首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
青藏高原高寒草甸生态地位突出但退化严重,其植被光合和系统呼吸特征如何响应仍不清楚。于植被生长的旺盛期(7月中旬~8月中旬)在青藏高原祁连山南麓分别选取原生草地、中度退化和重度退化3类高寒草甸,使用自制同化箱和LI-6400便携式光合仪测定生态系统CO2净交换(NEE)、生态系统暗呼吸(RES)和生态系统初级光合(GEP),研究退化程度对高寒嵩草草甸生态系统CO2通量的影响特征。结果表明不同退化程度的NEE、RES和GEP的单峰日变化格局没有明显差异,日极值出现时间相近。日均NEE和日均RES随着退化加剧逐渐升高,重度退化较原生草地分别显著(P0.05)升高了41.8%和12.2%。日均GEP略有下降。退化降低了RES的温度敏感度(Q10),提高了群落表观光量子产额(a),但对系统潜在CO2最大同化速率(Pmax)无明显影响。在植被生长旺盛期,高寒草甸生态系统碳收支对退化的响应主要表现在系统的呼吸强度而非群落光合速率。  相似文献   

2.
在中国科学院海北高寒草甸生态系统定位研究站,利用静态密闭箱-气相色谱法,连续两年(2013,2014年)进行了高寒草甸N_2O排放速率及其对降水和气温的响应特征研究。结果表明:高寒草地N_2O年平均排放速率为32.4±3.1μg/(m~2·h),生长季排放速率为41.1±4.3μg/(m2·h),明显高于休眠季的排放速率20.2±3.2μg/(m~2·h);不同采样时期N_2O排放速率具有极显著差异;气温与N_2O的排放速率之间存在显著正相关关系(R=0.52),随着日平均气温增加,高寒草甸土壤N_2O排放速率逐渐提高;降水量与N_2O排放通量之间存在较弱的负相关关系。在未来全球增温的气候情景下,高寒草地土壤N_2O排放量将呈现上升的趋势。  相似文献   

3.
为研究青藏高原高寒湿地旱化对碳通量的影响,探讨高寒湿地旱化碳通量变化规律,本研究于7-8月生长高峰期以高寒湿地、沼泽化草甸和高寒草甸为研究对象,利用TARGAS-1静态箱法,比较高寒湿地不同退化阶段碳交换的动态差异。结果表明:与高寒湿地相比,沼泽化草甸与高寒草甸植被群落光合速率、生态系统呼吸速率、净生态系统碳交换显著提高(P<0.05);不同退化阶段土壤温湿度及植被群落生物量存在显著差异(P<0.05),土壤电导率差异不显著;相比于土壤湿度和土壤电导率,土壤温度对CO2交换的影响更大,其与净生态系统碳交换呈显著负相关(P<0.05),高寒草甸的碳交换对土壤温度的敏感性要大于高寒湿地和沼泽化草甸的碳交换对土壤温度的敏感性;在植物生长高峰期,高寒湿地旱化过程土壤温度显著上升,土壤湿度和植物群落生物量显著下降,导致其碳汇功能呈下降趋势。  相似文献   

4.
高寒草甸是广布于青藏高原的主要植被类型,是青藏高原大气与地面之间生物地球化学循环的重要构成部分,在区域碳平衡中起着极为重要的作用。本研究首先系统回顾了青藏高原高寒草甸生态系统CO2通量日、季、年等不同时间尺度的变化特征,以及温度、光合有效辐射、降水等主要环境因子对高寒草甸生态系统CO2通量的影响;其次比较了青藏高原3种典型高寒草甸生态系统类型源汇效应和Q10值;最后针对青藏高原高寒草甸生态系统CO2通量研究现状,分析了当前存在的一些不确定性,展望了未来工作的重点。  相似文献   

5.
以海北高寒草甸生态系统定位站的涡度相关系统连续观测的CO2通量数据为基础,分析了青藏高原的高寒矮嵩草(Kobresia humilis)草甸、高寒金露梅(Potentilla fruticosa)灌丛草甸和高寒藏嵩草(Kobresia tibetica)沼泽化草甸等3种主要植被类型在2005年植物生长季(6-9月)的表观量子产额(a)、最大光合速率(Pmax)和呼吸速率(Reco)的变化特征。结果表明:3种植被类型白天的净生态系统CO2交换量(NEE)和光量子通量密度(PPFD)存在明显的直角双曲线关系(P<0.05),其aPmaxReco呈现出相似的季节变化趋势,在生长季初期(6月)最小,在7月或8月份达到最大;高寒矮嵩草草甸的aPmaxReco大于灌丛草甸和沼泽化草甸,而后两者差别不大。  相似文献   

