首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
[目的]研究降雨驱动作用下土壤团聚体受雨滴打击发生破碎和形成的过程,丰富土壤侵蚀研究机理。[方法]基于稀土元素示踪法,对各粒径土壤团聚体同时进行标记。在90 mm/h降雨溅蚀条件下,通过各粒径土壤团聚体(2~5 mm, 0.25~2 mm, 0.053~0.25 mm,<0.053 mm)在不同降雨特征参数(降雨历时、雨滴大小)下的质量变化和稀土元素含量变化,定量分析了团聚体间的周转路径和溅蚀颗粒特征。[结果]降雨驱动作用下,溅蚀量和溅蚀率会随着降雨动能的增加而变大,溅蚀颗粒主要分布于0.25~2 mm粒径范围内;除>2 mm的颗粒为大团聚体直接飞溅产生,<0.25 mm粒级溅蚀颗粒均主要源于大粒级团聚体破碎形成,最高可达到73.83%,其次为该粒级直接被击飞形成,同时会有小粒级颗粒吸附黏结形成;在残余团聚体的动态周转过程中,主要是相邻级别的团聚体间形成和破碎过程占比较高,其中大团聚体破碎产生小团聚体和粉黏粒团聚形成小团聚体分别对原粒级团聚体的破碎和形成方向的贡献率较高,分别达到24.06%~42.15%和36.83%~70.76%,且随着降雨时间的变化,大团聚体首先...  相似文献   

2.
不同粒径红壤团聚体坡面溅蚀特征   总被引:5,自引:2,他引:3  
为揭示不同粒径团聚体坡面溅蚀规律,以第四纪粘土发育红壤为研究对象,通过室内人工模拟降雨试验(雨强75mm/h,历时45min)研究0.25,0.25~0.5,0.5~1,1~2,2~5mm粒径团聚体溅蚀规律,系统分析了降雨条件下各粒径团聚体破碎、溅蚀率变化、溅蚀搬运量以及溅蚀搬运后的空间分布特征。结果表明:(1)降雨条件下团聚体粒径越大越容易破碎,除2~5mm团聚体破碎量高达96.06%外,2mm团聚体破碎量均小于50.00%。(2)0.25mm团聚体溅蚀率具有陡涨陡落特点,表土结皮发育迅速;0.25~0.5mm团聚体溅蚀率陡涨缓落,表土泥浆化过程明显;0.5~5mm团聚体溅蚀率则能保持较长时间增长,随后降低。(3)不同粒径团聚体溅蚀总量、上下坡溅蚀量与净搬运量变化趋势一致,一次降雨过程中,溅蚀搬运量峰值出现在粒径0.25~0.5mm范围内,而后随着粒径的增大逐渐降低。(4)团聚体粒径越小,溅蚀搬运后的平均重量距离越大,各粒径团聚体溅蚀量基本全部分布在半径60cm范围内。研究结果能为降雨侵蚀防治及侵蚀过程模型提供理论参考。  相似文献   

3.
为区分土壤团聚体形成和破碎过程,阐明冻融循环对黑土土壤结构的影响,本文利用稀土氧化物(REOs)示踪技术,通过室内模拟实验,探究不同初始含水量(50 %田间持水量(T50) vs. 100 %田间持水量(T100))和冻融循环次数(0次、3次、6次、12次和20次)对团聚体粒径分布、平均质量直径(MWD)以及团聚体周转过程的影响。研究结果表明:同一初始含水量下,随着冻融循环次数的增加,MWD、>0.25 mm和<0.053 mm团聚体含量显著降低,0.25~0.053 mm团聚体含量显著增加(P < 0.05)。6次冻融循环后,T50处理下的MWD显著高于T100处理(P < 0.05),5~2 mm和<0.25 mm团聚体含量无显著差异。除5~2 mm团聚体外,相邻粒级团聚体之间周转更为激烈;在同一冻融循环次数下,5~2 mm团聚体向0.25~0.053 mm团聚体的破碎量在T100处理下显著高于T50处理(P < 0.05)。冻融循环促进了>0.25 mm团聚体的破碎和<0.053mm的团聚,表现为0.25-0.053mm团聚体的累积,该变化与土壤初始含水量无关。冻融循环过程中,MWD与各粒径团聚体相对形成量呈显著正相关,与其相对破碎量呈显著负相关(P < 0.05)。随着冻融循环次数的增加,各粒径团聚体周转时间显著增加(P < 0.05)。同一冻融循环次数下,>0.25 mm团聚体的周转时间高于<0.25 mm团聚体,T100处理下的团聚体周转时间显著高于T50处理(P < 0.05)。综上所述,冻融循环次数和土壤初始含水量通过影响团聚体形成和破碎过程改变土壤结构的稳定性。本研究结果可为进一步探究冻融循环下黑土土壤结构变化提供理论依据。  相似文献   

