共查询到14条相似文献,搜索用时 62 毫秒
1.
针对基于双目视觉技术的作物行识别算法在复杂农田环境下,立体匹配精度低、图像处理速度慢等问题,该文提出了一种基于Census变换的作物行识别算法。该方法运用改进的超绿-超红方法灰度化图像,以提取绿色作物行特征;采用最小核值相似算子检测作物行特征角点,以准确描述作物行轮廓信息;运用基于Census变换的立体匹配方法计算角点对应的最优视差,并根据平行双目视觉定位原理计算角点的空间坐标;根据作物行生长高度及种植规律,通过高程及宽度阈值提取有效的作物行特征点并检测作物行数量;运用主成分分析法拟合作物行中心线。采用无干扰、阴影、杂草及地头环境下的棉田视频对算法进行对比试验。试验结果表明,对于该文算法,在非地头环境下,作物行中心线的正确识别率不小于92.58%,平均偏差角度的绝对值不大于1.166°、偏差角度的标准差不大于2.628°;图像处理时间的平均值不大于0.293 s、标准差不大于0.025 s,能够满足田间导航作业的定位精度及实时性要求。 相似文献
2.
基于机器视觉的玉米精准施药系统作物行识别算法及系统实现 总被引:5,自引:9,他引:5
识别作物行中心线并实现喷药喷头的自动对准是精准施药系统实现的关键技术。为克服作物行识别算法的单一性和适应性不强的缺点,该文以生长早中期的玉米图像为研究对象,利用改进的过绿特征法和改进的中值滤波算法分割出作物行,减少处理时间和去除噪声;然后在行提取时只保留包含作物行信息的中间作物行,通过随机Hough变换检测出作物行中心线,并根据世界坐标与图像坐标的转换和相对距离得到偏差信息:最后实现了系统的硬件搭建并给出了实际运行效果。不同图像的试验和处理结果表明,该算法在背景分割、作物行提取和偏差信息获取方面具有一定的优势,可适用于不同作物及不同视野图像的作物行算法识别,对精准施药的研究具有一定的参考价值。 相似文献
3.
株间机械除草技术与装置能有效摆脱田间除草的繁重体力劳动并消除化学除草方法所带来的危害,株间机械除草装置的牵引拖拉机在跟踪作物行时总会产生航向偏差,导致除草装置出现横向偏移,甚至无法进入除草的株间区域,同时还会增加伤苗率。为增大株间机械除草的作用区域和降低伤苗率,该文提出了通过作物行信息识别出株间机械除草装置与作物行横向偏移量的方法,并设计了株间机械除草作物行跟踪机构和控制器,实现了株间机械除草跟随作物行。采用正弦波和三角波2种标准信号作为横向偏移补偿量信号,对作物行跟踪控制器的性能进行了测试,试验结果表明:作物行跟踪控制器能较好地控制除草装置跟随横向偏移补偿信号,前进速度为0.5 m/s时正弦波信号跟踪最大误差10 mm,平均误差0.8 mm,三角波信号跟踪最大误差11 mm,平均误差1.2 mm。除草试验表明,作物行跟踪控制系统能较好地控制株间除草装置跟踪作物行,在0.5 m/s前进速度下跟踪最大误差为20.8 mm,平均误差2.5 mm;作物行跟踪控制明显减少了除草爪齿未进入株间区域的比例,在300 mm株距下,可保证93.3%的株间区域有除草爪齿进行除草作业,在200 mm株距下为85.9%;作物行跟踪控制降低了除草爪齿对作物的损伤,伤苗率从20%以上降到了12%以内,提高了株间机械除草的作业效果。 相似文献
4.
