首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In maize endosperm, a cytosolic albumin, b-32, with a molecular weight of 32 kDa is synthesised in temporal and quantitative coordination with the deposition of storage proteins. This protein has homology with several previously characterised Ribosome-Inactivating Proteins (RIPs). To verify if the maize plant expressing b-32 in various tissues has an increased tolerance to fungal pathogens, transgenic plants were obtained through genetic transformation using a chimeric gene containing the b-32 coding sequence downstream of a constitutive 35SCaMV promoter. A set of four independent homozygous progenies expressing b-32, were selected for a detailed analysis of b-32 expression in leaves and for pathogenicity tests. A differential b-32 content in leaf protein extracts was recorded in the transgenic progenies. Proteomic investigations on protein leaf extracts were carried out; the overlapping of the two-dimensional electrophoresis maps demonstrated the presence in a transgenic progeny, of additional spots, identified as b-32 and as a protein for herbicide resistance, in comparison to the negative control. Transgenic progenies were tested in bioassays to evaluate the response to Fusarium attack in leaf tissues. Preliminary experiments supported the choice of bioassay parameters for a reliable evaluation of transgenic progenies. The negative control was most susceptible to Fusarium verticillioides attack, compared to transgenic progenies. The data obtained indicate that maize b-32 was an effective antifungal protein by reducing Fusarium infection progression. Additionally, the reduction in Fusarium attack symptoms was related to b-32 concentration in leaf tissues.  相似文献   

2.
为研究小麦UDP-葡萄糖基转移酶7(UDP-glycosyltransferase 7,TaUGT7)的抗赤霉病功能,利用DNAMAN 6.0软件对Ta UGT7及其同源蛋白进行序列比对,应用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)技术分析经赤霉菌Fusarium graminearum和脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)处理后的苏麦3号小穗中TaUGT7基因的表达特征,利用基因枪在洋葱表皮细胞瞬时表达TaUGT7-eGFP进行亚细胞定位,采用农杆菌介导法在小麦品种Fielder中过量表达TaUGT7基因并进行赤霉病抗性鉴定。结果表明,TaUGT7在氨基酸序列上与已知赤霉病抗性相关UGT相似性较低;TaUGT7在赤霉菌接种24 h后开始被诱导表达,在DON处理2 h后逐步被诱导表达;Ta UGT7蛋白亚细胞定位于细胞膜和细胞核中;qRT-PCR检测发现,TaUGT7在8株独立的过表达转基因株系中均有不同程度的上调表达;与野生型对照相比,过表达株系TaUGT7-395和TaUGT7-457中的平均病小穗率显著下降。...  相似文献   

3.
Determination of the Fusarium protein equivalent (FPE) levels in kernels for better characterisation of genotypes showing Fusarium head blight (FHB) resistance, and better detection of susceptibility to kernel infection among genotypes with slight symptom expression was carried out. Twelve wheat cultivars and eight hexaploid winter wheat lines derived from a cross of Triticum aestivum with related species T. macha, T. polonicum, and T. dicoccoides were evaluated for levels of spike and kernel infection, the content of the mycotoxin deoxynivalenol (DON) and FPE in kernels after artificial inoculation with the fungus Fusarium culmorum in the field in 2006–2007. The ELISA immunochemical method was employed for the quantitative analyses of DON and FPE. Three wheat lines had a significantly low infection of spikes and kernels compared to cvs Sumai 3 and Nobeoka Bozu, indicating the presence of specific resistance mechanisms to FHB. The significantly low AUDPC (area under the disease progress curve) and the high level of FPE and DON content in kernels indicated a lack of resistance in one wheat line (crossed with T. polonicum). The results showed highly significant correlations (P < 0.01) between FPE and DON content and between FPE and AUDPC. In addition, correlations between FPE and reductions in yield components were also highly significant. Quantification of Fusarium spp. in wheat kernels can be helpful for evaluating wheat genotypes for their levels of resistance to FHB.  相似文献   