4.
华北土石山区坡面溅蚀和片蚀泥沙颗粒特征研究   总被引:1,自引:1,他引:0  
基于野外人工模拟降雨试验,研究3种降雨强度(35,65,100mm/h)、2种坡度(5°,15°)和3种植被盖度(0%,30%,80%)条件下,溅蚀和片蚀泥沙颗粒的粒径动态分布特征,及其与降雨强度、坡度和植被覆盖度的关系,揭示表层土壤团聚体在侵蚀过程中的破碎机制。结果表明,2种侵蚀方式下的泥沙颗粒主要集中在0.1~0.002mm粒级范围内,显著高于其它粒级颗粒含量。在溅蚀泥沙颗粒中0.1~0.05mm粒级颗粒含量较高,而片蚀泥沙颗粒中0.02mm粒级颗粒含量较高,溅蚀泥沙颗粒的平均重量直径均大于片蚀泥沙颗粒。对比泥沙颗粒粒径的变化特征,溅蚀泥沙颗粒中粗砂粒(2~0.25mm)和细砂粒(0.25~0.05mm)含量逐渐减少,粉粒(0.05~0.02mm)和粘粒(0.002mm)含量逐渐增加,而片蚀泥沙颗粒中砂粒(2~0.05mm)含量呈增加趋势,粘粒(0.002mm)含量呈减小趋势。2种侵蚀方式下不同粒径泥沙颗粒与坡面径流深和径流量的相关性分析表明,泥沙颗粒粒径分布与地表产流过程密切相关。同时,雨滴击溅侵蚀泥沙颗粒的分形特征与侵蚀土壤的相对机械破碎指数有关,能够有效预测侵蚀过程中降雨和径流对坡面土壤团聚体的分选特征。  相似文献   

5.
雨滴击溅对耕作层土壤团聚体粒径分布的影响   总被引:7,自引:4,他引:3  
为研究不同雨滴直径的降雨对耕作层团聚体的破碎及其粒径分布特征的影响,该文选取4个雨滴直径(2.67~3.79 mm)对耕层土壤(0~20 cm)团聚体进行雨滴击溅试验,每次试验各滴5 000滴,每1 000滴收集1次溅蚀团聚体。结果表明:1)所有收集次序中雨滴直径3.79 mm溅蚀量最大,累积雨滴数为2 000、3 000和4 000时,溅蚀量与雨滴直径均呈显著的指数函数关系。2)各雨滴直径的溅蚀量随粒径减小呈增大-减小-增大趋势,2 mm粒径的溅蚀量几乎为0,0.053 mm粒径的溅蚀量随雨滴直径增大而增大。3)相同雨滴直径不同累积雨滴数之间平均重量直径值差异不显著,相同累积雨滴数不同雨滴直径之间平均重量直径值差异不显著(P0.05)。4)不同雨滴直径溅蚀团聚体富集率随粒径变化一致,1 mm粒径溅蚀量团聚体富集率值接近0,0.053~1 mm粒径团聚体富集,1 mm粒径团聚体主要破碎成0.053~1 mm粒径团聚体,且粒级越小,富集率越高。研究可为黄土高原地区水土保持提供理论依据。  相似文献   