为解决果园机器视觉导航中果树行识别易受果园复杂环境干扰的问题,该研究提出一种采用动态选取融合因子对彩色图像与深度图像进行图层融合并采用纹理-灰度梯度能量模型进行图像分割的果树行视觉识别算法。首先,通过搭建立体视觉系统获取果园彩色图像与对应的深度图像,并基于饱和度(S)通道图像的灰度值选取动态融合因子,实现对果园彩色图像与深度图像的图层融合;然后,分别计算融合图像的纹理特征图像与灰度梯度特征图像,并建立纹理-灰度梯度结合的能量模型,基于模型能量最小原则进行树干与背景的分割;最后,以树干与地面交点为果树行特征点进果树行直线拟合,完成果树行角度的识别。并对上述算法分别进行果树行识别试验与移动作业平台视觉对行导航试验。果树行识别试验结果表明,该研究算法果树行角度识别平均偏差为2.81°,与基于纹理、灰度梯度特征的果树行识别算法相比识别平均偏差分别降低2.37°和1.25°。移动作业平台视觉导航试验结果表明,在作业平台速度为0.6 m/s时,对行行驶最大偏差为12.2 cm,平均偏差为5.94 cm。该研究提出的视觉导航算法可以满足果园移动作业平台视觉对行导航需求,研究成果将为基于机器视觉的果园自动导航系统的研究与优化奠定基础。 相似文献
5.
基于自动Hough变换累加阈值的蔬菜作物行提取方法研究 总被引:2,自引:8,他引:2
为解决机器视觉对生菜和绿甘蓝两种作物在整个生长时期内多环境变量对作物行识别影响的问题,同时提高机器视觉作物行识别算法的有效性,该文提出了一种基于自动Hough变换累加阈值的多作物行提取算法。首先,选用Lab颜色空间中与光照无关a分量对绿色作物进行提取,通过最优自适应阈值进行图像分割,并采用先闭后开形态学运算对杂草和作物边缘进行滤波。其次,采用双阈值分段垂直投影法对作物行特征点进行提取,通过对亮度投影视图中的目标像素占比阈值和噪声判断阈值设置,实现特征点位置判断和杂草噪声过滤,并对相邻特征点进行优化,剔除部分干扰特征。最后,采用Hough变化对特征点进行直线拟合,将不同Hough变换累加阈值获得的拟合直线映射到累加平面上,通过K-means聚类将累加平面数据聚类为与作物行数相同的类数,根据相机成像的透视原理提出基于聚类质心距离差和组内方差的最优累加阈值获取方法,将最优累加阈值下累加平面中的聚类质心作为识别出的真实作物行线。温室和田间试验表明,针对不同生长时期的生菜和绿甘蓝作物,该文算法均可有效识别出作物行线,最优阈值算法耗时小于1.5 s,作物行提取平均耗时为0.2 s,在田间和温室中作物行的平均识别准确率分别为94.6%、97.1%,识别准确率为100%的占比分别为86.7%和93.3%。研究结果为解决多环境变量影响因素下的算法鲁棒性和适用性问题提供依据。 相似文献
6.
基于良序集和垄行结构的农机视觉导航参数提取算法 总被引:2,自引:3,他引:2
根据田间作物垄行间杂草离散的特点,基于图像矩阵,运用像素子集的良序性,结合垄宽先验知识得到垄行轨迹中心。同时,系统选择图像的绿色成分为目标特征空间,滤掉了非绿色的背景噪声,为寻找垄行子集奠定了基础。在摄像头参数结构的可线性化映射区(图像中间约1/3区域),考虑移动平台的速度和系统图像采样间隔,在系统处理速度大于平台移动速率条件下,建立了单目视觉导航系统的动态方程。试验结果表明:航向角和位置参数平均误差分别约为1°和1 mm。该算法设计简洁,实现容易,可有效避免杂草等噪声的影响,对光照也有一定的适应性。 相似文献
7.
为了后续加工便利,需要对打捞上来的淡水鱼进行分类,而且分类是淡水鱼加工前处理的重要工序之一。为了实现淡水鱼的自动分类,该研究通过收集常见的4种淡水鱼240条为试验样本,分别为鲢鱼、鲫鱼、鳊鱼和鲤鱼。通过运用机器视觉技术采集各种淡水鱼的图像,并运用数字图像处理技术对图像进行处理,提取其各个颜色分量及长短轴之比等特征值,最后运用该特征值建立有关淡水鱼的品种识别模型。研究表明,通过该识别模型可以完全实现对鲢鱼、鲫鱼、鳊鱼和鲤鱼这4种淡水鱼的品种的识别,准确率达到96.67%。机器视觉技术可以快速准确对常见的淡水鱼进行品种识别,具有较强的实际应用价值。 相似文献
8.
