首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the interactions between salinity and fertilizers is of significant importance for enhancing crop yield and fertilizeruse efficiency. In this study a complete block design experiment was performed in the Hetao Irrigation District of Inner Mongolia,China, to evaluate the effects of interactions between soil salinity and nitrogen(N) application rate on sunflower photosynthesis and growth and to determine the optimum N application rate for sunflower growth in the district. Four levels of soil salinity expressed as electrical conductivity(0.33–0.60, 0.60–1.22, 1.2–2.44, and 2.44–3.95 dS m-1) and three application rates of N fertilization(90, 135,and 180 kg ha-1) were applied to 36 micro-plots. Soil salinity inhibited the photosynthetic rate, stomatal conductance, transpiration rate, plant height, leaf area, and aboveground dry matter of sunflowers. The intercellular CO2 concentration first decreased and then increased with increasing soil salinity in the seedling stage, and the instantaneous leaf water-use efficiency fluctuated with soil salinity. The stomatal and non-stomatal limitations of sunflowers alternated in the seedling stage; however, in the bud, blooming,and mature stages, the stomatal limitation was prevalent when the salinity level was lower than 2.44 dS m-1, whereas the nonstomatal limitation was predominant above the salinity level. The application of N fertilizer alleviated the adverse effects of salinity on sunflower photosynthesis and growth to some extent. During some key growth periods, such as the seedling and bud stages, a moderate N application rate(135 kg ha-1) resulted in the maximum photosynthetic rate and yielded the maximum dry matter. We suggest a moderate N application rate(135 kg ha-1) for the Hetao Irrigation District and other sunflower-growing areas with similar ecological conditions.  相似文献   

2.
Nutrient supply through organic sources usually requires fortification for timely and optimum release of plant nutrients to achieve optimum crop performance. A pot experiment was conducted in a screen house to determine the optimum rate of cassava peel compost (CPC) fortification that supports optimum Amaranthus (Amaranthus cruentus L.) plant nutrient contents and residual soil nutrient contents. A compost of cassava peel and poultry manure was applied at 2.5; 5.0 and 7.5 t ha?1each complemented with either 25 or 50 kg nitrogen (N), using nitrogen, phosphorus and potassium (NPK) 20-10-10 at 2 weeks before sowing Amaranthus. An unfertilized treatment served as control. Seeds were sown in plastic containers with a surface diameter of 24 cm filled with 5 kg soil, with a drain underneath. Seedlings were thinned to 4 plants/pot 2 weeks after planting. Plants were harvested at 5 weeks by ratooning and plant re-growth also harvested after 5 weeks. Soil pH was lower with high rates of 5.0 and 7.5 t ha?1 CPC while the organic matter content was increased with increased CPC rate. Soil N was reduced but reflected in increased plant shoot and root N, with compost application. Soil P was generally increased but was not reflected in plant contents. Soil K contents were reduced and were reflected in increased plant contents. Application of 2.5 t ha?1 CPC, fortified with either 25 or 50 kg N ha?1 gave the optimum Amaranthus shoot nutrient contents with optimum residual soil nutrient contents.  相似文献   

3.
Abstract

The objective of this study was to determine the effects of nitrogen fertilizer sources of ammonium sulphate and municipal sewage sludge on yield, N content and uptake of the maize (Zea mays L.). Nutrient and heavy metals were determined in soil and plant. The experiment with three sludge rates (256, 513 and 1026 kg total N ha?1 or 9.5, 18.0 and 38.1 t ha?1 sludge), two nitrogen rates (80 and 160 kg N ha?1) and zero-N control were conducted on a clay loam soils under irrigated conditions in Eastern Anatolia region in Turkey. Treatments were arranged in a randomized complete block design with four replications. Yield, N content and total N uptake of maize increased significantly with sludge application. 9.5 t and 19.0 t ha?1 sewage sludge applications did not significantly affect heavy metal content of leaf and grain. However, 38.1 t ha?1 sludge applications increased leaf Pb and Zn. DTPA-extractable Cd, Cu, Fe, Pb and Zn concentrations of the soil increased at applications of 38.1 t ha?1 sewage sludge, whereas applications of 9.5 t and 19.0 t ha?1 sludge only resulted in elevated levels of Cu and Zn, We conclude that if sewage sludge is to be used in production of maize, applications rate up to 19 t ha?1 could be accepted. However, this means also that the N requirement of maize crop is not covered by the sludge; therefore, the rest of nitrogen could be supplied as inorganic N.  相似文献   

