首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arbuscular mycorrhizal fungus (AMF) can enhance plant growth and resistance to toxicity produced by heavy metals (HMs), affect the bioavailability of HMs in soil and the uptake of HMs by plants, and thus has been emerged as the most prominent symbiotic fungus for contribution to phytoremediation. A greenhouse pot experiment was conducted to assess the effect of Glomus versiforme BGC GD01C (Gv) on the growth and Cd accumulation of Cd-hyperaccumulator Solanum nigrum in different Cd-added soils (0, 25, 50, 100 mg Cd kg−1 soil). Mycorrhizal colonization rates were generally high (from 71% to 82%) in Gv-inoculated treatments at all Cd levels. Gv colonization enhanced soil acid phosphatase activity, and hence elevated P acquisition and growth of S. nigrum at all Cd levels. Moreover, the presence of Gv significantly increased DTPA-extractable (phytoavailable) Cd concentrations in 25 and 50 mg Cd kg−1 soils, but did not affect phytoavailable Cd in 100 mg Cd kg−1 soil. Similarly, inoculation with Gv significantly increased Cd concentrations of S. nigrum in 25 and 50 mg Cd kg−1 soils, but decreased Cd concentrations of the plants in 100 mg Cd kg−1 soil. Overall, inoculation with Gv greatly improved the total Cd uptakes in all plant tissues at all Cd levels. The present results indicated that S. nigrum associated with Gv effectively improved the Cd uptake by plant and would be a new strategy in microbe-assisted phytoremediation for Cd-contaminated soils.  相似文献   

2.
Eleven cadmium-tolerant bacterial strains were isolated from the root zone of Indian mustard (Brassica juncea L. Czern.) seedlings grown in Cd-supplemented soils as well as sewage sludge and mining waste highly contaminated with Cd. The bacteria also showed increased tolerance to other metals including Zn, Cu, Ni and Co. The isolated strains included Variovorax paradoxus, Rhodococcus sp. and Flavobacterium sp., and were capable of stimulating root elongation of B. juncea seedlings either in the presence or absence of toxic Cd concentrations. Some of the strains produced indoles or siderophores, but none possessed C2H2-reduction activity. All the strains, except Flavobacterium sp. strain 5P-3, contained the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which hydrolyses ACC (the immediate precursor of plant hormone ethylene) to NH3 and α-ketobutyrate. V. paradoxus utilized ACC as a sole source of N or energy. A positive correlation between the in vitro ACC deaminase activity of the bacteria and their stimulating effect on root elongation suggested that utilization of ACC is an important bacterial trait determining root growth promotion. The isolated bacteria offer promise as inoculants to improve growth of the metal accumulating plant B. juncea in the presence of toxic Cd concentrations and for the development of plant-inoculant systems useful for phytoremediation of polluted soils.  相似文献   

3.
Bioaugmentation is a promising method for assisting phytoextraction of heavy metals from contaminated soil, and the development of bioaugmentation-assisted phytoextraction requires the understanding of the mechanism involved in the interaction between plants and inocula. In this study, a pot study was conducted to evaluate the effect of bacterial endophyte Pseudomonas sp. Lk9 which can produce biosurfactants, siderophores and organic acids on the growth and metal uptake of Cd-hyperaccumulator Solanum nigrum L. growing in multi-metal-contaminated soil. The results revealed that Lk9 inoculation could improve soil Fe and P mineral nutrition supplies, enhance soil heavy metal availability, and affect host-mediated low-molecular-weight organic acids secretion, thereby significantly increasing S. nigrum shoot dry biomass by 14% and the total of Cd by 46.6%, Zn by 16.4% and Cu by 16.0% accumulated in aerial parts, compared to those of non-inoculated control. The assessment of phytoextraction showed that Lk9 inoculation elevated the bioaccumulation factor of Cd (28.9%) and phytoextraction rates of all metals (17.4%, 48.6% and 104.6% for Cd, Zn and Cu, respectively), while the translocation factors had negligible difference between Lk9 inoculation (3.30, 0.50 and 0.40 for Cd, Zn and Cu, respectively) and non-inoculated control (2.95, 0.53 and 0.42 for Cd, Zn and Cu, respectively). It was also found that the symbiotic association between S. nigrum and Lk9 significantly increased the soil microbial biomass C by 39.2% and acid phosphatase activity by 28.6% compared to those in S. nigrum without Lk9. This study would provide a new insight into the bioaugmentation-assisted phytoextraction of heavy metal-contaminated soils.  相似文献   