4.
This work presents an analysis of the relationship between components of partial disease resistance (PDR) detected using in vitro detached leaf and seed germination assays, inoculated with Microdochium majus, and Fusarium head blight (FHB) resistance to Fusarium graminearum assessed using point inoculation, termed Type II resistance. Relationships between in vitro-determined PDR components and FHB resistance using techniques which inoculate the wheat spike uniformly, termed Type I resistance (incidence and severity), have been reported previously. In this study shorter incubation periods, longer latent periods and shorter lesion lengths in the detached leaf assay and higher germination rates in the seed germination assay were related to greater FHB resistance measured by single point inoculation (Type II), collectively explaining 54% of the variation. Overall the relationships observed for Type II FHB resistance were similar to previous findings for Type I resistances. However, the relative magnitude of effects of the individual PDR components determined in vitro varied between FHB disease resistance parameters. Resistance in seed germination and latent period in the detached leaf assay were more strongly related to resistance assessed by point inoculation (Type II) and severity-Type I as opposed to incubation period which was most strongly related to disease incidence-Type I. The results provide evidence that individual components of partial disease resistance differentially affect aspects of FHB disease progression in the wheat spike. This work supports the view that the current model of types of resistance is an oversimplification of the interacting mechanisms underlying expression of FHB resistance.  相似文献   

5.
Interactions between Barley yellow dwarf virus (BYDV) and Fusarium species causing Fusarium head blight (FHB) in winter wheat cvs Agent (susceptible to FHB) and Petrus (moderately resistant to FHB) were studied over three years (2001–2003) in outdoor pot experiments. FHB developed more rapidly in cv. Agent than in cv. Petrus. The spread of FHB was greater in BYDV-infected plants than in BYDV-free plants. Thousand grain weight (TGW) was reduced more in Fusarium-infected heads of cv. Agent than in cv. Petrus. A highly significant negative correlation was found between disease index and TGW in cv. Agent (r = −0.916), while in cv. Petrus the correlation was less significant (r = −0.765). Virus infection reduced TGW in cv. Petrus more than in cv. Agent. In plants with both infections, TGW reductions in cv. Petrus corresponded to those of BYDV infection, and in cv. Agent TGW was more diminished than in BYDV infection. Effects of different treatments determined over three years on ergosterol contents in grain were generally similar to effects on disease indices. Grain weight per ear and ear weight of the different treatments of both cultivars largely corresponded with the TGW results. Deoxynivalenol (DON) content in grain of cv. Agent infected with Fusarium spp. was 11–25 times higher compared to the corresponding treatments in cv. Petrus. The DON content in grain of plants of the two cultivars infected with both pathogens was higher than that of plants infected only with Fusarium over the three years.  相似文献   

6.
Glasshouse studies were undertaken to determine if fungicides used for the control of Fusarium head blight (FHB) result in elevated concentrations of the trichothecene mycotoxin, deoxynivalenol (DON) in harvested wheat grain. Metconazole and azoxystrobin, at double, full, half or quarter the manufacturer's recommended dose rate, were applied to ears of wheat (cv. Cadenza), artificially inoculated with conidia of either Fusarium culmorum or F. graminearum. Metconazole demonstrated high activity against both pathogens, reducing significantly the severity of FHB and the DON concentrations at each of the four dose rates tested when compared to untreated controls. Applications of azoxystrobin significantly reduced FHB and DON compared to unsprayed controls. However, their effectiveness was significantly less than that of metconazole and no dose rate response was observed. Quantification of the amount of trichothecene-producing Fusarium present in harvested grain was determined using a competitive PCR assay based on primers derived from the trichodiene synthase gene (Tri5). Simple linear regression analyses revealed strong relationships between the amount of trichothecene-producing Fusarium present in grain and the DON concentrations (r 2=0.72–0.97). It is concluded that fungicides, applied for the control of FHB, affect DON concentrations indirectly by influencing the amount of trichothecene-producing Fusarium species present in wheat grain. There was no evidence that fungicide applications directly increase the concentration of DON in grain.  相似文献   

7.
In this study, the Arabidopsis thaliana NPR1 (non‐expressor of PR genes) gene was integrated into an elite wheat cultivar, and the response of the transgenic wheat expressing NPR1 to inoculation with Fusarium asiaticum was analysed. With seedling inoculation, the transgenic lines showed significantly increased fusarium seedling blight (FSB) susceptibility, whereas floret inoculation resulted in enhanced fusarium head blight (FHB) resistance. Quantitative real‐time PCR revealed that expression of two defence genes, PR3 and PR5, was associated with susceptible reactions to FSB and FHB, whereas the PR1 gene was activated in resistance responses. This inverse modulation by the constitutively expressed NPR1 gene suggests that NPR1 has a bifunctional role in regulating defence responses in plants. Therefore, it is unsuitable for improving overall resistance to FSB and FHB in wheat.  相似文献   

