首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
不同氮形态对镉胁迫下小白菜生长及镉含量的影响   总被引:2,自引:1,他引:2  
【目的】研究施用速效氮肥(全铵、全硝、硝铵复合和尿素)对镉(Cd)污染土壤小白菜生长和Cd含量的影响,为合理选择氮肥,缓解Cd对植物生长的胁迫并减少Cd在作物体内的积累提供依据。【方法】以小白菜为试材,采用菜园土进行了盆栽试验。以CdCl2溶液模拟土壤Cd胁迫,设土壤Cd含量0、1、3和5 mg/kg 4个水平,每个胁迫水平分别供应小白菜铵态氮、硝态氮、硝铵(1:1)和尿素4种氮形态,总氮添加量均为N 400 mg/kg土。收获后分析各处理间小白菜的生长、光合、氧化胁迫及Cd含量的差异。【结果】 1)与无Cd对照相比,Cd 1 mg/kg处理水平下,全铵、全硝、硝铵和尿素处理的小白菜可食部分鲜重分别下降了31%、16%、21%和26%;Cd 3 mg/kg处理水平下分别下降了58%、28%、35%和39%;Cd 5 mg/kg处理水平下分别下降了83%、38%、52%和69%。全硝和硝铵处理间小白菜Cd耐受系数(TICd)差异不显著,但均高于全铵和尿素处理。2)与无Cd对照相比,Cd 1 mg/kg处理下,全铵、全硝、硝铵和尿素处理小白菜叶片的光合速率分别下降了14%、10%、12%和13%;Cd 3 mg/kg处理分别下降了33%、22%、25%和40%;Cd 5 mg/kg处理分别下降了53%、42%、41%和56%。与无Cd对照相比,1 mg/kg Cd浓度时全铵、全硝、硝铵和尿素处理小白菜叶片的丙二醛含量分别增加了11%、4%、9%和11%;超氧自由基产生速率分别增加了5%、1%、2%和4%,综合比较,以全硝处理下小白菜受Cd的光合抑制及氧化胁迫相对最小。3)3个Cd处理水平,均以施用全铵和尿素处理的小白菜体内Cd含量最高,硝铵处理次之,全硝处理最低。【结论】在供试菜园土上,小白菜施用铵态氮和尿素易引起Cd在小白菜体内的积累。施用硝态氮可缓解Cd诱导的光合抑制和氧化胁迫,减轻Cd对小白菜的生长胁迫,降低作物体内Cd的含量。  相似文献   

2.
Six potato cultivars grown in Turkey in boron-prone areas and differing in their tolerance towards high boron were studied to reveal whether boron causes oxidative stress. To assess stress level, chlorophyll fluorescence and growth parameters were measured. Oxidative damage was assessed as malondialdehyde level, and antioxidant protection was evaluated as ascorbate (AA), dehydroascorbate, reduced glutathione (GSH) and oxidized glutathione amounts and superoxide dismutase, catalase, ascorbate peroxidase (APX) and glutathione reductase (GR) activities. High boron stress affected photosynthesis negatively in a threshold-dependent manner and inhibited growth. No pronounced changes in oxidation of lipids occurred in any cultivar. Activation of APX suggested the involvement of an ascorbic acid–reduced glutathione cycle in the protection against oxidative stress caused by high boron. Efficient work of this antioxidant system was probably hindered by boron complexation with NAD(P)+/NAD(P)H and resulted in the inhibition of GR and a decrease in AA and GSH. Hence, oxidative stress associated with high boron is a secondary component of boron toxicity which arises from metabolic changes caused by boron interference with major metabolites. Potato cultivars tolerate excess boron stress well and show damage only in very high boron concentrations. The potato cvs best suited for high boron soils/breeding purposes are cvs Van Gogh and Agria.