4.
Plant–soil feedbacks are important to productivity and plant community dynamics in both natural and managed ecosystems. Among soil bacteria, the Streptomyces possess particularly strong antagonistic activities and inhibit diverse plant pathogens, offering a clear pathway to involvement in plant–soil feedbacks. We hypothesized that feedback effects and the ability of individual host plant species to foster antagonistic Streptomyces populations may be modified by the richness of the surrounding plant community. To test this, we collected soil associated with four different plant species (two C4 grasses: Andropogon gerardii, Schizachyrium scoparium; and two legumes: Lespedeza capitata, Lupinus perennis), grown in communities that spanned a gradient of plant species richness (1, 4, 8, 16, or 32 species). For each of these soils, we characterized the potential of soil Streptomyces to antagonize plant pathogens, using an in vitro plate assay with indicator strains to reveal inhibition. We cultivated each plant species in each conditioned soil to assess feedback effects on subsequent plant growth performance. Surrounding plant richness modified the impacts of particular plant species on Streptomyces antagonistic activity; A. gerardii supported a higher proportion of antagonistic Streptomyces when grown in monoculture than when grown in 32-spp plant communities, and L. capitata supported more strongly antagonistic Streptomyces when grown in 4- or 32-spp plant communities than in 8-spp plant communities. Similarly, the feedback effects of particular plant species sometimes varied with surrounding plant richness; aboveground biomass production varied with plant species richness for A. gerardii in L. perennis-trained soil, for L. capitata in A. gerardii-trained soil, and for L. perennis in L. capitata-trained soil. Streptomyces antagonist density increased with overall Streptomyces density under low but not under high plant richness, suggesting that plant diversity modifies selection for antagonistic phenotypes among soil Streptomyces. This work highlights the complexity of feedback dynamics among plant species, and of plant–microbiome interactions in soil.  相似文献   

5.
《Applied soil ecology》2007,35(1):25-34
Rice is usually grown in N-deficient soils, demanding that the element be supplied to the field by commercially available N fertilizers. Unfortunately, a substantial amount of the urea-N or NO3-N applied as fertilizers is lost through different mechanisms, causing environmental pollution problems. Utilization of biological N2 fixation (BNF) technology can decrease the application of N fertilizers, reducing environmental risks. This study evaluated the effects of four free-living N-fixing bacterial species, isolated from oligotrophic soil conditions, as single inoculants or combined with arbuscular mycorrhizal fungi (Glomus clarum), on the development of rice plants grown as flooded or upland rice, in the greenhouse. Upland rice roots were inoculated with Methylobacterium sp., Burkholderia sp. and Sphingomonas sp., whereas the species Burkholderia sp., Pseudomonas sp. and Sphingomonas sp., were inoculated on flooded rice. Inoculants consisted of individual bacterial species or their mixtures, with or without G. clarum. Controls included non-bacteria/non-AM fungi, and AM fungi alone. Experiments were carried out in five replicates. The presence of G. clarum decreased or did not significantly affect plant growth under the different culture conditions. The presence of AM fungi stimulated the N-fixing bacterial population of upland rice. Bacterial species had different effects, under both culture conditions, and some genera of N-fixing bacteria increased root and shoot growth at different plant growth stages. The level of mycorrhiza colonization had no influence on plant growth  相似文献   

