首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasma concentrations and pharmacokinetics of the fluoroquinolone antimicrobial agent pefloxacin, following the administration of a single intravenous (10 mg/kg) or oral (20 mg/kg) dose, were investigated in healthy female goats. The antimicrobial activity in plasma was measured at predetermined times after drug administration by an agar well diffusion microbiological assay, using Escherichia coli (ATCC 25922) as the test organism. Concentrations of the drug 0.25 g/ml were maintained in plasma for up to 6 and 10 h after intravenous (IV) or oral administration of pefloxacin, respectively. The concentration–time data for pefloxacin in plasma after IV or oral administration conformed to two- and one-compartment open models, respectively. Plasma pefloxacin concentrations decreased rapidly during the initial phase after IV injection, with a distribution half-life (t 1/2 ) of 0.10±0.01 h. The terminal phase had a half-life (t 1/2 ) of 1.12±0.21 h. The volume of distribution at steady state (V dss), mean residence time (MRT) and total systemic clearance (ClB) of pefloxacin were 1.08±0.09 L/kg, 1.39±0.23 h and 821±88 (ml/h)/kg, respectively. Following oral administration of pefloxacin, the maximum concentration in the plasma (C max) was 2.22±0.48 g/ml and the interval from administration until maximum concentration (t max) was 2.3±0.7 h. The absorption half-life (t 1/2 ka), mean absorption time (MAT) and elimination half-life of pefloxacin were 0.82±0.40, 4.2±1.0 and 2.91±0.50 h, respectively. The oral bioavailability of pefloxacin was 42%±5.8%. On the basis of the pharmacokinetic data, a dosage regimen of 20 mg/kg, IV at 8 h intervals or orally twice daily, is suggested for treating infections caused by drug-sensitive pathogens in goats.  相似文献   

2.
The pharmacokinetics of thiamphenicol in lactating cows   总被引:2,自引:0,他引:2  
The pharmacokinetics of thiamphenicol were studied after intravenous and intramuscular administration of 25 mg/kg body weight in lactating cows. Distribution (t 1/2) and elimination (t 1/2) half-lives of 6.10±1.39 min and 1.60±0.30 h, respectively, were obtained after intravenous administration. The body clearance was 3.9±0.077 ml/kg per min and the apparent volume of distribution was 1220.79±256.67 ml/kg. The rate at which thiamphenicol appeared in the milk, as indicated by the penetration half-life (t 1/2P) (serum to quarters), was found to be 36.89±11.14 min. The equivalent elimination half-life (t 1/2E) (quarters to serum) from the milk was 3.62±1.06 h and the peak thiamphenicol concentration in the milk was 23.09±3.42 µg/ml at 2.5±0.32 h.After intramuscular injection, the elimination half-life was 2.2±0.40 h, the absorption half-life was 4.02±1.72 min and the peak concentration in the serum was 30.90±5.24 µg/ml at 23±8.4 min. The bioavailability after intramuscular administration approached 100%. The penetration half-life was 50.59±6.87 min, the elimination half-life was 5.91±4.97 h and the mean peak concentration in the milk was 17.37±2.20 µg/ml at 3.4±0.22 h.Abbreviations AUC area under the concentration-time curve - CAP chloramphenicol - C max peak concentration - IM intramuscular - IV intravenous - TAP thiamphenicol - t 1/2 distribution half-life - t 1/2 elimination half-life - V c volume of central compartment - V d volume of distribution  相似文献   