4.

In order to study the effects of seed nitrogen content and biofertilizer priming on germination indices of wheat seeds under salinity stress, a factorial experiment based on a completely randomized design with four replications was conducted in 2009. Experimental factors consisted of: (1) the application of different nitrogen fertilizer rates (0, 55, 110 and 165 kg ha?1 N) on parent plants; (2) priming of achieved seeds by biofertilizers (Nitragin, Biophosphorus and distilled water); and (3) different levels of salinity produced by NaCl (0, ?0.4, ?0.8 and ?1.2 MPa). Germination percentage, germination rate, mean germination time, germination index, radicle and plumule length, radicle and plumule dry weight and radicle number per seedling were measured. Nitrogen application increased seed nitrogen content in parent plants. All germination indices decreased with increasing in salinity levels. Biofertilizer priming, especially Nitragin, had a positive effect on germination percentage, radicle number and radicle and plumule length in most salinity levels. The highest values for germination factors were related to achieved seeds from parent plants that were treated with 110 kg ha?1 N. Overall, application of middle levels of N fertilizer (55 and 110 kg ha?1 N) on parent plants combined with seed priming with Nitragin biofertilizer improved the germination indices of wheat under salinity stress.  相似文献   

5.
Abstract

Yield and kernel quality of rainfed maize as affected by N fertilizer has been generally evaluated through the application of granular N sources at high rates. The purpose of this work was to estimate the response of maize yield and quality (kernel hardness—floating index, weight and test weight -, P uptake and protein) to foliar N application and preceding granular N. Data for this report were collected in 2014 and 2015 in a long-term experiment established in 2002 under permanent beds in a split plot arrangement. Main plot treatments were three foliar N rates (0, 4.5 and 9?kg ha?1) laid out on the top of four preceding granular N rates (0, 20, 40 and 60?kg ha?1) applied from 2002 to 2013 as subplots. Weather conditions were relatively wetter in 2014 than 2015. In 2014, test weight and floating index improved over that in 2015. Foliar application of 9?kg N ha?1 enhanced yield and protein. In 2014, yield response to preceding N rates showed an increasing trend whereas in 2015 response was null. Kernel P uptake response to preceding N rates showed a differential reaction among foliar N rates; 9?kg ha?1 showed the greatest uptake. Kernel floating index was associated to kernel P uptake. Apparently, this relationship has not been previously reported. Results suggests that the application of 9?kg N ha?1 to foliage of rainfed maize grown in permanent beds has the potential to substitute the traditional fertilization practice of granular N sources.  相似文献   

6.
Abstract

Field experiments were conducted during 2013–2014 at Tashkent, Uzbekistan to evaluate the performance of chickpea variety “Jakhongir” with the variable proportion of nitrogen (N) and bio-fertilizer inoculation in the moderate saline (5.6?±?0.6?dSm?1) soil condition. The studied treatments were No control (non-fertilized), N1 mineral-N (50?kg?N?ha?1), N2, mineral-N (75?kg?N?ha?1), N3, mineral-N (100?kg?N?ha?1) equivalent 0%, 50%, 75%, and 100% from recommended rate for chickpea, Rhizobium inoculation (Bio)?+?No control, Rhizobium inoculation (Bio)?+?N1, Rhizobium inoculation (Bio)?+?N2, and Rhizobium inoculation (Bio)?+?N3. Seed inoculation with Rhizobium was significantly superior over no inoculation treatments at all rate of N fertilization. The middle rate of N fertilization 75?kg?N?ha?1 combined with biofertilizer inoculation had of superior effect on chickpea, producing 73.2% more yield (1.68?Mg ha?1), oil, protein, and sugar content performed 16.4%; 15.0%, and 17.9% higher value, respectively, in comparison to control.  相似文献   