8.
Fusarium head blight (FHB) is an important disease of wheat, which can result in the contamination of grains with mycotoxins such as deoxynivalenol (DON). Artificial inoculation of flowering ears with conidial suspensions is widely used to study FHB diseases. Our goal was to compare four inoculation treatments in which a conidial suspension was sprayed on flowering ears and to study the effect of the application of moisture during kernel setting and filling with a mist-irrigation system. Ten wheat genotypes were inoculated with a DON-producing Fusarium culmorum strain. Inoculation treatments varied in time of application of the inoculum (morning or evening) and in the method of controlling humidity during inoculation (bagging or mist irrigation). A wet season was simulated with a mist-irrigation system, keeping the crop canopy wet for at least 26 days after flowering. The severity of FHB symptoms (area under disease progress curve (AUDPC)), yield loss and DON contamination in the grains were determined. AUDPC data obtained with the different inoculation treatments were highly correlated (r=0.85–0.95). Mist irrigation after inoculation resulted in a higher mean disease severity, but in a overall lower toxin contamination as compared to the non-irrigated treatments. Genotypic differences in DON accumulation were present: for one wheat line toxin contamination significantly increased when irrigated, while two genotypes accumulated significantly less toxin. The closest relationships (r=0.73–0.89) between the visual symptoms and the DON content were obtained under moderate mean infection pressure. This relation between visual symptoms and the DON content deteriorated at higher infection levels.  相似文献   

9.
Fusarium head blight (FHB), caused by fungi belonging to the Fusarium genus, is a widespread disease of wheat (Triticum aestivum) and other small-grain cereal crops. The main causal agent of FHB, Fusarium graminearum, produces mycotoxins mainly belonging to type B trichothecenes, such as deoxynivalenol (DON), that can negatively affect humans, animals and plants. DON detoxification, mainly through glucosylation into DON-3-O-glucose, has been correlated with resistance to FHB. A UDP-glucosyltransferase from the model cereal species Brachypodium distachyon has been shown to confer resistance both to initial infection and to spike colonization (type I and type II resistances, respectively). Here, the functional characterization of transgenic wheat lines expressing the Bradi5g03300 UGT gene are described. The results show that, following inoculation with the fungal pathogen, these lines exhibit a high level of type II resistance and a strong reduction of mycotoxin content. In contrast, type I resistance was only weakly observed, although previously seen in B. distachyon, suggesting the involvement of additional host-specific characteristics in type I resistance. This study contributes to the understanding of the functional relationship between DON glucosylation and FHB resistance in wheat.  相似文献   

10.
Barley yellow dwarf (BYD) is one of the main viral diseases of small-grain cereals. This disease, reported on numerous plant species of the Poaceae family, is caused by a complex of eight viral species including the species Barley Yellow Dwarf Virus-PAV (BYDV-PAV), frequently found in western Europe. Resistance sources against BYDV-PAV are scarce and only identified in perennial Triticineae. Some BYDV-resistant wheat lines have been obtained by introgressing these resistances into bread wheat germplasms. Genetic and biological characterization of the resulting lines has been undertaken. However, little information on the resistant behaviour of these lines during the early stages of the infection process is available. To evaluate the resistance of two genetically distinct resistant lines (Zhong ZH and TC14), 1740 young plantlets, belonging to susceptible reference hosts (barley cv. Express and wheat cv. Sunstar), Zhong ZH or TC14 wheat lines, were inoculated in controlled conditions with French BYDV-PAV isolates. The infection process was monitored during the first 21 days after inoculation (DAI) using a semi-quantitative ELISA. A standardized protocol including five successive samplings of leaves from all inoculated plants and the collection of plant roots at the end of the monitored period was carried out. This protocol enabled an assessment of the infection percentage and the evolution of the viral load in plants from the 7th DAI to the 21st DAI. Statistical analyses of the BYDV infection kinetics using raw ELISA data, a model of the time-dependent variation of the percentage of infected plants and the area under concentration progress curves (AUCPC) demonstrated that Zhong ZH and TC14 lines (1) reduce the development rate of the BYD disease during the first days of infection, (2) decrease the infection efficiency of BYDV-PAV isolates, in the leaves, from 98.7% for susceptible plant genotypes to 81.9% and 71.7% for Zhong ZH and TC14, respectively, (3) reduce the virus load in the leaves of infected plants and (4) are not spared from BYDV infection, as 95.1% of Zhong ZH and 90.2% of TC14 inoculated plants accumulated viral particles in roots and/or in leaves at 21 DAI. These results confirm the BYDV-partial resistant behaviour of both Zhong ZH and TC14 lines. The development rate of the disease was the single parameter that allowed the distinction between the two resistant sources present in the tested lines.  相似文献   