3.
The disposition kinetics and urinary excretion of pefloxacin after a single intravenous administration of 5 mg/kg were investigated in crossbred calves and an appropriate dosage regimen was calculated. At 1 min after injection, the concentration of pefloxacin in the plasma was 18.95±0.892 g/ml, which declined to 0.13±0.02 g/ml at 10 h. The pefloxacin was rapidly distributed from the blood to the tissue compartment as shown by the high values for the initial distribution coefficient, (12.1±1.21 h–1) and the constant for the rate of transfer of drug from the central to the peripheral compartment, K 12 (8.49±0.99 h–1). The elimination half-life and volume of distribution were 2.21±0.111 h and 1.44±0.084 L/kg, respectively. The total body clearance (ClB) and the ratio of the drug present in the peripheral to that in the central compartment (P/C ratio) were 0.454±0.026 L/kg h) and 5.52±0.519, respectively. On the basis of the pharmacokinetic parameters obtained in the present study, an appropriate intravenous dosage regimen for pefloxacin in cattle for most of the bacteria sensitive to it would be 6.4 mg/kg repeated at 12 h intervals.  相似文献   

4.
The pharmacokinetics of sulphadimidine after a single dose (200 mg/kg i.v.) was studied in five healthy lactating buffaloes. The study revealed that the drug attained its peak concentration of 314.0±13.0, 242.4±3.0 and 100.2±2.5 g/ml at 15 min, 30 min and 12 h in plasma, milk and uterine fluid, respectively. The pharmacokinetic parameters calculated by a 2-compartment open model gave values for t1, t1 and vdarea of 2.10±0.36 h, 12.36±0.57 h and 1.23±0.07 L/Kg, respectively. A high vdarea as well as a value of 0.74±0.08 for K12:K21- (tissue Plasma) indicates better penetration of the drug into the different body fluids and tissues, which is further supported by a high concentration obtained in milk and uterine fluid. The therapeutic concentration (50 g/ml) was maintained for around 24 h in plasma and milk and 12 h in uterine fluid. The results suggest that, apart from its use in systemic infections, the drug can be effectively used by the i.v. route in uterine and mammary gland infections. The dosages for maintaining concentration of 50 g/ml, 100 g/ml and 150 g/ml at convenient dosage intervals of 12 and 24 h were also determined.  相似文献   

5.
The disposition kinetics of fenvalerate were studied in goats after dermal application of 100 ml of 0.25% (w/v) solution. The insecticide persisted in the blood for 72 h. The mean (±SEM) V d(area) and apparent t 1/2 () were 9.92±1.44 L/kg and 17.51±2.65 h, while the AUC and ClB values were respectively 82.15±7.40 g h/ml and 0.56±0.05 L/(kg h). Four days after the dermal application, the highest concentration of fenvalerate residues was found in the adrenal gland, followed by the biceps muscle, omental fat, liver, kidney, lung and cerebrum in that order. Fenvalerate caused hyperglycaemia but had no effect on serum protein and cholesterol levels. Serum acetylcholinesterase activities were increased after 24 h but were below the initial values from 48 to 120 h.Abbreviations Ache acetylcholinestase - AUC total area under the blood insecticide concentration-versus-time curve - ClB total body clearance - GLC gas-liquid chromatography - t 1/2() apparent elimination half-life - V d(area) apparent volume of insecticide distribution based on area method  相似文献   

6.
The pharmacokinetics of a slow-release theophylline formulation was investigated following intravenous and oral administration at 10 mg/kg in horses. A tricompartmental model was selected to describe the intravenous plasma profile. The elimination half-life (t1/2) was 16.91 ± 0.93 h, the apparent volume of distribution (V d) was 1.35 ± 0.18 L/kg and the body clearance (ClB) was 0.061 ± 0.009 L kg–1 h. After oral administration the half-life of absorption was 1.24 ± 0.30 h, and the calculated bioavailability was above 100%. Thet1/2 after oral administration was 18.51 ± 1.75 h, only a little longer than that after intravenous administration. The slow release formulation did not exhibit any advantage in prolonging thet1/2 of theophylline in the horse.  相似文献   