Abbreviations: AA: ascorbic acid; APX: ascorbate peroxidase; CAT: catalase; DHA: dehydroascorbic acid; DHAR: dehydroascorbate reductase; DTNB: 5; 5′-dithiobis-2-nitrobenzoic acid; DTT: dithiotreitol; Fv/Fm: photosynthetic efficiency at the dark-adapted state; GR: glutathione reductase; GSH: reduced glutathione; GSSG: oxidized glutathione; MDA: malondialdehyde; ROS: reactive oxygen species; SOD: superoxide dismutase; TCA: trichloroacetic acid  相似文献   


3.
为了探讨水培条件下微咸水溶解氧浓度对小白菜光响应特征及产量的影响,测定了5种增氧水平下小白菜的光合响应过程,并采用直角双曲线模型、非直角双曲线模型、直角双曲线修正模型和指数模型分别对小白菜光响应曲线进行拟合比较,筛选出最优模型并利用最优模型对小白菜的光合特征参数进行了计算。试验结果表明,经误差分析,不同增氧水平下4种模型的光响应曲线拟合结果存在差异,非直角双曲线模型对所有处理的模拟精度均最高,是分析增氧微咸水水培条件下小白菜光响应曲线的最优模型。光响应曲线参数显示,18.5 mg/L的微咸水溶解氧浓度处理下小白菜的暗呼吸速率、表观量子效率、最大净光合速率均显著高于其他微咸水增氧处理。此外,18.5 mg/L的微咸水溶解氧浓度处理下小白菜的净光合速率和地上部鲜质量也显著高于其他微咸水增氧处理。因此,利用微咸水培养小白菜较为适宜的溶解氧浓度约为18.5 mg/L,该增氧处理有利于增强小白菜的耐荫性和忍受高光强的能力,增大小白菜叶片的可利用光强范围,提高叶片的生理活性,并促进小白菜叶片光合作用的高效运行,进而实现小白菜高产。  相似文献   

4.
Sodic‐alkalinity may be more deleterious to plant growth than salinity. The objectives of this study were to determine whether 5‐aminolevulinic acid (ALA: an essential precursor for chlorophyll biosynthesis) foliar application could improve the sodic‐alkaline resistance of Swiss chard (Beta vulgaris L. subsp. cicla ) by regulating water uptake, ionic homeostasis, photosynthetic capacity, and antioxidant metabolism. Eight‐week‐old uniform plants were grown in nutrient medium without and with a sodic‐alkaline regime generated by a mixture of NaHCO3 and Na2CO3 (NaHCO3 : Na2CO3 = 9:1 molar ratio) for 12 d, and leaves were sprayed daily with water or ALA. The Na+ and ALA concentrations were gradually increased to 60 mM and 120 μM, respectively. ALA foliar application alleviated the physiological damage from sodic‐alkalinity, as reflected by the increases in plant dry weight, relative growth rate, chlorophyll, Mg2+ concentration, and the decrease in Na+ concentration. However, ALA foliar application did not change the water uptake capacity or the concentration of K+, Fe3+, and endogenous ALA in leaf tissues under sodic‐alkaline conditions. ALA foliar application effectively mitigated damage from sodic‐alkalinity because of the increased activity of antioxidant enzymes (catalase and guaiacol peroxidase), particularly superoxide dismutase activity, which was maintained at the same level as for control plants. These results suggest that ALA foliar application alleviated sodic‐alkaline stress mainly owing to its antioxidant capacity, and superoxide dismutase has the main responsibility for reducing oxidative stress in Swiss chard.  相似文献   