6.
在青海海北高寒草地生态系统国家野外科学观测研究站,以高寒矮嵩草草甸为研究对象.通过静态密闭箱-气相色谱法,监测生长季盛期高寒草甸N2O排放特征,同时基于路径分析方法,解析土壤理化性质和地上生物量对高寒草地生态系统N2O排放的影响作用.结果 表明:生长季高寒草甸N2O排放速率存在较大时间异质性特征,平均排放速率为(39.3±5.4) μg/(m2·h),各月之间均存在显著性差异;土壤理化性质与N2O排放速率之间,可以建立较好的回归方程(R2 =0.726);土壤有机质含量、pH值对矮嵩草草甸N2O排放速率的正向直接作用较强,而土壤湿度和容重与高寒草甸N2O排放速率间存在负向直接作用关系.各因素通过影响土壤有机质和铵态氮,对土壤N2O排放均具有较大的间接影响,土壤有机质通过影响高寒草地生物量、土壤硝态氮、铵态氮而间接影响草地生态系统N2O排放速率的作用较强.  相似文献   

7.
在祁连山东缘选择珠芽蓼草甸(P)、针茅草地(S)、杜鹃灌丛草甸(R)3种高寒草甸,利用LI-8100A土壤CO2通量自动测定系统与室内分析相结合的研究方法,分析了土壤有机碳密度、碳通量的动态及其与环境因子的关系。结果表明:不同植被类型的土壤有机碳密度差异显著,大小顺序为R>S>P,随土壤深度的增加,土壤碳密度降低;土壤CO2通量大小顺序为S>P>R,样地P、S呈单峰变化。峰值均出现于14∶00~15∶00;土壤CO2通量与近地面的空气湿度、碳含量显著负相关,与土壤温度、近地大气温度显著正相关,与土壤含水量无明显相关性。  相似文献   

8.
采用高寒草甸、高寒草原、高寒沼泽化草甸和温性草原4种西藏高原典型草地类型地上生物量定点观测数据,分析其地上生物量季节动态变化特征和生长规律。结果表明,高寒沼泽化草甸地上生物量最高,其中围网草地年均地上生物量达384.45 g·m-2,比无围网草地地上生物量高73%,且是温性草原类草地生物量的6倍,是高寒草甸和高寒草原类草地的12~14倍,与自由放牧相比,围栏禁牧措施可以明显提高草原地上生物量,是改良退化草地最有效的措施之一;温性草原草地生产力大于高寒草甸和高寒草原,城市附近山地草地生物量明显大于远离城市的地区,表明城市化进程降低了天然草地放牧强度,是恢复退化草地生产力的有效途径之一;属半干旱气候类型的西藏高原中部,降水是制约草地植被生长的主要因子;草地地上生物量的绝对增长速率和相对增长速率季节动态均在生物量达到高峰期前为正增长,之后为负增长。区域水热条件差异及其季节性变化导致了不同草地类型或同一类型不同区域的草地最快生长期出现的时间存在一定差别。  相似文献   

9.
耿晓东  旭日 《草业科学》2017,34(12):2407-2415
高寒草甸是青藏高原主要的草地生态系统类型,对气候变化非常敏感,研究高寒草甸生态系统碳交换对升温的响应具有重要的理论和现实意义。在青藏高原中部地区的高寒草甸,使用开顶箱法(open-top chambers,OTCs)设置不增温对照(T_0)以及4个不同程度的增温处理(T_1、T_2、T_3、T_4),采用CO_2红外分析仪对生长季期间的碳交换进行连续3年的观测。结果表明,4个增温处理的5cm土壤温度较之于不增温对照分别增加1.73(T_1)、1.83(T_2)、3.03(T_3)以及3.53℃(T_4);土壤水分没有发生梯度变化。观测期间,净生态系统碳交换(net ecosystem carbon exchange,NEE)基本为负值,因此高寒草甸表现为碳汇。增温小于2℃促进总生态系统生产力(gross ecosystem productivity,GEP),但对生态系统呼吸(ecosystem respiration,ER)影响较小,因而促进NEE,即促进高寒草甸的碳吸收;但增温大于3℃则抑制GEP,对ER影响较小,因而总体上对NEE产生抑制作用。综上所述,在高寒草甸生态系统,适度增温促进碳吸收,增温过度则降低碳吸收。  相似文献   