7.
This paper reports the milk protein polymorphism, the allele frequencies of variants and the possible linkages among various combinations of milk protein phenotypes in the Kangayam cattle of south India. Milk samples from 156 Kangayam cows were typed by starch gel and polyacrylamide gel electrophoresis for caseins and whey proteins, respectively. All the four milk protein components studied, s1-casein, -casein, -lactoglobulin and -lactalbumin, exhibited polymorphism with high allele frequencies of 0.9231±0.0151 for s1-casein C, 0.9263±0.0148 for -casein A, 0.9135±0.0159 for -lactoglobulin B and a relatively high frequency of 0.6218±0.0275 for -lactalbumin A. The mean heterozygosity estimated over all the four milk protein loci was 0.2420. Genetic equilibrium was observed among all the loci studied, except -lactalbumin. Linkage analysis confirmed the non-independence between s1- and -caseins and between caseins and -lactalbumin phenotypes.  相似文献   

8.
Florfenicol, a monofluorinated analogue of thiamphenicol, has a broad antibacterial spectrum. The pharmacokinetics of florfenicol was studied following a single intravenous (i.v.) or intramuscular (i.m.) injection at a dose of 20 mg/kg body weight in healthy male camels, sheep and goats. The concentration of florfenicol in plasma was determined using a microbiological assay. Pharmacokinetic analysis was performed using a two-compartment open model. Following i.m. administration, the maximum plasma concentration of florfenicol (C max) reached in camels, sheep and goats was 0.84±0.08, 1.04±0.10 and 1.21±0.10 g/ml, respectively, the the time required to reach C max (t max) in the same three respective species was 1.51±0.14, 1.44±0.10 and 1.21±0.10 h. The terminal half-life (t 1/2) and the fraction of the drug absorbed (F%) in camels, sheep and goats were 151.3±16.33, 137.0±12.16 and 127.4±11.0 min, and 69.20%±7.8%, 65.82%±6.7% and 60.88%±5.9%, respectively. The MRT in the same three respective species was 4.01±0.45, 3.42±0.39 and 2.98±0.32 h. Following i.v. administration, the terminal half-life (t 1/2) and total body clearance (ClB) in camels, sheep and goats were 89.5±9.2, 78.8±8.3 and 71.1±8.9 min and 0.33±0.04, 0.30±0.03 and 0.27±0.03 L/h per kg, respectively. The area under the curve (AUC0–) and the mean residence time (MRT) in the same three respective species were 60.61±6.98, 62.45±6.56 and 74.07±7.85 g/ml per h, and 2.71±0.31, 2.34±0.25 and 2.11±0.23 h. These data suggest that sheep and goats absorb and clear florfenicol to a broadly similar extent, but the rate and extent of absorption of the drug tends to be higher in camels. Drug treatment caused no clinically overt adverse effects. Plasma enzyme activities and metabolites indicative of hepatic and renal functions measured 1, 2, 4 and 7 days following the drug treatment were within the normal range, indicating that the drug is safe at the dose used.  相似文献   

9.
The synthetic androgen 19-nortestosterone (-NT) has been used illegally as a growth promoter in cattle production in the European Union. Elimination of -NT and its metabolites in plasma, urine and bile was studied in three cattle with cannulated gallbladders following intramuscular injection at a single site of 500 mg of the laurate ester (NTL) containing 300.5 mg -NT. Using enzyme immunoassay quantification, plasma Cmax of free -NT was 0.5±0.15 g/L (mean±SEM). Concentrations of free -NT in plasma were consistently greater than the assay limit of quantification (0.12 g/L) for 32.7±13.42 days. Mean residence time for free -NT in plasma was 68.5±20.75 days. Following sample preparation by immunoaffinity chromatography, high-resolution GC-MS was used to quantify -NT and -NT in urine and bile. -NT was detected irregularly in urine from two of the three animals post injection. The principal metabolite present in the urine, -NT, was detected for 160.3±22.67 days post injection. Cmax for -NT in urine was 13.7±5.14 g/L. Mean urinary AUC0–183 days for -NT was 845.7±400.90 (g h)/L.In bile, -NT was the only metabolite detected for 174.3±8.67 days post treatment. Cmax for -NT in bile was 40.8±12.70 g/L and mean biliary AUC0–183 days for -NT was 1982.6±373.81 (g h)/L. Concentrations of -NT in bile samples were greater than those in urine samples taken at the same time. The mean ratio of biliary:urinary AUC0–183 days was 3.0±0.72. It is concluded that bile is a superior fluid for detection of -NT following injection of NTL, owing to the longer period during which residues may be detected after administration.  相似文献   