6.
We investigated the effects of different P fertilizers on the yields and Cd contents of oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.). These crops were grown in the greenhouse using soils treated with lime to achieve three pHs ranging from 4.77 to 5.94 for a sandy soil and 4.97 to 6.80 for a loam soil. The crop yields were generally not affected by liming or application of different kinds of P fertilizers, with a few exceptions. Application of Cd-containing NPK fertilizers in all cases tended to increase the Cd concentrations in crops, and the highest Cd concentrations in crops were obtained when the high-Cd NPK fertilizer was applied (adding 12.5 μg Cd kg?1 soil). Cadmium concentrations in crops in most cases decreased with increasing soil pH. The highest percent recovery of the added Cd by plant species in the sandy soil was found for inorganic Cd-salt and in the loam soil for low-Cd NPK fertilizer. Phosphate rock resulted in the lowest recovery of the added Cd by all the plant species in both soils, but was also an insufficient P-source of its low solubility.  相似文献   

7.
Aspergillus niger-treated dry olive cake (DryOC) can be used as a soil organic amendment and the aim of this work was to study the effectiveness of this amendment and a Cd-adapted arbuscular mycorrhizal (AM) fungus in improving Trifolium repens growth and nutrition in Cd-contaminated soil. In a compartmentalized growth system, consisting of a root compartment (RC) and two hyphal compartments (HCs), we investigated the influence of the amendment on intraradical and extraradical AM fungi development. In addition, we studied the viability and infectivity of the detached extraradical mycelium in plants, designated as receptor plants, grown in the HC after removal of the RC. Both the amendment and the AM fungus increased shoot and root biomass and nodulation in both the non-contaminated and Cd-contaminated soils. The positive interaction between the microbiologically treated DryOC and the AM fungus resulted in the highest plant yield, which can be explained by enhanced nutrient acquisition and arbuscular richness as well as by the immobilisation of Cd in amended soils. However, A. niger-treated DryOC had no effect on the extraradical mycorrhizal mycelium development. Although Cd decreased AM hyphal length density, symbiotic infectivity was similar in receptor plants grown in non-contaminated and contaminated soil, thus confirming the AM fungal inoculum potential.The combination of the AM fungus and A. niger-treated DryOC increased plant tolerance to Cd in terms of plant growth and nutrition and can be regarded as an important strategy for reclaiming Cd-contaminated soils.  相似文献   

8.
Root system responses of hyperaccumulator Solanum nigrum L. to Cd   总被引:1,自引:0,他引:1  

Purpose

Though phytoremediation is an important technology for remedying heavy metal-contaminated soils, hyperaccumulation mechanism, especially in root, is still less known.

Materials and methods

Pot culture experiment was used to explore the tolerance mechanism of a cadmium (Cd) hyperaccumulator Solanum nigrum L. by determining the main root traits compared to the non-hyperaccumulator Solanum melongena L. (cultivar name Liaoqie 3) in the same plant family.

Results and discussion

The total root lengths, total root surface areas, and total root volumes of S. nigrum were not significantly decreased (p?<?0.05) compared to their controls when Cd spikes were lower than 20 mg kg–1. However, the abovementioned three factors of S. melongena were significantly decreased (p?<?0.05) when 20 mg kg–1 of Cd was spiked. By contrast, S. nigrum showed stronger tolerance to Cd. In addition, S. nigrum showed all Cd hyperaccumulator characteristics, i.e., a Cd hyperaccumulator. S. melongena was a non-Cd hyperaccumulator.