6.
土粒表面电场对土壤团聚体破碎及溅蚀的影响   总被引:1,自引:1,他引:0  
团聚体是土壤结构的基本单元,其稳定性是评估土壤抗侵蚀能力的重要指标。土壤团聚体破碎是降雨溅蚀发生的关键一步。土粒表面电场对团聚体稳定性具有重要影响,必然也会深刻影响降雨溅蚀过程。该文以黄土母质发育的黄绵土和塿土为研究对象,采用不同浓度的电解质溶液定量调控土粒表面电场,研究不同电场强度对团聚体破碎及溅蚀的影响。结果发现:1)随电解质浓度的降低,土粒表面电位升高,表面电场增大,黄绵土和塿土团聚体平均重量直径减小,团聚体稳定性降低,降雨溅蚀量增大。2)电解质浓度小于10-2 mol/L,黄绵土和塿土表面电位绝对值分别高于202.0和231.6 mV,此时团聚体稳定性和溅蚀量变化不明显,表明表面电位202.0和231.6 mV分别是影响黄绵土和塿土团聚体稳定性及溅蚀的关键电位。3)随着土粒表面电场的减弱,团聚体破碎后释放的<0.15 mm微团聚体含量减小,>0.25 mm大团聚体含量增加,团聚体倾向于破碎为更大粒级的团聚体。4)电场作用下团聚体的破碎特征对降雨溅蚀具有重要的影响,溅蚀量与团聚体破碎释放的<0.15 mm微团聚体含量呈显著正相关,与>0.25 mm大团聚体含量呈显著负相关。上述结果表明,当降雨进入土壤后,对于干燥的土壤而言,土壤溶液电解质浓度被迅速稀释,土粒表面产生强大的电场,该电场通过影响团聚体破碎程度进而影响降雨溅蚀。该研究有助于加深对降雨溅蚀的科学认识,同时也为土壤团聚体稳定性及降雨溅蚀的人为调控提供了一定的理论依据。  相似文献   

7.
[目的] 为明晰降雨能量和初始含水率对土壤团聚体溅蚀过程机制的影响。[方法] 选取东北典型耕层黑土为研究对象,通过人工模拟降雨试验,探讨不同初始含水率、降雨能量和团聚体初始粒径的团粒溅蚀特征。[结果] (1)4种初始粒径黑土团聚体的溅蚀量均在初始含水率4%时最大,其中初始粒径<0.25 mm团聚体溅蚀量是相同降雨能量下各粒径团聚体溅蚀量的1.21~5.50倍。随初始含水率的增加各初始粒级团聚体溅蚀量呈减小趋势,而初始含水率>25%后则呈增大现象。(2)4种初始粒径黑土团聚体的溅蚀量均随降雨能量的增加而增大。相较于降雨能量305 J/(m2·h)(1 m)条件,当降雨能量增加至909 J/(m2·h)(5 m)时,不同初始粒径团聚体溅蚀量分别增加15.37~20.70(<0.25 mm),52.30~417.60(0.25~1 mm),51.58~359.36(1~3 mm),68.73~777.99倍(3~5 mm)。不同初始粒径黑土团聚体溅蚀量存在明显的阈值,当降雨能量达到529 J/(m2·h)(2 m)以上时,不同降雨能量梯度下的溅蚀量存在显著差异。(3)降雨能量是影响溅蚀量的关键因素。降雨能量对溅蚀量的直接效应为0.811,存在显著正向影响,且相关程度最高;初始含水率和团聚体初始粒径的直接效应分别为0.193和0.352,存在显著负向影响。[结论] 研究结果可为东北黑土区坡面土壤侵蚀过程机制研究和土壤侵蚀机理模型构建提供科学依据。  相似文献   