10.
A pharmacokinetic study of demeclocycline was carried out following intravenous administration at 5 mg/kg body weight in lactating goats. Demeclocycline appeared within 5 min in plasma, interstitial fluid (isf) and urine, while it appeared at 1 h in milk. Peak concentrations of 21.70±4.06, 2.67±0.23, 5.65±0.45 and 82.23±10.06 g/ml were attained at 5 min and at 6, 8 and 8 h in plasma, isf, milk and urine respectively. A potentially therapeutic concentration of 0.5 g/ml was maintained from 5 min–36 h, 30 min–30 h, 1–36 h and 5 min–48 h in plasma, isf, milk and urine respectively. The drug was detectable in all the above biological fluids for at least 48 h. A low distribution half life (t1/2) of 0.44±0.04 h and a high elimination half life (t1/2) of 19.24±1.22 h denote rapid distribution but very slow elimination of the drug in goats. A high tissue plasma concentration ratio [K12:(K2I–)] of 5.12±0.97 during the elimination phase and a Vdarea of 1.59±0.18 L/kg indicate uniform distribution of demeclocycline in the tissues and body fluids of goats. The dosage regimen for maintaining minimum plasma concentration (C min = MIC) of 0.5, 1.0 and 1.5 g/ml at selected dosage intervals of 12 and 24 h was also calculated.  相似文献   

11.
The kinetic profiles of norfloxacin were evaluated in afebrile, febrile and probenecid pre-treated (70 mg/kg orally) febrile goats after a single intravenous (i.v) dose (5 mg/kg). Fever was induced and maintained for 12 h by injecting Escherichia coli endotoxin (0.2 g/kg, i.v.) and repeating it in half the dose (0.1 g/kg) 5 h later. The plasma pharmacokinetic values for norfloxacin were best represented using a two-compartment open model. The peak norfloxacin plasma level of 90.52±3.18 g/ml attained in the probenecid pre-treated febrile goats was higher than that in the febrile (75.46±0.72 g/ml) or afebrile goats (62.25±1.23 g/ml). ClB and K el values were significantly (p<0.01) decreased in febrile compared with afebrile goats. These values were further reduced in febrile goats after probenecid pre-treatment. However, t 1/2 was not affected by the fever-probenecid interaction. Norfloxacin may be used as an infusion with probenecid in caprine diseases where very high plasma levels are required to combat resistant organisms such as Bacteroides.Abbreviations MIC minimum inhibitory concentration - LPS lipopolysaccharide - i.v. intravenous(ly)  相似文献   

12.
Five lactating cows were given benzydamine hydrochloride by rapid intravenous (0.45 mg/kg) and by intramuscular (0.45 and 1.2 mg/kg) injection in a crossover design. The bioavailability, pharmacokinetic parameters and excretion in milk of benzydamine were evaluated. After intravenous administration, the disposition kinetics of benzydamine was best described using a two-compartment open model. Drug disposition and elimination were fast (t 1/2: 11.13±3.76 min;t 1/2: 71.98±24.75 min; MRT 70.69±11.97 min). Benzydamine was widely distributed in the body fluids and tissues (V d(area): 3.549±1.301 L/kg) and characterized by a high value for body clearance (33.00±5.54 ml/kg per min). After intramuscular administration the serum concentration-time curves fitted a one-compartment open model. Following a dose of 0.45 mg/kg, theC max value was 38.13±4.2 ng/ml at at max of 67.13±4.00 min; MAT and MRT were 207.33±22.64 min and 278.01±12.22 min, respectively. Benzydamine bioavailability was very high (92.07%±7.08%). An increased intramuscular dose (1.2 mg/kg) resulted in longer serum persistence (MRT 420.34±86.39 min) of the drug, which was also detectable in milk samples collected from both the first and second milking after treatment.Abbreviations HPLC high-pressure liquid chromatography - IC50 concentration to inhibit the activity of an organism by 50% - IM intramuscular(ly) - IV intravenous(ly) - NSAID non-steroidal antiinflammatory drugs - pK a negative logarithm of the ionization constant (K a) of a drug; other abbreviations are listed in footnotes to tables  相似文献   