10.
全球变暖下的温度升高对陆地生态系统碳循环产生了较大影响,而高寒沼泽草甸生态系统是气候变化的敏感区域.以青海湖流域两种类型高寒沼泽草甸(小泊湖湖滨湿地和瓦颜山河源湿地)为研究对象,利用开顶箱法(OTC)模拟全球变暖,采用静态箱—气相色谱仪法探究了2018年9月两地在增温处理下三种主要温室气体(CH4、CO2和N2O)的日间排放变化特征.研究结果表明:9月中旬日间小泊湖湿地表现为CH4和CO2的源、N2O的汇,增温提高了小泊湖湿地CH4及CO2排放通量的吸收能力,使CH4及CO2排放通量相较于对照分别减少了48.43%和20.65%,对N2O无显著影响;瓦颜山湿地分别表现为CH4的汇及CO2、N2O的源,增温使瓦颜山湿地CH4由弱汇转为弱源,N2O由弱源转为弱汇,并促进了CO2的排放,使CO2排放通量增加了15.79%.两地不同处理下土壤10、20 cm温度及土壤表层含水量与三种温室气体通量相关性分析表明:除小泊湖湿地对照样地CO2通量与土壤10 cm、20 cm温度存在显著的相关性(P<0.05),其他样地相关性均不显著(P>0.05),主要由表土温度及含水量的滞后效应所导致.表明全球变暖对青海湖高寒沼泽草甸温室气体排放通量有一定影响,不同类型高寒沼泽草甸对全球变暖的响应也不尽相同.研究对了解未来青海湖流域乃至青藏高原的碳氮平衡有重要意义.  相似文献   

11.
青藏高原高寒灌丛草甸生态系统碳平衡研究   总被引:4,自引:0,他引:4  
利用静态密闭箱—气相色谱法观测的高寒金露梅Dasiphora fruticosa灌丛、丛间草甸土壤微生物呼吸CO2通量结果,结合研究区群落生物量及样方调查,对高寒灌丛草甸生态系统的碳平衡状况作了初步估测。结果表明:植物生长季高寒灌丛草甸生态系统初级生产力年净固定碳量461.83g/(m2·a),土壤通过微生物呼吸年碳净排放量376.78g/(m2·a)。碳素输入大于输出,系统存在较强的CO2吸收潜力,是大气CO2的汇,其年净交换吸收碳量85.05g/(m2·a)。  相似文献   

12.
放牧强度对青海海北高寒矮嵩草草甸碳交换的影响   总被引:1,自引:0,他引:1  
以禁牧、轻度放牧、中度放牧和重度放牧4种不同放牧强度的高寒矮嵩草草甸为研究对象,分别于2014年和2015年植物生长季5~9月,使用LI-6400便携式光合仪和同化箱测定生态系统净CO_2交换(NEE)和生态系统呼吸(ER),并利用土壤温湿度自动记录仪测定土壤10cm处的温度和体积含水率,以研究放牧强度对青海海北高寒矮嵩草草甸碳交换的影响。结果表明:生长季5~9月,试验地10cm土壤温度的变化范围在7.21~13.23℃,随放牧强度增大而增大;体积含水率在19.68%~32.33%间波动,随放牧强度增大而减小。高寒草甸NEE在生长季表现出明显的"V"型变化,5月NEE最大,为1.43μmolCO_2/m^2·s,此时草地仍处于碳排放状态,7月最小(碳吸收速率最大),为-14.32μmolCO_2/m^2·s,吸收强度表现出随放牧强度增大而增大的趋势;ER呈倒"V"型变化规律,7月最大,为12.15μmolCO_2/m^2·s,放牧强度仅对7月的ER产生影响,其余月份4个样地差异均不显著。相关分析表明,NEE与土壤温度和绿体生物量极显著负相关,相关系数分别为-0.910和-0.559,与土壤湿度显著正相关,相关系数为0.559;ER与土壤温度和绿体生物量显著正相关,相关系数分别为0.824和0.453,与土壤有机碳含量极显著负相关,相关系数为-0.605,与土壤湿度、枯体生物量和全氮含量相关不显著。  相似文献   