8.
模拟降雨条件下塿土的溅蚀特征试验研究   总被引:1,自引:0,他引:1  
溅蚀在破坏土壤表层结构的同时为后续侵蚀提供丰富材料,以黄土高原典型土壤塿土为试验用土,通过模拟降雨试验,根据溅蚀速率、溅蚀前后土壤颗粒组成及表面强度变化指标,系统研究塿土的溅蚀特征。结果表明,溅蚀速率随降雨历时呈现幂函数变化,分为迅速降低、缓慢降低、趋于稳定3个阶段。土盘表面松散颗粒及利于溅蚀的粒级范围内颗粒的消耗、团聚体破碎及超渗产生的水层消耗雨滴能量、结皮的形成和发育分别是3个阶段的主要影响因素。在90mm/h的雨强下,塿土颗粒富集与耗损的临界粒径是0.05mm,雨滴打击分离粒级0.05mm颗粒,富集迁移粒级0.05mm颗粒。当含水率相等时,降雨历时越长贯入深度越浅。塿土表面强度随降雨历时增加,0~30min是塿土结皮形成的关键时期。塿土溅蚀过程是表土颗粒组成不断变化和表面强度逐渐完善的过程。  相似文献   

9.
东北黑土区土壤团聚体迁移特征的模拟降雨试验研究   总被引:2,自引:0,他引:2  
坡面侵蚀过程中土壤团聚体迁移反映了团聚体的破碎程度以及雨滴打击和径流搬运之间的相互作用。基于模拟降雨试验,研究了黑土坡面不同粒级土壤团聚体的迁移特征。研究结果表明,同干筛处理相比,湿筛后≥0.25mm粒径的水稳性团聚体含量为52%,其较干筛处理减少24%。湿筛后土壤团聚体的粒级分布以<0.25mm团聚体居多;湿筛处理后>1mm粒级的团聚体含量较干筛处理减少了83.8%。在50和100mm/h两个降雨强度下,团聚体流失以<0.25mm的微团聚体为主,其流失量占团聚体流失总量的80%以上,且不同降雨强度下微团聚体流失量与含沙浓度存在显著正相关关系。50mm/h降雨强度下微团聚体流失量随降雨历时的增加呈先快速增加后递减,最后趋于相对稳定的变化趋势;而100mm/h降雨强度下,其变化趋势则表现为先快速增加后缓慢上升趋势。≥0.25mm各粒级团聚体的流失比例和流失团聚体的平均重量直径(MWD)均随降雨强度的增加而减小,反映了大雨强下雨滴打击对团聚体的分散作用。  相似文献   

10.
降雨强度和坡度对东北黑土区顺坡垄体溅蚀特征的影响   总被引:6,自引:2,他引:6  
坡耕地溅蚀特征研究可揭示和反映溅蚀的发生和发展机理,而以往研究大多在无垄作坡面进行,较少涉及顺坡垄体。为此,该研究基于野外人工模拟降雨试验,设计3个降雨强度(30、60和90 mm/h)和2个坡度(3°、5°),研究降雨强度和坡度对典型黑土(Mollisol)农田顺坡垄体溅蚀量、溅蚀过程和溅蚀分选特征的影响。研究结果表明:当降雨强度由30 mm/h增加到90 mm/h时,总溅蚀量增加2.5~17.9倍。当坡度由3°增大到5°时,总溅蚀量增加30.52%~74.08%。当降雨强度为30和60mm/h时,总溅蚀率随降雨历时呈迅速减小-缓慢减小-波动稳定的趋势。当降雨强度为90mm/h时,总溅蚀率随降雨历时呈迅速增加-迅速减小-波动稳定的趋势。整体而言,总溅蚀量随降雨强度和坡度的增加呈幂函数关系。各试验处理下,溅蚀分选水稳性团聚体中均以1 mm粒级的团聚体为主,平均占总量的79.01%,以0.5~1 mm粒级最多,2~5 mm粒级最少,分别占总量的32.94%和3.36%。30和60 mm/h降雨强度下,分别为0.25和2 mm的各粒级团聚体在降雨后期达到波动稳定,其中0.25mm的团聚体均呈迅速降低-缓慢降低-波动稳定的变化趋势。90 mm/h降雨强度下,1~5和0.25 mm各粒级团聚体均呈线性平稳变化,其中0.25 mm的团聚体呈线性减少趋势。研究可为东北黑土区水蚀防治提供科学依据。  相似文献   