13.
The aim of the study was to assess the relationship between acute and subacute metabolic and endocrine effects after intravenous administration of the 2-adrenergic agonist clenbuterol in a growth-promoting dose to female pigs. Acute metabolic and endocrine effects were assessed by measuring the blood glucose, serum insulin and nonesterified fatty acid (NEFA) concentrations during 300 min after a single administration of clenbuterol. Significantly higher serum insulin and NEFA concentrations (19.90±2.50 U/ml, p<0.01, and 0.69±0.04 mmol/L, p<0.001, respectively) were measured 30 min after the preprandial administration of clenbuterol in female pigs. Over the same period, the levels of blood glucose (4.42±0.30 mmol/L) showed no difference from those of control pigs. The postprandial serum NEFA concentration decreased moderately during 210 min after feeding. Postprandial blood glucose and insulin concentrations increased and reached maximal levels 120 min after clenbuterol administration (10.91±0.60 mmol/L and 85.22±7.24 U/ml, respectively), and returned to basal levels at 300 min (4.20±0.21 mmol/L and 7.75±1.60 U/ml, respectively) after the administration of clenbuterol. Subacute metabolic and endocrine effects were assessed by measuring the blood glucose, serum insulin and NEFA concentrations for 21 days after the repeated doses of clenbuterol. In addition, the influence of clenbuterol administration on the endocrine regulation of the onset of the next expected oestrus in female pigs was assessed by measuring their serum 17-oestradiol and progesterone concentrations. Blood glucose, serum insulin and NEFA concentrations after the last administration of clenbuterol did not differ significantly from those in control animals. The onset of the next expected oestrus occurred regularly without any significant difference in serum 17-oestradiol or progesterone concentrations between the treated (9.83±2.60 pg/ml and 0.15±0.03 ng/ml) and control pigs (8.52±2.70 pg/ml and 0.25±0.06 ng/ml). The study results suggest the duration of intravenous administration of clenbuterol in a growth-promoting dose necessary to influence the metabolic and endocrine activities in female pigs.  相似文献   

14.
Factor XI (F XI) deficiency is an autosomal recessive coagulopathy found in Holstein cattle. Affected animals have a 50% greater prevalence of repeat breeding. Therefore, several parameters describing ovarian function were studied. Daily blood sampling revealed that progesterone concentrations were slower to decline from a peak at day 16 (p<0.01) to values less than 3 nmol/L in F XI-deficient cows (5.14±0.69 days (mean ± SD) versus 4.05±0.63 days in control animals), resulting in an oestrous cycle length of 24.7±2.1 days compared to 22.9±3.0 days, respectively. This was not due to an alteration in the availability of prostaglandin F2 (PGF2) or oxytocin (OT) involved in luteolysis. No significant differences (p>0.05) were seen between normal (n=7) and F XI-deficient (n=7) cows in the peak values or the area under the curve for the pulse in 13,14-dihydro-15-keto PGF2 in response to OT challenge or in the parameters describing the pulse of ovarian OT secretion after PGF2 injection (n=7 for each) between days 12 and 14. Ovulatory follicular development was assessed by ultrasound monitoring and plasma 17-oestradiol values at 8-h intervals after a luteolytic injection of cloprostenol (n=6 for each). Follicular diameter was smaller (p<0.05) and accompanied by lower peak oestradiol values near the time of ovulation in F XI-deficient cows. The results suggest that the oestrous cycle in F XI-deficient cows is characterized by a slower process of luteolysis that may be associated with smaller follicular development.Abbreviations F XI factor XI - OT oxytocin - PGF2 prostaglandin F2 - PGFM 13,14-dihydro-15-keto-prostaglandin F2 - i.m. intramuscularly  相似文献   