7.
Fertilization with nitrogen (N) or phosphorus (P) can improve plant growth in saline soils. This study was undertaken to determine wheat (Triticum aestivum L; cv Krichauff) response to the combined application of N and P fertilizers in the sandy loam under saline conditions. Salinity was induced using sodium (Na+) and calcium (Ca2+) salts to achieve four levels of electrical conductivity in the extract of the saturated soil paste (ECe), 2.2, 6.7, 9.2 and 11.8?dS?m?1, while maintaining a low sodium adsorption ratio (SAR; ≤1). Nitrogen was applied as Ca(NO3)2?·?4H2O at 50 (N50), 100 (N100) and 200 (N200)?mg?N?kg?1 soil. Phosphorus was applied at 0 (P0), 30 (P30) and 60 (P60)?mg?kg?1?soil in the form of KH2PO4. Results showed that increasing soil salinity had no effect on shoot N or P concentrations, but increased shoot Na+ and chlorine ion (Cl?) concentrations and reduced dry weights of shoot and root in all treatments of N and P. At each salinity and P level, increasing application of N reduced dry weight of shoot. At each salinity and N level P fertilization increased dry weights of shoot and root and shoot P concentration. Addition of greater than N50 contributed to the soil salinity limiting plant growth, but increasing P addition up to 60?mg?P?kg?1 soil reduced Cl? absorption and enhanced the plant salt tolerance and thus plant growth. The positive effect of the combined addition of N and P on wheat growth in the saline sandy loam is noticeable, but only to a certain level of soil salinity beyond which salinity effect is dominant.  相似文献   

8.
ABSTRACT

The study was aimed to determine the appropriate nitrogen (N) rate to combine with liming for enhanced maize yield and nitrogen use efficiency (NUE). Two maize varieties [Ikom White (IKW) and Obatanpa-98 (Oba-98)], two lime rates (0 kg ha?1 and 500 kg ha?1) and three N rates (0, 90 and 180 kg ha?1) were used. The treatments were laid as a split-split plot in a randomized complete block design with three replications. The growth attributes, photosynthetically active radiation (PAR), harvest index, dry matter, and grain yield increased (P ≤ 0.05) with increases in N rates, especially in plots amended with lime. Oba-98 was better yielding (2.12 versus (vs) 1.88 t ha?1) and absorbed more (P ≤ 0.05) radiation (442.06 vs 409.54 μmol m?2s?1) than IKW. The efficiency indices and partial factor productivity were best optimized at the 90 kg ha?1 N rate with Oba-98 having higher values than IKW. Therefore, liming (500 kg ha?1) plus N at 180 kg ha?1produced the best yield of the hybrid maize, Oba-98.  相似文献   

9.
华北地区采用无机氮测试和植株速测进行夏玉米氮肥推荐   总被引:2,自引:0,他引:2  
A field experiment with a split-plot design was carried out at Dongbeiwang Farm in Beijing Municipality to establish reliable N fertilizer recommendation indices for summer maize (Zea mays L.) in northern China using the soil Nmin(mineral N) test as well as the plant nitrate and SPAD (portable chlorophyll meter readings) tests. The results showed that Nrnin sollwert (NS) 60 kg N ha^-1 at the third leaf stage and N rate of 40 to 120 kg N ha^-1 at the tenth leaf stage could meet the N requirement of summer maize with a target yield of 5.5-6 t ha^-1. Sap nitrate concentrations and SPAD chlorophyll meter readings in the latest expanded maize leaves at the tenth leaf stage were positively correlated with NS levels, indicating that plant nitrate and SPAD tests reflected the N nutritional status of maize well. Considering that winter wheat subsequently utilized N after the summer maize harvest, the 0-90 cm soil Nmin (74 kg N ha^-1) and apparent N loss (12 kg N ha^-1) in the NS60+40 treatment were controlled at environmentally acceptable levels. Therefore NS60+40, giving a total N supply of 100 kg N ha^-1, was considered the optimal N fertilizer input for summer maize under these experimental conditions.  相似文献   