Conclusions

These results indicated that root trait can be a factor of hyperaccumulation because of strong tolerance to Cd.  相似文献   

9.
A field study was conducted to determine the plant uptake of metals in soils amended with 500 Mg ha?1 of municopal sewage sludge applied 16 yr previously. Results showed that metals were available for plan uptake after 16 yr, but that liming greatly reduced the plant availability of most metals. The application of sludge also resulted in high rates nitrification and subsequent lowering of the soil pH before the uptake study was started. The sludge-amended soil (a mesic Dystric Xerochrept) was adjusted with lime one month prior to planting from an unlimed pH of 4.6 to pH 5.8, 6.5 and 6.9. Food crops grown were: (i) bush bean (Phaseolus vulgaris L. cv. Seafarer), (ii) cabbage (Brassica oleracea L. v. capitata L. cv. Copenhagen market), (iii) maize (Zea mays L. cv. FR37), (iv) lettuce (Lactuca sativa L. cv. Parris Island, (v) (Solanum tuberosum L. cv. (vi) tomato (Lycopersicum esculentum L. cv. Burpee VF). With the exception of maize, yields were significantly reduced in the unlimed sludge-amended soil. However, liming increased yields above the growth level of the unlimed untreated soil for cabbage, maize, lettuce, potato tuber and tomato fruit. Soluble and exchangeable of Cd. Ni and Zn were also reduced after liming the sludge-amended soil. In both limed and unlimed soils, the majority of the soil Cu was found in insoluble and unavailable soil fractions. To evaluate trace metal uptake, the edible portion of each crop was analyzed for Cd, Cu, ni and Zn. Liming redoced uptake of Cd, Ni and Zn in most crops, but generally did not change Cu, This study shows the benefit of pH adjustment in reducing relative solubility and plant uptake of metals as well as increasing crop yield in acid soils.  相似文献   

10.
The cereal crops (barley -Hordeum vulgare L., maize -Zea mays L., wheat -Triticum vulgare L.) were grown in a greenhouse using a sandy soil type treated with various doses of cadmium carbonate (salt), copper carbonate (malachite), lead carbonate (cerussite), and zinc carbonate (smithsonite), added jointly. The following levels of these metals were used: Cd ? 5, 10, 50μg g?1 soil; Cu and Pb - 50,100, 500 μg g?1 soil; Zn-150, 300, 1500 μg g-1 soil. Sequential extraction was adopted to partition the metals into five operationally-defined fractions: exchangeable, carbonate, Fe-Mn oxides, organic, and residual. The residual was the most abundant fraction in the untreated (control) soil for all the metals studied (50 to 60% of the total metal content). The concentrations of exchangeable Cd, Cu, Pb, and Zn were relatively low in untreated soil but increased (over the three year period) in treated soils for Cd, Zn, and Cu, whereas only small changes were observed for Ph. This experiment showed a significant increase in Cd, Zn, and Cu in tissue of plants grown on the treated soil, but a non-significant change in plant tissue with respect to Pb concentration.  相似文献   

11.
In order to achieve remediation of contaminated substrates, phyto-extraction in pot experiments utilizing lettuce seedlings as universal accumulator plants was investigated. As test substrates, mine tailings from Shiheung and Okdong mines in Korea (particularly high in Pb, Zn, Cu, and Cd), as well as samples from historic mining site at Oberzeiring in Austria (particularly high in Pb, Sb and As) were used, and compared with adjacent farmland soils. After 21 days of growth in the test substrate, the lettuce plants were harvested, and the adjacent soils parted in bulk and root soils. Special soil bacteria, adapted to high Cd levels (Exiguobacter sp.) and capable of adsorbing large amounts of cadmium from solution, as well as perlite (Samson Perlite Inc.) were added to the test substrates before plant growth. Speciation changes in the solids were investigated by sequential leaching, utilizing neutral MgCl2 (exchangeable), 0.16 M acetic acid, hydroxylamine pH 2, oxalate pH 3, H2O2 oxidation, and reflux with aqua regia. Plant growth induced differentiation between root and bulk soils, the differences were more pronounced for the non-contaminated controls. The iron-hydroxide phase increased about 30%, and also the amount of iron-hydroxide bound Be, Cd, Co, Cu, Mg, Mo, Sb and V concentrations, coming mainly from less mobile fractions. The Mn hydroxide phase, however (hydroxylamine), remained rather constant. After plant growth, the root soils were significantly lower in available P, and significantly higher in available Ca, Mn, and Na than the corresponding bulk soils. Addition of Cd-adapted soil bacteria led to a severe decrease of plant yield, but metal uptake changed in both directions. Exchangeable P in both root and bulk soil decreased, and Be, Co, Cr, Fe, K, Li, Mg, Mn, Ni, and Sr in the residual organic fraction increased. This can be interpreted as competition for nutrients, dissolution of residuals by bacterial action, and adsorption to a tightly bound biomass. Addition of perlite hardly affected the plant yield, and again metal uptake changed in both directions, but led to a decrease of siderophilic elements in the Fe- and Mn hydroxides of the bulk soil. In the root soil, perlite addition above all decreased available K, P and As, with respect to the untreated samples. Bacteria addition to perlite treated soils shifted some elements from weak acid mobile towards less available fractions.  相似文献   