11.
Two diseases of adzuki bean, brown stem rot (BSR, caused by Cadophora gregata f. sp. adzukicola) and adzuki bean Fusarium wilt (AFW, caused by Fusarium oxysporum f. sp. adzukicola), are serious problems in Hokkaido and have been controlled using cultivars with multiple resistance. However, because a new race of BSR, designated race 3, was identified, sources of parental adzuki bean for resistance to race 3 were needed. Therefore, we examined 67 cultivars and lines of cultivated and wild adzuki bean maintained at the Tokachi Agricultural Experiment Station using a root-dip inoculation method. Consequently, nine adzuki bean cultivars, one wild adzuki bean accession and 30 lines (including two lines resistant to all the three races of BSR and AFW) were confirmed to be resistant or tolerant to race 3 of BSR, and we found a cultivar Akamame as well as a wild adzuki bean Acc2515 to be a new source for a resistance gene to the race 3. This cultivar also holds promise as a source of resistance against other races of BSR and AFW.  相似文献   

12.
This research examined the variation in the response of eight commercial wheat cultivars to Microdochium nivale isolates using both in vivo FHB tests (AUDPC and RHW measurements) and in vitro detached leaf assays (LGR). Irrespective of fungal variety, the two Italian cvs Fortore and Norba exhibited the greatest amount of visual disease symptoms (mean AUDPC=2.2 and 2.3, respectively), being significantly more susceptible than the other six cultivars (AUDPC 1.24) (P < 0.05). Irrespective of fungal variety, the Italian cv. Norba and the Irish cv. Falstaff were more susceptible than the other cultivars (except Fatima 2) in terms of RHW (P < 0.05), while the cvs Fortore, GK Othalom and Consort were more resistant than the other five cultivars (P < 0.05). In the detached leaf assay, the Hungarian cv. GK Othalom and the Italian cv. Norba were more susceptible (mean LGR=0.79 and 0.81 mm day–1, respectively) to M. nivalethan the other six cultivars (mean LGR=0.51–0.72) (P < 0.05). Analysis of the relationship between head and leaf reaction to M. nivaleinfection revealed no significant correlation.  相似文献   

13.
为获得新型抗虫转基因玉米,将通过群体筛选获得的具有抗虫性的转cry2Ah-vp基因玉米VP1-5采用PCR、Southern blot、实时荧光定量PCR(qPCR)、酶联免疫吸附测定(ELISA)等方法进行阳性植株鉴定、拷贝数分析、转录水平和翻译水平分析,同时通过室内和田间生物活性测定鉴定转基因玉米VP1-5对东方黏虫Mythimna separata和亚洲玉米螟Ostrinia furnacalis的抗性。结果表明,在转基因玉米VP1-5中cry2Ah-vp基因已整合到玉米基因组,以单拷贝的形式插入;cry2Ah-vp基因在转基因玉米VP1-5不同部位组织中均可以正常转录,在灌浆期叶片中的mRNA表达量最高,相对表达量为32.67,在灌浆期穗轴中的mRNA表达量最低,相对表达量为3.74;Cry2Ah-vp蛋白在转基因玉米VP1-5的6叶期各组织中表达量均较高,其中在叶片中的表达量达到2 155.18 ng/g FW,在抽雄期花丝中的表达量最高,达到2 165.86 ng/g FW;且转基因玉米VP1-5对东方黏虫有很高的杀虫活性,接虫3 d后幼虫死亡率达到100.00%;对亚洲玉米螟幼虫也有明显的生长抑制作用。表明转基因玉米VP1-5可作为玉米抗虫育种和害虫防治的种质资源。  相似文献   

14.
15.
以两个T5代转W23基因小麦株系G19-X59、G19-X61为材料,在水培条件下采用PEG-6000人工模拟干旱胁迫措施对转基因小麦株系的根系发育特点、抗旱相关的光合生理等指标进行了测定。结果表明,干旱胁迫条件下各参试小麦的光合速率(Pn)和蒸腾速率(Tr)均下降,转基因株系降幅较小,且其PnTr值极显著高于受体品种;在正常供水和干旱胁迫两种水分处理下,转基因株系均比受体品种具有较发达的根系,其根总长、根总表面积、根总体积等参数极显著高于受体品种。这一结果说明,转W23基因小麦株系G19-X59、G19-X61在苗期依靠发达的根系维持较强的光合作用,提高其应对干旱胁迫的能力。  相似文献   