10.
Abstract

Management strategies to minimize nitrogen (N) losses to the atmosphere and water bodies from potato production fields while maintaining tuber yields and quality relies on good N management. A 2-year (2016–17 and 2017–18) field trial with ‘Symphonia’ potato was completed on a sandy loam soil irrigated with flood irrigation in Punjab, Pakistan to investigate the effect of N fertilizer rate on vegetative, yield and tuber quality parameters. The N fertilizer treatments comprising six N rates from 0 to 300?kg ha?1 were applied at 50?kg N increments. Number of stems and tubers plant?1 showed a quadratic response while other parameters revealed cubic trends in response to N fertilizer rates. Applying more than 250?kg ha?1 of N fertilizer did not increase vegetative growth and yield. In conclusion, the optimal N-application rate of 250?Kg ha?1 has great potential to improve yield and quality of potato in the sub-tropical region of Punjab, Pakistan. These findings, besides improving productivity can minimize the risk of N fertilizer loss to the atmosphere.  相似文献   

11.
Does net soil nitrogen (N) mineralization change if N‐fertility management is suddenly altered? This study, conducted in a long‐term no‐tillage maize (Zea mays L.) fertility experiment (established 1970), evaluated how changing previous fertilizer N (PN) management influenced in situ net soil N mineralization (NSNM). Net soil N mineralization was measured by incubating undisturbed soil cores with anion and cation exchange resins. In each of three PN fertilizer application plots (0, 84, and 336 kg N ha?1), another three fertilizer application rates (0, 84, and 336 kg N ha?1) were imposed and considered the current fertilizer N (CN) management. Generally, PN‐336 (336 kg N ha?1) had significantly greater NSNM than PN‐0 (0 kg N ha?1) or PN‐84 (84 kg N ha?1), which reflected differences in soil organic‐C (SOC) and soil total‐N (STN). The three CN rates had no significant effect on NSNM when they were applied to PN‐0 or PN‐84, but CN‐336 (336 kg N ha?1) had significantly higher NSNM than CN‐0 (0 kg N ha?1) or CN‐84 (84 kg N ha?1) in the PN‐336 plots. The CN or “added N interaction” used the indigenous soil organic matter (SOM) pool and the added sufficient fertilizer N. Environmental factors, including precipitation and mean air temperature, explained the most variability in average daily soil N mineralization rate during each incubation period. Soil water content at each sampling day could also explain NSNM loss via potential denitrification. We conclude that “added N interaction” in the field condition was the combined effect of SOM and sufficient fertilizer N input.  相似文献   