11.
氧化亚氮(N2O)是主要温室气体之一,土壤是N2O的重要排放源,其排放主要受N2O产生和还原的功能微生物影响。土壤团聚体是由原生颗粒(砂、粉、黏粒)、胶结物质和孔隙组成的土壤基本结构单元。土壤不同粒径团聚体之间因基质和孔隙差异形成特殊独立的微生境被视为N2O的生物化学反应器。在不同的微生境中,N2O产生和还原的功能微生物分布不同,因而土壤不同粒径团聚体N2O排放可能存在差异。目前在不同生态系统土壤全土N2O排放特征的报道较多,而对于不同粒径土壤团聚体N2O排放相对贡献尚不清楚、功能微生物分布还未知、N2O产生和还原热区尚未明确。本文综述了近年来国内外关于土壤团聚体对N2O产生和排放机制的研究,总结了土壤团聚体性状特征对N2O产生和还原的影响,阐述了不同粒径土壤团聚体对N2O排放影响的微生物学机制,进一步明确了今后需加强土壤团聚体N2O产生和还原的热区、环境因子阈值范围的确定、系列功能基因(酶)整体性的研究,以期为N2O模拟排放模型优化提供参考,为土壤N2O减排提供理论依据。  相似文献   

12.
基于REE示踪的土壤团聚体破碎转化路径定量表征   总被引:1,自引:0,他引:1       下载免费PDF全文
土壤团聚体破碎转化路径是坡面侵蚀过程研究的难点问题之一。目前团聚体破碎转化路径的定量表征仍不明晰,一定程度上限制了土壤侵蚀过程中泥沙分选搬运机制的深入研究。基于大样带调查选取6种不同质地的典型农耕地土壤为研究对象,结合稀土元素(Rare Earth Elements,REE)示踪方法,综合分析不同粒径土壤团聚体(5~2,2~1,1~0.5,0.5~0.25,<0.25 mm)和不同径流扰动周期(24 h,7天)对REE吸附和解吸能力的影响,探究REE示踪不同粒径土壤团聚体破碎转化的可行性,定量表征了土壤团聚体破碎转化路径。结果表明:REE与土壤团聚体的实际吸附浓度低于施放浓度,2~1,1~0.5,0.5~0.25,<0.25 mm土壤团聚体的REE吸附浓度与黏粒含量呈显著正相关(P<0.05);径流扰动影响对吸附于土壤团聚体的REE解吸作用十分微弱,解吸浓度仅占REE实际吸附浓度的0.001%~0.139%。5~2,2~1,1~0.5,05~0.25,<0.25 mm土壤团聚体经过湿筛后向各粒径转化的路径基本相同,向<0.25 mm微团聚体转化为土壤团聚体破碎的主要路径。相较于粉粒、黏粒含量较高的土壤团聚体,砂粒含量较高的土壤团聚体向1~0.5,0.5~0.25 mm粒径的转化贡献率整体偏低。基于REE示踪得到的>0.25 mm各粒径团聚体质量整体被低估,低估范围为-27.96%^-11.08%;而<0.25 mm团聚体质量则被高估,高估范围为3.65%~22.73%。基于各粒径土壤团聚体的REE量化值建立了校正关系,可将计算相对误差降低至0.04%~16.24%。  相似文献   

13.
[目的]揭示土壤团聚体破碎、迁移对活性有机碳流失的影响,建立活性有机碳流失量估算方程,为评估水蚀作用下土壤有机碳流失与矿化的定量关系提供理论支撑。[方法]以黄土高原典型■土为研究对象,设计3种降雨强度(60mm/h,90mm/h,120mm/h)和3个坡度(5°,10°,15°),采用人工模拟降雨技术,通过建立经验方程,对活性有机碳流失量进行估算。[结果]相较雨强,坡度对土壤轻组有机碳(light fraction of soil organic carbon,LFoc)流失的影响更明显,片蚀与溅蚀泥沙LFoc含量均随坡度的增大先减小后增大,而雨强对片蚀泥沙LFoc含量无显著影响(p<0.05);溅蚀泥沙LFoc含量明显低于片蚀,且溅蚀泥沙LFoc未发生明显富集,片蚀泥沙中LFoc发生明显富集;对比不同粒级团聚体LFoc含量发现,<0.05mm黏粉粒、0.05~0.25mm团聚体中LFoc更易于发生富集,而0.25~2mm团聚体LFoc只在小雨强和小坡度条件下发生富集;由于<0.02mm粒级团聚体迁移为LFoc流失的主导因素,基于<0.02mm粒级团聚体迁移量相...  相似文献   

