating peptide, at pH 7.0, was beta-lg AB [f1-45]. In addition, the peptides beta-lg AB [f90-108]-S-S-alpha-la [f50-113], alpha-la [f12-49]-S-S-alpha-la [f50-113], beta-lg AB [f90-108]-S-S-beta-lg AB [f90-108], beta-lg A [f90-157], and beta-lg AB [f135-157/158] were also identified as main aggregating peptides. The results further showed that aggregation, via hydrophobic interactions, prevented further digestion (at pH 8.0), thereby explaining the large size of the aggregating peptides. It is hypothesized that B. licheniformis protease breaks down hydrophilic segments in the substrate and, therefore, preserves hydrophobic segments that aggregate once exposed to the solvent. 相似文献