5.
To understand the ecotoxicity of antibiotics and heavy metals in soil, 5% (w/w) composts containing different concentrations of sulfamethazine (SMZ) and/or zinc (Zn) were applied to soil to investigate their effects on pakchoi (Brassica chinensis L.) growth, soil sulfonamide resistance genes (SRGs: sul1, sul2, and dfrA7), and soil microbial communities. Composts containing less than 1.0 mg SMZ kg–1 or less than 2.8 g Zn kg–1 promoted pakchoi growth and the metabolic activity of soil microbial communities. Compared with the control, the absolute abundances (AAs) of soil SRGs significantly increased by 0.85–4.54 times with 50.6 μg kg–1 SMZ treatment (P < 0.05), the AA of sul2 increased by 166% with 248.8 mg Zn kg–1 treatment. The combination treatments with 19.8 μg SMZ kg–1 and 179.9 mg Zn kg–1 in soil had synergistic stimulatory effects on pakchoi growth, soil SRGs and microbial metabolism, whereas 53.5 μg SMZ kg–1 and 262.1 mg Zn kg–1 had an opposite effect. Pearson’s correlation analysis showed that carbon metabolism by soil microorganisms had significant positive correlations with shoot height of pakchoi (r = 0.84, P < 0.05) and AAs of SRGs (r > 0.80, P < 0.05).  相似文献   

6.
为探明缺磷胁迫下草甘膦对抗草甘膦大豆(RR1)幼苗叶片光合作用和叶绿素荧光参数的影响,采用溶液培养方法,在大豆长出真叶时进行缺磷胁迫,第二复叶完全展开时进行草甘膦处理,5d后测定各生理指标。结果表明, 相对于正常供磷条件的清水处理,缺磷胁迫下4.98 mL/L草甘膦处理的大豆叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、最大荧光(Fm)、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ的有效量子产量[Y(Ⅱ)]、PSⅡ非调节性能量耗散的量子产量[Y(NO)]、最大电子传递速率(ETRmax)和半饱和光强(Ik)均呈下降趋势。而气孔限制值(Ls)、叶绿素a(Chl a)、叶绿素b(Chl b)、叶绿素a/b(Chl a/b)、类胡萝卜素(Car)、总叶绿素(Chl)含量和PSⅡ调节性能量耗散的量子产量[Y(NPQ)]均呈升高趋势。说明缺磷胁迫条件下喷施草甘膦显著降低了抗草甘膦大豆的光合速率。缺磷引起的气孔因素可能是导致RR大豆光合速率下降的主要原因,而光合速率的下降导致其PSⅡ反应中心的开放程度降低,活性减弱,参与CO2固定的电子较少,光化学效率较低。  相似文献   

7.
The effect of copper (Cu) excess (1.5, 4.7, 31, 78, 156 μM) and exogenously supplied succinate on plant growth, chlorophyll content, chlorophyll fluorescence, and isoenzym profiles of some antioxidant enzymes in maize plants was studied. Excessive Cu supply led to a reduction in the relative growth rate (RGR), tolerance index (TI), chlorophyll a and chlorophyll b contents, and the quantum yield of PSII electron transport in the light‐adapted state (ΦPSII). Copper treatment induced several changes in the anionic and cationic peroxidases (PODs), as well as superoxide dismutase (SOD) isoenzyme profiles. After 8 d of 78 μM–Cu treatment, two new anionic and two new cationic peroxidase isoenzymes in the roots were registered. Copper applied at concentrations above 31 μM resulted in higher levels of manganese superoxide dismutase (Mn‐SOD) in the roots and Cu,Zn‐superoxide dismutase (Cu,Zn‐SOD) in the leaves. However, the addition of Na‐succinate (200 μM) to the root medium prior to Cu treatment increased the capacity of the plants to partially overcome Cu toxicity.  相似文献   

8.
It is well known that plants are capable of taking up intact amino acids. However, how the nitrogen (N) rates and N forms affect amino acid uptake and amino acid nutritional contribution for plant are still uncertain. Effects of the different proportions of nitrate (NO3?), ammonium (NH4+) and 15N-labeled glycine on pakchoi seedlings glycine uptake were investigated for 21 days hydroponics under the aseptic media. Our results showed that plant biomass and glycine uptake was positively related to glycine rate. NO3? and NH4+, the two antagonistic N forms, both significantly inhibited plant glycine uptake. Their interactions with glycine were also negatively related to glycine uptake and glycine nutritional contribution. Glycine nutritional contribution in the treatments with high glycine rate (13.4%–35.8%) was significantly higher than that with low glycine rate (2.2%–13.2%). The high nutritional contribution indicated amino acids can serve as an important N source for plant growth under the high organic and low inorganic N input ecosystem.  相似文献   