13.
草地生态系统是干旱半干旱区生态系统类型的重要组成部分,在区域生态系统碳平衡中起着极为重要的作用。采用涡度相关法对科尔沁沙质草地生态系统进行连续两年(2015和2016年)的碳通量观测,此两年恰逢研究区的相对干旱之年,年降水量约为历史平均值的60%。研究结果表明:1)年最大日均CO2吸收速率分别为-6.68和-9.58 g·m-2·d-1,年最大日均释放速率分别为5.69和5.21 g·m-2·d-1。2)生长季(5-9月)碳吸收量分别为-120.54和-139.83 g·m-2,非生长季碳释放量分别为230.33和212.82 g·m-2。3)全年尺度上沙质草地生态系统表现为碳源,2015年净碳释放量(109.79 g·m-2·年-1)稍高于2016年(72.99 g·m-2·年-1)。4)生态系统净CO2交换量(NEE)与空气温度、土壤温度及土壤湿度存在显著相关关系,但不同年份同期NEE对环境温度和湿度的响应程度不尽一致。  相似文献   

14.
青藏高原高寒灌丛生态系统CO2通量年变化特征研究   总被引:1,自引:0,他引:1  
高寒灌丛生态系统是广布于青藏高原的高寒草甸植被类型,它是青藏高原大气与地面之间生物地球化学循环的重要构成部分,在区域生态系统碳平衡中起着极为重要的作用。采用涡度相关法对青藏高原高寒灌丛CO2通量进行连续观测(2003年1月1日至2005年12月31日),结果表明:2003,2004和2005年高寒灌丛年净生态系统CO2交换量分别为223,277和61g CO2·m-2·a-1,3年平均CO2值为187g CO2·m-2·a-1;与其他地区草地生态系统类型相比,在为期3年的研究时段海北地区高寒灌丛生态系统表现为大气CO2的汇。  相似文献   

15.
以2013年10月-2014年9月连续观测的CO2通量数据为基础,分析了科尔沁草甸生态系统净碳交换量(NEE)的时间变化特征及其驱动因素。结果表明,NEE日变化季节差异明显,生长季变化幅度大,净CO2日吸收速率7月>8月>9月>6月>5月;生长季内,NEE主要受控于叶面积指数和光合有效辐射。NEE与光合有效辐射(PAR)之间的关系可用直角双曲线方程来描述,拟合得到的表观初始光能利用率α为0.0015 μmol CO2/μmol PAR,最大光合速率Pmax为0.65 μmol CO2/(m2·s)。叶面积指数(LAI)对NEE的影响可由分段函数表示,当LAI>3.08时,表现为渐进饱和型,且LAI越大NEE对PAR的响应越明显;当高饱和水汽压差(VPD)在1.5~2.0 kPa时,光合作用开始降低,NEE明显受到VPD值的抑制;短暂强降雨(累计降雨量>40 mm/d)对昼间NEE有一定的抑制,而持续低强度降雨(降雨时长>15 h)对夜间NEE存在激发作用;夜间NEE随土壤温度呈指数增长,温度敏感系数(Q10)为2.63。  相似文献   

16.
利用研究区植被、土壤和气候观测资料,借助CENTURY模型研究了高寒草甸土壤异养呼吸CO2通量动态变化。结果表明,1)CENTURY模型较好地反映了高寒草甸土壤异养呼吸季节变化。模拟结果与试验点观测结果相吻合,风匣口和干柴滩2个试验点观测值与模拟值的线性回归方程分别为y=0.7776x+23.796(R2=0.6885, n=31)和y=0.9487x-8.6994(R2=0.6062, n=30)。2)过去46年(1960-2005年)研究区年平均气温趋于暖化,平均线性增温率为 0.35℃/10 a。降水量变化不明显,呈振幅较为稳定的波动变化。同期CENTURY模型模拟的高寒草甸土壤异养呼吸CO2通量呈波动性缓慢上升的趋势,通量变化范围在479.22~624.89 g C/(m2·a) 之间,平均值为(539.56±34.32) g C/(m2·a),通量增加率为16.5 g C/(m2·10 a)。对模拟结果与气温、降水量之间进行的相关性分析结果显示,土壤异养呼吸CO2通量与气温呈显著正相关(r=0.70,P<0.05),与降水量相关性不显著。3)氮沉降增加显著促进了高寒草甸土壤异养呼吸CO2通量。中氮(MN)和高氮(HN)与对照(CK)处理间差异极显著(P<0.01),但中氮(MN)与高氮(HN)处理间差异不显著。说明,长期受低温和土壤有效氮限制的高寒草甸对气候变化响应敏感,高原气候的暖化和氮沉降的增加均能引起土壤异养呼吸作用的小幅上升,但可能由于异养呼吸作用对氮沉降存在着一定的“氮饱和”现象,随着大气氮沉降的倍增,其促进效应降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号