12.
Immobilizing materials such as lherzolite could reduce metal bioavailability but the effectiveness of lherzolite on the extractability and bioavailability of cadmium (Cd) and zinc (Zn) is rarely investigated. We conducted a greenhouse experiment to investigate the effect of 5% application of lherzolite to a contaminated soil on the chemical fractionation of Cd and Zn and their uptake by radish (Raphanus sativus L.) and Japanese mustard spinach (Brassica rapa L. var. perviridis). Both plants were grown in a highly contaminated (with Cd and Zn) sandy loam soil. Plants were cultivated consecutively three times in the same pots. After the third cultivation, soil samples were collected and analyzed by sequential extraction procedure into five operationally defined fractions (F1—exchangeable, F2—carbonate-bound, F3—oxides-bound, F4—bound with organic matter, and F5—residual). Addition of lherzolite to soil decreased 50% of exchangeable (F1) Cd but it increased the carbonate (F2), oxide (F3), and organic (F4) fraction Cd. For Zn, application of lherzolite resulted into the reduction of both F1 (87%) and F2 (33%) fractions but it increased the F3, F4, and F5 fractions. The reduction in exchangeable fraction of Cd and Zn in the soil resulted in higher plant growth and lower concentrations of both Cd (64% to 92%) and Zn (78% to 99%) in plant tissues of both plant species grown. We may thus conclude that application of lherzolite resulted into lower availability of these metals in the soil leading to lower uptake of Cd and Zn by plant roots, lower toxicity, and ultimately higher plant growth.  相似文献   

13.
Mixed metals in the cropped lands in central Taiwan contaminated about 230 ha. According to the Soil and Groundwater Protection Remediation Act (SGWR Act) of Taiwan, these lands were restored. However, some grains of paddy rice grown in these remediated soils still contained more than 0.5 mg Cd kg?1, which the Department of Health of Taiwan notified as the maximum allowable Cd content in rice. The suitability of planting edible crops in these soils is now in doubt. Brassica rapa is the crop most often sold in Taiwan's market and is planted in the interval between the first and second stages of planting of paddy rice, especially in central Taiwan where this experiment was conducted. A pot experiment was conducted using soils contaminated artificially with Cd or both Cd and Pb. The soil was then amended with 5% of biosolid and followed by planting of B. rapa. The objectives were to study the effect of biosolid amendment on the soil and the interaction between Cd and Pb on the growth of and Cd accumulation in B. rapa. Experimental result showed that the biomass and the accumulation of Cd by B. rapa were significantly increased in the biosolid-amended soils compared with the control. Lead has a synergistic effect on enhancing the accumulation of Cd by B. rapa grown in artificially Cd-contaminated soils.  相似文献   