9.
Nano-sized formulations of micronutrient iron (Fe) were found to substantially alter the growth and metabolism of maize plants. Plants fertilized with the optimal recommended dose of Fe in the nano-form (54 μM) registered an enhancement in morphological features, viz. plant height, biomass (shoot and root), and diminution in antioxidant enzyme activities than the plants fertilized with the sub-optimal dose of Fe in the macroform (salts). However, half of the recommended dosage of Fe (27 μM) in the nano-form positively influenced leaf area and proline content of plants too. This indicated that there is a possibility of reducing the dose of Fe supplement for plants in the nano-form to increase the nutrient use efficiency in a major cereal crop like maize. This may open a new era in plant nutrient management with a scope for improvement in nutrient use efficiency using nano-nutrient formulations.  相似文献   

10.
为探讨尿素与甲基二磺隆对紫苏光合特性指标和籽粒产量的影响,本试验研究了适宜紫苏生长的最佳除草、施肥条件,对六叶期紫苏幼苗先后喷施尿素(0、1、2、4、8 g·L-1)和甲基二磺隆(0、0.175、0.35、0.7、1.4 mL·L-1)处理.结果表明,甲基二磺隆显著降低紫苏叶片的叶绿素含量指数,净光合速率和气孔导度也均不同程度降低,胞间CO2浓度升高,说明甲基二磺隆降低了紫苏的光合作用;叶绿素荧光分析显示,除草剂甲基二磺隆显著降低了光化学荧光淬灭系数、PSⅡ最大光化学效率、PSⅡ潜在活性及PSⅡ实际光化学效率,而非光化学淬灭系数则呈上升趋势.表明紫苏在甲基二磺隆处理下发生了光抑制,同时叶绿体的PSⅡ正常功能受阻;8 g·L-1的尿素处理效果相同;而1 ~4g·L-1浓度的尿素处理则效果相反.1 ~4 g·L-1的尿素和不同浓度的甲基二磺隆先后处理,比单用甲基二磺隆处理效果好,先施4 g·L-1的尿素,后施0.7 mL·L-1甲基二磺隆为最佳处理方案,能显著提高紫苏的光合速率,并使其光系统Ⅱ维持较高的光化学效率.该施药模式可为紫苏田平衡除草施肥和安全高产提供理论基础.  相似文献   

11.
The present study was conducted to investigate the effects of Zn application to salt stressed eggplant (Solanum melongena L.) seedlings grown in vitro and whether it can alleviate the deleterious effects of salinity or not. Zinc (0, 5, 10 and 20?mg/L) and sodium chloride (NaCl) at different concentrations (0, 50, 100 and 150?mM) were added to solidified half strength MS medium placed in 250?mL glass jars. The treatments were arranged in a 4?×?4 factorial experiment in a completely randomized design with four replications. Application of Zn to growing seedlings at different concentrations (5, 10 or 20?mg/L) increased the length of shoot and root and their dry weights, as well as enhanced the photosynthetic pigment contents and leaf relative water content compared to control. However, the application of NaCl to growing seedlings at different concentrations (50, 100 and 150?mM) significantly reduced the above mentioned attributes compared to control and those of Zn treatments alone. Treatment of seedlings with either Zn (5, 0 or 20?mg/L) or NaCl (50, 100 or 150?mM) significantly increased the proline content and the antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX) in growing seedlings. However, the application of Zn to salt stressed seedlings mitigated the deleterious effects of salt stress in growing seedlings and increased the tolerance of seedlings to its deleterious effects.  相似文献   