14.
施肥措施对复垦土壤团聚体碳氮含量和作物产量的影响   总被引:4,自引:1,他引:3  
研究复垦后不同施肥措施下有机碳(OC)和全氮(TN)在水稳性团聚体及粉黏粒组分中的分布特征,以期深入理解不同施肥措施下土壤有机碳的固持机制。以生土和连续6年不同施肥措施的复垦土壤为研究对象,采集0~20 cm耕层土壤样品,利用湿筛法进行土壤粒径分组,分析大粒径大团聚体(> 2 mm)、小粒径大团聚体(0.25~2 mm)、微团聚体(0.053~0.25 mm)和粉黏粒组分(< 0.053 mm)中OC和TN含量,判断各粒径团聚体及粉黏粒组分中有机碳储量的驱动因素,探究团聚体及粉黏粒组分中有机碳含量与作物产量之间的关系。试验设不施肥(CK)、施氮磷钾化肥(NPK)、单施有机肥(M)和有机无机肥配施(MNPK)4个处理。结果表明:1)整个试验周期(2008-2013年),同CK相比, NPK、M以及MNPK处理均显著提高了玉米籽粒产量,且以MNPK处理的效果最显著,分别提高了79.49%、116.07%和113.85%。  相似文献   

15.
依托紫色土坡耕地长期施肥试验观测平台,研究生物炭、秸秆对紫色土坡耕地团聚体有机碳分布的影响。长期施肥试验处理包括不施肥(CK)、无机氮磷钾肥(NPK)、秸秆还田(RSD)、生物炭与无机氮磷钾配施(BCNPK)、秸秆与无机氮磷钾配施(RSDNPK)。利用湿筛法,进行土壤团聚体粒径分组,随后测定各粒径团聚体含量及其有机碳含量,并计算团聚体平均质量直径(MWD)和几何平均直径(GMD)。结果表明,RSD、RSDNPK和BCNPK处理的表层SOC含量比CK处理增加43.1%~90.5%,SOC储量提高65.1%~74.3%,其中RSDNPK处理、BCNPK处理较NPK处理SOC显著增加25.2%~33.1%(P0.05), SOC储量显著提高23.2%~30.0%(P0.05)。团聚体MWD和GMD均为RSD处理RSDNPK处理BCNPK处理NPK处理CK处理; RSD处理0.25~2 mm的团聚体含量高达45.5%,较CK处理提高57.7%;秸秆和生物炭配施处理(RSDNPK处理和BCNPK处理)0.25~2mm的团聚体含量为41.3%~45.7%,而0.053mm粒径团聚体含量却降低54.1%~55.4%。NPK处理、RSD处理与CK处理的增长趋势相似,呈随团聚体粒径减小,团聚体有机碳含量先增大后减小,继而再增大的趋势;而RSDNPK、BCNPK处理则呈随粒径减小团聚体有机碳含量增加的趋势。生物炭和秸秆的施用能显著提升土壤有机碳含量,增强土壤结构稳定性,但生物碳的施用对提升土壤有机碳含量效果优于秸秆的施用,秸秆的施用对稳定土壤结构效果更优,因此生物炭和秸秆的施用可作为紫色土耕地土壤肥力维持和提升的有效管理措施。  相似文献   