14.
《Applied soil ecology》2007,35(3):502-510
The effect of arbuscular mycorrhiza (AM) on cadmium (Cd) uptake by tobacco (Nicotiana tabacum L.) was studied in a pot experiment. Three commercial varieties, Basma BEK, K326 and TN90, representing three distinct tobacco types, were each grown in a different soil with nutritional conditions matching as closely as possible their requirements for field production. Cd concentrations in these soils were within the background range. Each variety was either non-mycorrhizal or inoculated with one of five AM fungal isolates. Cd concentration in leaves was decreased by inoculation with selected isolates in the K326 and TN90 variety grown in acidic soils. In contrast, it was increased by inoculation with most isolates in the Basma BEK variety grown in a basic soil with low Cd availability. Besides, plants of all three varieties had significantly higher leaf concentrations of phosphorus and nitrogen in some inoculated treatments. The percentage of root colonisation was mostly low in the inoculated treatments. In the Basma BEK and TN90 variety, the tested AM fungal isolates differed in their ability to colonise roots, but no correlation was found between the root colonisation of an isolate and its effects on the Cd concentrations in tobacco leaves. One isolate influenced most pronouncedly Cd concentrations and improved mineral nutrition in all the three combinations of variety and soil despite its low colonisation levels. AM symbiosis probably affected Cd uptake of tobacco by indirect mechanisms such as stimulation of root growth or mycorrhizal plant mediated changes in chemical or biological soil properties.  相似文献   

15.
Ultramafic soils have naturally high concentrations of metals and are often low in major plant nutrients. Plant species of non-ultramafic origin, such as Dryobalanops lanceolata (Dipterocarpaceae), generally grow less well on these soils. I found minimal changes in growth, but a 17% reduction in foliar potassium, when seedlings of D. lanceolata were grown in a non-native ultramafic soil when compared with a ‘normal’ tropical ultisol. There were, however, marked changes in the ectomycorrhizal community structure on the roots of D. lanceolata. Cenococcum geophilum was at least 10 times more common and Inocybe sp. was one and a half times more common in non-ultramafic soils, whereas Boletales sp. was over 30 times more common in the non-ultramafic soil. These changes may have been brought about by a number of edaphic differences between the two soil types, including high metal concentrations and differences in organic matter content.  相似文献   

16.
Liu  Yiyun  Xu  Yingming  Qin  Xu  Zhao  Lijie  Huang  Qingqing  Wang  Lin 《Journal of Soils and Sediments》2019,19(2):798-808
Purpose

Natural sepiolite (SP) has proven effective on the in-situ immobilization remediation of Cd-contaminated soils. But the practical remediation effect may largely influenced by water management and the application of organic manure. The effects of chicken manure (CM) on SP-amended soils were investigated under normal and saturated water conditions using a pot experiment with Brassica campestris L.

Materials and methods

Cd-contaminated paddy soils were amended with CM, SP, and CM?+?SP with no amendment as control. The amount of sepiolite was 0.5% (w/w, the same below) either in SP or CM?+?SP amended soils, while the amount of CM was 0.5, 1.0, and 2.0% in CM and CM?+?SP-amended soils. The plant metal contents, fresh weight, and soluble sugar content of plant edible parts were measured on harvest. Soil Cd was extracted by diethylenetriaminepentaacetic acid (DTPA) and HCl to estimate the mobility of heavy metal. Soil pH and dissolved organic matter (DOM) of rhizosphere soil were determined. The electronegative charges of soils were also measured using the zeta potential.

Results and discussion

The application of CM and increasing soil moisture on SP-amended soil increased plant growth to a greater extent than the application of SP alone. The application of CM along with the increase of soil moisture decreased Cd uptake and translocation in plants grown on SP-amended soil compared to the application of SP alone. Cd content of edible plant parts reached a minimum of 0.24 mg kg?1 with the application of 2.0% CM on SP-amended soils under water-saturated conditions, which was approximately 50% lower than the Cd concentration found when applying SP alone.

Conclusions

The results of this study suggest that the application of sepiolite on Cd contaminated soil can effectively reduce Cd uptake by B. campestris L., and the addition of CM combined with effective water management also appears to further reduce Cd absorption and accumulation.