15.
A potentiated sulpha drug was administered intravenously to 12 sows on the 17th day of lactation and to 4 sows in early pregnancy to study the influence of lactation on its disposition kinetics. The dose-rate of sulphadoxine (SDX) used was 12 mg/kg b.w. while that of trimethoprim (TMP) was 2.4 mg/kg b.w. The pharmacokinetic parameters of SDX showed no significant difference between lactating and pregnant sows (V ss, 0.24±0.04 L/kg; Cl s , 0.25±0.05 ml/min per kg: MRT, 17.08±4.48 h). SDX did not accumulate in milk, the concentrations in milk being less than the concentrations in serum at the same time. Of the pharmacokinetic parameters for TMP, only the mean residence time was significantly different between the two groups (V ss, 1.60±0.31 L/kg; Cl s , 4.62±1.07 ml/min per kg: MRTlactating, 5.43±1.26 h; MRTpregnant, 7.74±1.72 h). TMP was excreted in milk to a considerable extent, the ratio of its concentration in milk to that in serum at the same time being over 2.2. These two substances show a completely different pharmacokinetic behaviour. Even though TMP is excreted more quickly in lactating sows, adjusting the dose of this potentiated sulpha drug does not seem to be appropriate.Abbreviations AUC area under the curve - AUMC area under the first-movement curve - terminal elimination rate constant - b.w. body weight - Cl s clearance at steady state - D dose - MRT mean residence time - SD standard deviation - SDX sulphadoxine - TMP trimethoprim - V ss apparent volume of distribution at steady state  相似文献   

16.
A pharmacokinetic study of doxycycline after intravenous administration at 5 mg/kg body weight in goats revealed that a concentration of 0.5 g/ml was maintained for 5 min-2 h, 4–12 h, 2–12 h and 5 min- >48 h in plasma, interstitial fluid, milk and urine respectively. The low t1/2 of 0.73±0.11 h and high t1/2 of 16.63±1.58 h show that the drug is rapidly distributed but slowly eliminated from the body. The tissue:plasma concentration of 4.86±1.06 during the elimination phase [K12/(K21-)] indicates a high expected tissue concentration, which is supported by similarly increased drug concentration in interstitial fluid and milk. The high Vdarea of 9.78±0.86 L/kg observed denotes that, apart from its wide distribution, the drug may be stored in fat depots as it is known to be highly lipophilic. As the drug maintained a therapeutic concentration for a shorter time in plasma, and the calculated dose rate for maintaining a minimal plasma concentration of 0.5–1.5 g/ml is relatively high, it may not be of much use in treating septicaemia in this species. Since the observed tissue:plasma concentration was higher and a therapeutic concentration was maintained in interstitial fluid and milk for longer, the drug can be used for other systemic infections at a lower dose rate than that required for treating septicaemia. As the drug maintained a very high concentration in urine, it may be of particular value in treating urinary tract infections caused by sensitive micro-organisms.  相似文献   