12.
Abstract

Field experiments were conducted to investigate nitrogen use efficiency and performance of maize (Zea mays L.) cultivars as influenced by calcium carbide (CaC2) and nitrogen (N) rates in a derived Savanna (2016 and 2017). Maize cultivars {SUWAN-I [open pollinated variety (OPV)] and OBA SUPER II (hybrid)}, rates of N (0, 60 and 90?kg ha?1) and CaC2 (0, 30 and 60?kg ha?1), were arranged in split-split plot respectively, fitted into a randomized complete block design in three replicates. N Partial factor productivity (PFPN), Agronomic Use Efficiency (both years) and Apparent recovery of N (2017) increased in the order 60?>?90?>?0?kg N ha?1, except N Internal use efficiency which was in the order 0?>?60?>?90?kg N ha?1 (2017). Grain yield increased with increasing rates of N in both years. OBA SUPER-II had significantly higher grain yield than SUWAN-I (2017). Similar pattern was observed on number of grains per cob, dry cob weight, PFPN and plant height (2017). Conversely in 2016, grain, total and shoot N uptakes were significantly higher in SUWAN-I than OBA SUPER-II. Increasing application of CaC2 increased grain N uptake and number of grains per cob. Number of leaves and stem girth increased in the order of 60?>?0?>?30?kg?CaC2 ha?1. Increased grain yield with N rates could be associated with NHI and N use efficiency. These evidences suggested that hybrid maize performed better than OPV in a derived Savanna.  相似文献   

13.
Silicon (Si) has been known to enhance plant tolerance against biotic and abiotic stresses besides its beneficial effects on plant growth and yield. Two experiments were conducted to evaluate the effect of Si against water-deficit stress in maize (Zea mays) applied through seed priming and soil incorporation methods, and to find out the optimum dose of Si under each method. In the seed priming experiment, seeds were exposed to different Si levels, up to 2 mM l–1, germinating under three soil moisture regimes (100%, 75% and 50% field capacity-FC). In the soil incorporation study, the treatments included were six Si doses from 0 to 600 kg ha–1 under the same soil moisture regimes. Grain yield was reduced by 59% and 69% in the seed priming and soil incorporation study, respectively, at 50% FC. Si application was effective irrespective of the application methods with higher cob length, 100-kernel weight and grain yield than the control. Application of Si at 1 mM l–1 as seed priming and 300 kg ha–1 as soil incorporation was more effective than other doses and could be recommended as optimum dose for Nakhon Sawan 3 hybrid maize variety under water-deficit stress.  相似文献   

14.
Chickpea is considered among the most sensitive grain legumes to salinity. The improvement of tolerance of lines in combination with tolerant rhizobial strains depends on various environmental and cultural conditions such as soil properties. This investigation was undertaken to evaluate the effect of phosphorus fertilization (0, 90 and 200 kg ha?1 of P2O5) on biomass, nodular traits and grain yield (GY) of chickpea (cv. Flip 84-79C) growing under salinity (0 and 150 mM NaCl). The trial was laid out following a randomized block design with three replicates during 2010–2012, at the experimental farm of Oued Smar (Algiers). Salinity did not significantly decrease the dry biomass of the plants but the relative shoot growth was more affected than control, P and SP1 treatments. Besides, salinity significantly reduced GY (?20%) and nodulation traits compared to the control plants while an inversely proportional relationship was found between protein, leghemoglobin and MDA content, K/Na ratio and the increase in salt concentration. Application of two P levels to saline soil enhanced growing conditions of plants. Particularly, the (90?kg?ha–1 of P ×?150?mM?NaCl) combination significantly increased leghemoglobin (92%), reduced proline content (?69%) and protected membranes against peroxydation compared to saline conditions. A significant increase was observed in the GY (about 30%) of plants at both P doses combined with salt stress compared to other cases. Statistically, the low P level combined with salinity induced similar responses of plants and sometimes better responses to control plants. Finally, our results support the roles of phosphorus fertilizer in the alleviation of salt stress and enhancing the soil quality for better symbiosis efficiency and yield of chickpea.  相似文献   