基于知识的视觉导航农业机器人行走路径识别 总被引:7,自引:5,他引:7
目前的农业生产方式引起了环境污染、生态恶化等诸多问题,研制具有精确作业能力的视觉导航农业机器人因而被较多关注。针对导航视觉系统采集的农田非结构化自然环境彩色图像,探讨了用于行走路径识别的适宜的彩色特征,并结合农田作业时农业机器人行走路径的特点,运用路径知识启发机制识别出行走路径。与传统的阈值分割算法的对比处理试验表明,此识别算法可以明显地改善路径识别效果。 相似文献
9.
10.
基于机器视觉的株间机械除草装置的作物识别与定位方法 总被引:4,自引:11,他引:4
株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了一种株间机械除草装置的作物识别与定位方法.利用2G-R-B方法将作物RGB彩色图像进行灰度化,再选用Ostu法二值化、连续腐蚀和连续膨胀等方法对图像进行了初步处理.根据行像素累加曲线和曲线的标准偏差扫描线获得作物行区域信息,以作物行区域为处理对象,利用列像素累加曲线、曲线标准偏差和正弦波曲线拟合识别出作物,并结合二值图像中绿色植物连通域的质心获得作物位置信息.试验结果表明,该方法可以正确识别出作物并提供准确的定位信息,能适应不同天气状况、不同种类的作物,棉苗正确识别率为95.8%,生菜苗正确识别率为100%,该方法为株间机械除草装置避苗和除草自动控制提供了基本条件. 相似文献
11.
基于垄线平行特征的视觉导航多垄线识别 总被引:1,自引:10,他引:1
为有效快速地识别农田多条垄线以实现农业机器人视觉导航与定位,提出一种基于机器视觉的田间多垄线识别与定位方法。使用VC++ 6.0开发了农业机器人视觉导航定位图像处理软件。该方法通过图像预处理获得各垄行所在区域,使用垂直投影法提取出导航定位点。根据摄像机标定原理与透视变换原理,计算出各导航定位点世界坐标。然后结合垄线基本平行的特征,使用改进的基于Hough变换的农田多垄线识别算法,实现多垄线的识别与定位。使用多幅农田图像进行试验并在室内进行了模拟试验。处理一幅320×240的农田图像约耗时219.4 ms,室内试验各垄线导航距与导航角的平均误差分别为2.33 mm与0.3°。结果表明,该方法能有效识别与定位农田的多条垄线,同时算法的实时性也能满足 要求。 相似文献
12.
橘小实蝇发生期虫口数量是威胁果树生长状况的重要参数,是实施精准变量喷雾的基础。为实现果园大尺度、现场、实时和快速检测橘小实蝇虫害发生情况,该文提出了一种基于机器视觉技术在虫口区域跟踪橘小实蝇运动轨迹和数量检测的方法。试验采用橘小实蝇视觉检测平台,选取华南农业大学资源与环境学院橘小实蝇饲养室采集的视频图像作为评价样本,通过人工与机器视觉方式比较视频前50?000帧的检测效果,试验结果表明人工和机器视觉检测的橘小实蝇数量分别为85、78头;机器视觉漏检率为9.4%,达到虫害数量统计要求。 相似文献
13.
为了实现大田害虫的快速实时识别和诊断,设计了一套大田害虫远程自动识别系统。该系统通过3G无线网络将害虫照片传输到主控平台中,在主控平台中实现远程自动识别。系统首先对害虫图像进行基于形态和颜色特征值的提取。害虫图像的形态特征由周长、面积、偏心率等以及7个胡不变矩共16个特征值组成,颜色特征值由9个颜色矩组成,然后建立支持向量机分类器。采用该系统对6种常见大田害虫进行了测试,平均准确率达到87.4%。考虑到不同的害虫姿态和大田中不同的光照条件,系统的分类效果是满意的。 相似文献
14.
为了实现大田害虫的快速实时识别和诊断,设计了一套大田害虫远程自动识别系统。该系统通过3G无线网络将害虫照片传输到主控平台中,在主控平台中实现远程自动识别。系统首先对害虫图像进行基于形态和颜色特征值的提取。害虫图像的形态特征由周长、面积、偏心率等以及7个胡不变矩共16个特征值组成,颜色特征值由9个颜色矩组成,然后建立支持向量机分类器。采用该系统对6种常见大田害虫进行了测试,平均准确率达到87.4%。考虑到不同的害虫姿态和大田中不同的光照条件,系统的分类效果是满意的。 相似文献