17.
The pharmacokinetics of ceftazidime in lactating and non-lactating cows   总被引:1,自引:0,他引:1  
The pharmacokinetics of ceftazidime (CAZ) were studied in lactating (LTG) and non-lactating (NLTG) cows. Two groups (LTG and NLTG) of 5 healthy dairy cows were given ceftazidime (10 mg/ kg body weight) intravenously (i.v.) and intramuscularly (i.m.). Serum and milk (LTG) and serum samples (NLTG) were collected over a 24-h period post-administration. CAZ concentrations in serum and milk were determined by high-performance liquid chromatography, and an interactive and weighted-non-linear least-squares regression analysis was used to perform the pharmacokinetic analysis. The pharmacokinetic profiles in LTG and NLTG cows which had received CAZ i.v. fitted a three-compartment model and a two-compartment model, respectively. The CAZ concentration-time curves in serum and the area under the curve were greater and more sustained (p<0.05) in the LTG cows by both routes, while the serum clearance (Cls=72.5±18.1 ml/h per kg) was lower (p<0.05) than that in the NLTG cows (Cls=185.9±44.2 ml/h per kg). CAZ given i.v. exhibited a relatively long half-life of elimination (t 1/2 (LTG)=1.1±0.2 h; t 1/2 (NLTG)=1.4±0.3 h). Compared with other cephalosporins, CAZ had good penetration into the mammary gland (47.7±38.2% for CAZ i.v.; 51.1±39.0% for CAZ i.m.). Finally, the bioavailability of CAZ (F(LTG)=98.9±36.8%; F(NLTG)=77.1±25.3%) was suitable for its use by the i.m. route in lactating and non-lactating cows.Abbreviations AIC Akaike information criterion - AUC area under the curve - b.w. body weight - CAZ ceftazidime - Cls total serum clearance - C max peak serum concentration - COM compartment open model - i.m. intramuscular(ly) - i.v. intravenous(ly) - LTG lactating - K rate constant - 1 central compartment - 2 peripheral compartment - 3 deep compartment - NLTG nonlactating - t max time of peak serum concentration - t 1/2 half-life  相似文献   

18.
The disposition and dosage regimen of cephaloridine were investigated in healthy calves following a single intramuscular administration of 10 mg/kg. The absorption halflife, climination halflife, apparent volume of distribution and total body clearance were 0.107±0.025 h, 2.08±0.14 h, 0.70±0.07L kg-1 and 235.8±21.9 ml kg-1 h-1, respectively. Therapeutic plasma levels (1 g/ml) were maintained for up to 7 h. A satisfactory intramuscular dosage regimen for cephaloridine in calves would be 10 mg/kg repeated at 8 h intervals.  相似文献   

19.
The study elucidated the pharmacokinetics of streptomycin in healthy lactating she-buffaloes after a single intramuscular (IM) injection (10 mg/kg). The drug attained its peak concentrations of 24.39±2.67, 0.45±0.05 and 5.06±0.18 g/ml at 1, 4 and 1 hour in plasma, milk and uterine fluid respectively. Calculations based on the assumption of a 2-compartment model gave a plasma t1/2 () of 4.01±0.44 h and an apparent volume of distribution [Vd(area)] of 0.47±0.06 l/kg. The drug was detectable in the plasma, milk and uterine fluid for 30, 8 and 12 hours, respectively. A therapeutic concentration of the drug was maintained for 6 to 7 hours in the plasma and for around 1 hour only in the uterine fluid. However, a therapeutic level could not be achieved in milk at any time. The results suggest that the drug can be used clinically by the IM route against streptomycin susceptible systemic infections but not those in the uterus and mammary gland.  相似文献   

20.
The pharmacokinetic disposition of enrofloxacin was studied in goats after subcutaneous (s.c.) administration at a single dose of 7.5 mg/kg body weight. Blood samples were drawn from a jugular vein into heparinized tubes at predetermined time intervals after administration of the drug and the plasma was separated by centrifugation. The concentrations of enrofloxacin in the plasma were determined by a microbiological assay using Escherichia coli as the test organism. The plasma concentration–time data were analysed by non-compartmental methods. Enrofloxacin was rapidly absorbed, an appreciable concentration of the drug (0.30±0.13 g/ml) being present in the plasma by 5 min after s.c. administration. The maximum plasma concentration of enrofloxacin and the time to reach that maximum were 2.91±0.39 g/ml and 2.9±0.51 h, respectively. A detectable concentration of enrofloxacin persisted in the plasma for 12 h. The elimination half-life and mean residence time of enrofloxacin were 2.84±0.57 and 5.74±0.28 h, respectively. It is suggested that enrofloxacin given subcutaneously may be useful in the treatment of susceptible bacterial infections in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号