15.
Seedrow-placed urea minimizes soil disturbance in reduced tillage systems, but it generally decreases seedling emergence (or stand density) at nitrogen (N) rates adequate for optimum crop yield. Two three-year field experiments were conducted on canola (Brassica napus L.) and spring wheat (Triticum turgidum L.) at Melfort Research Farm, Saskatchewan, Canada, to determine the influence of N rate (40, 80 and 120 kg N ha?1), N source [untreated urea (urea), polymer-coated urea (ESN), and urea treated with Dicyandiamide (DCD) and N-(n-butyl) thiophosphoric triamide (NBPT or AgrotainTM) (SuperU) in 2007, or NBPT only (AgrotainU) in 2008 and 2009], and placement (side-banded N and seedrow-placed N, using knives to create 2 cm wide band), plus a zero-N control, on seedling emergence, seed and straw yield, protein concentration (PC) in seed, and N uptake in seed and straw. For both crops, side-banded N had no detrimental effect on seedling emergence compared to the zero-N control for all rates and sources. Seedrow-placed ESN had little or no effect on seedling emergence of wheat or canola. Conversely, seedrow-placed urea, SuperU or AgrotainU reduced seedling emergence for wheat at the 80 and 120 kg N ha?1 rates and reduced canola seedling emergence substantially at all rates, but particularly at the 80 and 120 kg N ha?1. Seed yield and N uptake were generally greater with ESN than urea and also SuperU or AgrotainU, when the fertilizers were seedrow-placed at high N rates. The findings suggest the effectiveness of ESN in providing greater seedrow-placed N application options for producers.  相似文献   

16.
Abstract

Nine biennial field experiments, 2000–2004, in south Sweden, 55–56°N, with winter wheat following winter oilseed rape, peas, and oats, were used to estimate the impact of a future milder climate on winter wheat production in central Sweden, 58–60°N. The trials included studies 1) on losses during winter of soil mineral nitrogen (Nmin, 0–90 cm soil), accumulated after the preceding crops in late autumn, 2) on soil N mineralisation (Nnet) during the growing season of the wheat (early spring to ripeness) and 3) on grain yield and optimum N fertilisation (Opt-N rate) of the wheat. Average Nmin in late autumn following winter oilseed rape, peas, and oats was 68, 64, and 45 kg ha?1, respectively, but decreased until early spring. Increased future losses of Nmin during the winter in central Sweden due to no or very short periods with soil frost should enhance the demand for fertiliser N and reduce the better residual N effect of winter oilseed rape and peas, compared with oats. Their better N effect will then mainly depend on larger Nnet (from March to maturity during the winter wheat year). Owing to more plant-available soil N (mainly as Nnet) Opt-N rates were lower after oilseed rape and peas than after oats despite increased wheat yields (700 kg ha?1) at optimum N fertilisation. In addition to these break crop effects, a milder climate should increase winter wheat yields in central Sweden by 2000–3000 kg ha?1 and require about 30–45 kg ha?1 more fertiliser N at optimum N fertilisation than the present yield levels. Increased losses and higher N fertilisation to the subsequent winter wheat in future indicates a need for an estimation of the residual N effect at the individual sites, rather than using mean values as at present, to increase N efficiency.  相似文献   

17.
The scarcity of fresh water has forced farmers to use saline water (SW) for irrigation. It is important to understand the response of the soil microbial community and diversity to saline irrigation water. The objective of this study was to determine the effects of irrigation water salinity and nitrogen fertilization rates on soil physicochemical properties, microbial activity, microbial biomass, and microbial functional diversity. The field experiment consisted of a factorial design with three levels of irrigation water salinity (electrical conductivities (ECs) of 0.35, 4.61 or 8.04?dS?m?1) and two nitrogen rates (0 and 360?kg?N?ha?1). The results showed that the 4.61 and 8.04?dS?m?1 treatments both reduced soil microbial biomass C (MBC), microbial biomass N (MBN), basal respiration, total phospholipid fatty acid (PLFA), bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. In contrast, the SW treatments increased the MBC:MBN ratio. Nitrogen fertilization increased soil MBC, MBN, basal respiration, total PLFA, bacterial PLFA, and gram-negative bacterial PLFA. In contrast, N fertilization decreased gram-positive bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. Average well color development, Richness, and Shannon's Index were always lowest in the 8.04?dS?m?1 treatment. Carbon utilization patterns in the 8.04?dS?m?1 treatment were different from those in the 0.35?dS?m?1 treatment. In conclusion, five years of irrigation with brackish or SW reduced the soil microbial biomass, activity, and functional diversity, which may cause the deterioration of soil quality. Thus, the high-salinity water (EC?>?4.61?dS?m?1) is not appropriate as a single irrigation water resource. Proper N fertilizer input may overcome some of the negative effects of salinity on soil microbial.  相似文献   