16.
Introduction of alien genes into wheat has been proposed as a strategy to breed cultivars with improved resistance to Fusarium seedling blight (FSB) and Fusarium head blight (FHB). In this study, we co-transformed different anti-fungal peptides (AFPs) into an elite wheat cultivar Yangmai11. We identified the genetically stable transgenic wheat lines carrying single or multiple genes by PCR, qRT-PCR and Southern blot analyses. Transgenic wheat lines 451 and 513 expressing two AFPs displayed a consistent, significantly improved overall resistance to FSB and FHB, whereas only FHB resistance was observed from other lines. Furthermore, crude proteins extracted from the lines 451 and 513 showed a clear inhibitory activity against F. graminearum in vitro. Taken together, it was essential to properly combine and express AFPs in transgenic wheat in order to obtain an improved overall resistance to Fusarium pathogens.  相似文献   

17.
In the western part of Japan, two wheat cultivars, Nishinokaori and Minaminokaori, are currently cultivated for breadmaking. Breadmaking wheat requires a higher protein content compared to the Japanese noodle wheat (the major type of wheat in Japan). This high protein level in the grain is obtained by top-dressing with nitrogen (N) near anthesis. Because such N applications may increase levels of Fusarium head blight (FHB) and consequent mycotoxin [deoxynivalenol (DON) and nivalenol (NIV)] accumulation in the grain, the effect of N application (0, 4, and 8 g/m2) at anthesis on FHB and mycotoxin accumulation in Nishinokaori and Minaminokaori was tested in the greenhouse in 2004 and 2005 and in two fields in 2006. In the greenhouse, plants were spray inoculated at 3, 10, and 20 days after N treatment. In field experiments, colonized maize kernels, which generate ascospores during the testing season, served as inoculum. In all experiments for both cultivars, N application at anthesis significantly increased grain protein as expected, but had no significant effect on FHB and DON and NIV levels in grain. These results suggest that, at least in these cultivars, N can be applied close to anthesis without increasing the risk of FHB and mycotoxin (DON and NIV) accumulation.  相似文献   

18.
19.
ABSTRACT Fusarium graminearum causes Fusarium head blight (FHB) in small grains worldwide. Although primarily a pathogen of cereals, it also can infect noncereal crops such as potato and sugar beet in the United States. We used a real-time polymerase chain reaction (PCR) method based on intergenic sequences specific to the trichodiene synthase gene (Tri5) from F. graminearum. TaqMan probe and primers were designed and used to estimate DNA content of the pathogen (FgDNA) in the susceptible wheat cv. Grandin after inoculation with the 21 isolates of F. graminearum collected from potato, sugar beet, and wheat. The presence of nine mycotoxins was analyzed in the inoculated wheat heads by gas chromatography and mass spectrometry. All isolates contained the Tri5 gene and were virulent to cv. Grandin. Isolates of F. graminearum differed significantly in virulence (expressed as disease severity), FgDNA content, and mycotoxin accumulation. Potato isolates showed greater variability in producing different mycotoxins than sugar beet and wheat isolates. Correlation analysis showed a significant (P < 0.001) positive relationship between FgDNA content and FHB severity or deoxynivalenol (DON) production. Moreover, a significant (P < 0.001) positive correlation between FHB severity and DON content was observed. Our findings revealed that F. graminearum causing potato dry rot and sugar beet decay could be potential sources of inoculum for FHB epidemics in wheat. Real-time PCR assay provides sensitive and accurate quantification of F. graminearum in wheat and can be useful for monitoring the colonization of wheat grains by F. graminearum in controlled environments, and evaluating wheat germplasms for resistance to FHB.  相似文献   

20.
为明确南方根结线虫Meloidogyne incognita效应蛋白MiV901在其寄生过程中的生物学功能,通过构建MiV901基因的植物表达载体,利用根癌农杆菌Agrobacterium tumefaciens介导的花序浸染法将其转化拟南芥Arabidopsis thaliana,并采用室内人工接种法测定转基因植株对灰葡萄孢 Botrytis cinerea侵染及南方根结线虫寄生的影响。结果显示:经Southern blot检测,MiV901基因以不同的拷贝数插入到转基因拟南芥株系901-6、901-8和901-12的基因组中,且qPCR检测结果证实 MiV901基因能够正常表达。3个转基因拟南芥株系901-6、901-8和901-12叶部接种灰葡萄孢3 d后,叶片上形成的病斑平均直径分别为1.00、1.06、1.05 cm,比野生型对照扩大了9.9%~16.5%。相比野生型对照,转基因拟南芥株系901-12、901-6和901-8接种南方根结线虫2龄幼虫后根系上产生了更多的雌虫和卵块,雌虫数分别显著增加了45.4%、34.4%和23.7%,卵块数分别显著增加了51.2%、 46.3%和31.7%。表明异源表达MiV901基因能够抑制植物免疫,增加拟南芥对灰葡萄孢和南方根结线虫侵染的敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号