16.
为量化雨强和坡度对团聚体流失特征的影响,以黑土坡耕地表层土壤(0—10 cm)为研究对象,采用室内模拟降雨的研究方法,对比了不同雨强(78,127 mm/h)及坡度(2°,4°,6°)下团聚体流失特征,并计算了雨强和坡度对团聚体流失量的贡献率。结果表明:(1)相同雨强条件下,团聚体流失总量随坡度的增加显著增加0.70~1.42倍;相同坡度条件下团聚体流失总量随雨强的增加在坡度4°和6°时分别显著增加1.94,2.41倍。雨强是团聚体流失总量的主要影响因子,贡献率为52.44%;(2)随坡度增加,流失团聚体MWD显著减少,D值仅在雨强78 mm/h时显著增加;随雨强增加流失团聚体MWD,D无显著差异;(3)随坡度增加,粒径5~1,1~0.25,0.25~0.053 mm团聚体流失量呈先增加后减少的趋势,粒径<0.053 mm团聚体流失量显著增加。随雨强的增加,小粒径团聚体流失量呈增加趋势,大粒径团聚体流失量仅在高坡度条件下明显增加;(4)雨强是粒径1~0.25,0.25~0.053,<0.053 mm团聚体流失量的主要影响因素,贡献率为27.42%~47.09%;坡度是粒径5...  相似文献   

17.
Aggregate breakdown due to rainfall action causes crusting and interrill erosion. Erodibility is seemingly determined by the capacity of surface aggregates to resist the effects of rainfall. In this paper, we evaluated the relevance of an aggregate stability measurement, which comprises three treatments, in order to characterize aggregate breakdown dynamics. Two cultivated soils were studied: a clay loam slightly sensitive to erosion and a more susceptible silt loam. We compared the size distributions of microaggregates produced by the three aggregate stability treatments with the results from a rainfall simulation. The behaviour of four initial aggregate size classes (< 3 mm, 3–5 mm, 5–10 mm and 10–20 mm) was also compared to study the influence of the initial aggregate size on the nature of resulting aggregates. The mean weight diameter was from 200 to 1400 µm for the silt loam and from 600 to 7000 µm for the clay loam. The two experiments – aggregate stability measurements and aggregate breakdown dynamics under rainfall – yielded similar results. Qualitative analysis showed that for both soils the sizes of fragments produced by breakdown with the aggregate stability tests and under rainfall were similar and seemed to be qualitatively independent of the size of initial aggregates. We first schematized the structural organization of aggregates in cultivated horizons with a simple hierarchical model at two levels: (i) < 250 µm microaggregates and (ii) > 250 µm macroaggregates made by the binding together of microaggregates. We then developed a model of aggregate breakdown dynamics under rainfall which gives, for various rainfall durations, the size distributions of resulting fragments on the basis of aggregate stability measurements. We obtained a correlation coefficient, r, of 0.87 for the silt loam and of 0.91 for the clay loam, showing that the experimental and predicted mass percentages were linearly related for each size fraction.  相似文献   

18.
Soil aggregate stability (SAS) is an indicator for soil condition and is greatly influenced by land use or land cover (LULC) type and other soil and environmental attributes. This study investigated the soil aggregate-size distribution, SAS, aggregate-associated organic carbon (AAOC) and the relative importance of factors affecting SAS and AAOC. Based on conditioned Latin hypercube sampling, soil aggregate samples were collected from the “A” horizon and wet sieved into large macroaggregates (>2.0 mm), small macroaggregates (0.25–2.0 mm), microaggregates (0.053–0.25 mm) and mineral fraction (<0.053 mm). The large macroaggregates accounted for 86% to 93% of the total aggregates under all LULC types except under dry land (64%) and paddy land (35%). The SAS under different LULC decreased in the order fir > shrubland > natural grassland > orchard > blue pine > broadleaf > mixed conifer > dry land > paddy land. The AAOC of the large macroaggregates constituted for 76%–90% of the total AAOC under all LULC types except under dry land (65%) and paddy land (38%). While SAS was largely influenced by the AAOC of small macroaggregates, microaggregates and large macroaggregates and LULC type, the AAOC of different aggregate fractions was mostly affected by LULC type, altitude and slope. SAS did not exhibit any significant relationship with the AAOC of different aggregate fractions under the natural LULC types but showed a strong relationship under the agricultural land indicating that AAOC is more critical for SAS under the agricultural land than under the natural LULC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号