18.
Camelina (Camelina sativa (L.) Crantz) seed oil has desirable properties for producing advanced biofuels and as a healthy cooking oil. It has been grown for centuries, but basic recommendations for nitrogen (N) fertilizer requirements are still needed to support widespread industrial cultivation across North America. A replicated N-response plot-scale study was conducted on a northern Mollisol soil for two growing seasons to 1) determine seed and oil yield, seed oil content, and vegetative response; 2) determine indices of N use efficiency; and 3) measure post-harvest residual inorganic soil N as an index of environmental risk. Seed and oil yield response to N fertilization was described with a quadratic function, which predicted maximum seed yield (1450 kg ha?1) and oil yield (580 kg ha?1) at about 130 kg N ha?1. However, seed and oil yield did not differ significantly among N-rates above 34 kg N ha?1. Seed oil content averaged 400 g kg?1 among all N rates. Agronomic efficiency declined above 34 kg N ha?1, which coincided with an increase of post-harvest soil nitrate-N plus ammonium-N (residual N). Considering N use efficiency, simple cost analysis, and risk associated with residual N, a rate of 34 kg N ha?1 is recommended.  相似文献   

19.
(pp. 825–831)

This study was carried out to clarify the effects of soil nitrate before cultivation and amounts of basal-dressed nitrogen on additional N application rate and yields of semi-forced tomato for three years from 1998 to 2000. The amounts and timing of additional N dressing were determined based on diagnosis of petiole sap nitrate. The top-dressing was carried out with a liquid fertilizer when the nitrate concentration of a leaflet's petiole sap of leaf beneath fruit which is 2–4 cm declined below 2000 mg L?1.

For standard yield by the method of fertilizer application based on this condition, no basal-dressed nitrogen was required when soil nitrate before cultivation was 150 mg kg?1 dry soil or higher in the 0–30 cm layer; 38 kg ha?1 of basal-dressed nitrogen, which corresponds to 25% of the standard rate of fertilizer application of Chiba Prefecture, was optimum when soil nitrate before cultivation was 100150 mg kg?1 dry soil; 75 kg ha?1 of basal-dressed nitrogen, which corresponds to 50% of the standard, was optimum when soil nitrate before cultivation was under 100 mg kg?1 dry soil. A standard yield was secured and the rate of nitrogen fertilizer application decreased by 49–76% of the standard by keeping the nitrate concentration of tomato petiole sap between 1000–2000 mg L?1 from early harvest time to topping time under these conditions.  相似文献   

20.
Summary Under greenhouse and field conditions, after the harvest of maize-cowpea intercropping, soils were analysed for total, ammonium and organic N fractions and fertilizer 15N residues. Growing cowpea as the sole crop or in intercropping with maize results in increased relative amounts of the acid hydrolysable organic N fractions in soil. After sole cropping of maize 70% of the residual fertilizer N was found in the acid hydrolysable fraction while after intercropping it was 80%–92%. The fertilizer and soil N labelling with 15N in identical but alternate series provided information on the nitrogen fixed by cowpea and left in the soil as crop residues. Under field conditions the cowpea plant residues left after cropping contained 170 kg N ha–1 in sole cropping and 105 kg N ha–1 in intercropping with maize. The N assimilated by cowpea-Rhizobium symbiosis was mainly present in the acid hydrolysable forms, particularly in the -amino N fraction and ammonium N fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号