  相似文献   

17.
Durum wheat (Triticum turgidum L. var durum) is a species that accumulates cadmium (Cd). Durum wheat cultivars differ in their absorption ability of Cd; therefore, identifying and selecting genetic material with low Cd accumulation reduces human exposure to this toxic element. In the present study, Cd concentration was evaluated in three Chilean durum wheat cultivars (Llareta-INIA, Corcolén-INIA, and Lleuque-INIA) grown in four Chilean locations with varying concentrations of Cd in soils. The objective of this study was to evaluate the response of these durum wheat cultivars to different doses of cadmium in terms of grain yield; Cd concentration in different plant tissues (grain, straw, roots); soil Cd concentration was also evaluated. Results show that grain yield was not affected by soil Cd; differences in Cd concentration in plant tissues were generally associated with location, cultivar, and soil Cd concentration. Grain Cd concentration in all three cultivars was classified in the low accumulation category for this metal; ‘Lleuque-INIA’ noted as having a very low accumulation.  相似文献   

18.
A pot experiment was conducted to study the contribution of reactive phosphate rocks (RPRs) on the accumulation of Cd and Zn in 10 acid upland soils in Indonesia and shoots of Zea mays plants grown on these soils. Two types of RPR were used at a rate of 0.5 g (kg soil)–1: RPRL containing 4 mg Cd kg–1 and 224 mg Zn kg–1, and RPRH containing 69 mg Cd kg–1 and 745 mg Zn kg–1. Zea mays was harvested at 6 weeks after planting. The application of RPRH significantly increased the concentrations of Cd in the shoots. The application of this RPR also increased the amount of Cd which could be extracted by 0.5 M NH4‐acetate + 0.02 M EDTA pH 4.65 from the soils. More than 90% of the added Cd remained in the soil. As Zn is an essential element and the studied acid upland soils are Zn‐deficient, increased plant growth upon RPR application might be partly attributed to Zn present in the phosphate rock. However, more experiments are needed to confirm this hypothesis. The Cd and Zn concentrations and CEC of the soils were important soil factors influencing the concentrations of Cd and Zn in the shoots of maize plants grown on these soils.  相似文献   

19.
In a greenhouse experiment, effects of different phosphate fertilizer applications on soil Cd extracted by DTPA and NH4NO3 in relation to plant uptake of Cd were investigated. The soils used were a sand and a loam treated with lime to achieve three pHs ranging from 4.77 to 5.94 for the sandy soil and 4.97 to 6.80 for the loam soil. Oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.), were used as test species. Application of the high-Cd NPK fertilizer (adding 12.5 μg Cd kg?1 soil) significantly increased the extractable soil Cd, especially the DTPA-extractable Cd. Use of phosphate rock adding as much Cd as the high-Cd NPK fertilizer did not increase the extractable Cd in either of the soils. Both DTPA- and NH4NO3-extractable Cd decreased with the increases in soil pH. The Cd concentrations and total Cd uptake of plants were significantly correlated with the soil Cd extracted by DTPA and NH4NO3.  相似文献   

20.
The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain a reliable estimate of the phytoextraction duration. To simulate the decrease in the HM content in soil and to assess the resulting decrease in the uptake of HMs by plants, contaminated soil was mixed with uncontaminated, but otherwise similar soil. Uptake of Cd, Pb, and Zn by the indicator plant Lupinus hartwegii and the Zn hyperaccumulator Thlaspi caerulescens (La Calamine ecotype) was a log-linear function of the in-situ measured HM soil solution concentrations. Over a wide range in dissolved Cd and Zn concentrations, uptake of these HMs by T. caerulescens was (much) greater than by L. hartwegii. Experimentally derived regression models describing the relationships between soil, soil solution, and plant were implemented in a HM mass balance model used to obtain estimates of the phytoextraction duration. For our target soils, estimates of the Cd phytoextraction duration using L. hartwegii or T. caerulescens increased significantly by more than 100 or 50 years when experimental soil—soil solution—plant relationships were used instead of the assumption of constant plant uptake of Cd. The two approaches gave similar results for phytoextraction of Zn by T. caerulescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号