12.
Sesuvium portulacastrum is a dicotyledonous halophyte. The responses of different clones of Sesuvium to salinity were analysed by measuring changes in growth, biomass accumulation, water content, osmolytes accumulation, oxidative damage, antioxidant enzymes and inorganic ions. In addition, microscopic observations were made to discern any changes in the stem anatomy of Sesuvium under salt stress. Reduced growth, biomass accumulation and tissue water content correlated with an increase in NaCl concentrations (200–800 mM), except at 200 mM NaCl, where an improvement in the parameters was observed among all clones, specifically in MH1 (Maharashtra). Increased osmolytes (proline, glycine betaine and total soluble sugars) and the accumulation of Na+ ions, without affecting K+content, were recorded in all clones. Higher malondialdehyde content and greater relative electrolyte leakage were evident in addition to increased catalase and superoxide dismutase activities under salt stress. Increased cortical cell size and cortex diameter of the stem were observed upon 200–400 mM NaCl stress; decreased thickness was seen at higher NaCl concentrations. This study suggests the differential behaviour of Sesuvium clones which might be useful in the rapid selection of a potent clone (such as MH1) for the restoration of wetlands and desalination of saline soils.  相似文献   

13.
ABSTRACT

In the present study, we reported the isolation and molecular characterisation of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing endophyte and its effect on alleviating drought stress in maize. Ten morphologically distinct indigenous plant growth-promoting rhizobacteria (PGPR) from maize roots and rhizosphere were screened for multiple plant growth-promoting (PGP) traits, and of ten, two strains (DHK and B1N1) possessing maximum PGP traits were evaluated at three water stress regimes in maize: (i) 80% field capacity (FC), (ii) 60% FC, and (iii) 40% FC for 45 days, starting 15 days after sowing to the maturity. Inoculation of DHK strain with maize at 80% FC induced a significant increase in plant biomass (root biomass, 86.67%; shoot biomass, 111.63%) together with decreased reactive oxygen species and increased activity of antioxidant enzymes (superoxide dismutase, 14.11?U/g fresh weight; peroxidase, 1.14?U/g fresh weight and catalase; 14.91?U/g fresh weight) compared to uninoculated control at same water regime (80% FC). The derivative strain also significantly accrued nutrients in maize and enhanced total chlorophyll and amino acid content in comparison with non-inoculated plants. 16S rDNA analysis of DHK strain revealed its lineage to Bacillus subtilis. Present investigations demonstrated the potential of the bacterial partner in alleviating drought stress in maize.  相似文献   

14.
Selenate is chemically similar to sulfate and can be taken up and assimilated by plants. Although selenium (Se) has not been shown to be essential for higher plants, Se is toxic to many crops in excess. To obtain better insights into the effects of the possible mechanism of how plants alleviates the toxicity of selenate-Se stress, the growth, Se subcellular distribution of fresh leaves, antioxidant enzyme activities and photosynthetic traits of flue-cured tobacco (FCT) through a hydroponic experiment were studied. Results revealed that the growth of FCT reduced remarkably, meanwhile the content of proline and malonaldehyde (MDA) enhanced significantly with selenate-Se stress. Selenium was mainly stored in the cytoplasm and the cell wall in fresh leaves. Cell membrane of lipid peroxidation was aggravated, and it stimulated the improvement of the activities of superoxide dismutase (SOD) and catalase (CAT), and reduced the activity of peroxidase (POD) with the selenate-Se stress. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular CO2 concentration (Ci) of FCT were significantly reduced with selenate-Se treatments; whereas chlorophyll a, chlorophyll b, and total chlorophyll contents (chlorophyll a + b) were not significantly difference between the treatments. The above declared that it had inhibitory effect on physiological characteristics and photosynthesis of FCT with selenate-Se stress. It was inferred that the reasons of photosynthesis reduction were the main limiting factors of stomatal closure and supplying of CO2 deterioration of FCT with selenate-Se stress. Meanwhile, synthesized protein or/and amino acids storage in cytoplasm and fixed by cell wall of Se were the important methods to alleviate the toxicity and enhance the tolerance of selenate-Se stress to FCT.  相似文献   

15.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   

16.
堆肥缓解土壤镉的植物毒性: 对白菜生长的影响   总被引:1,自引:0,他引:1  
The growth performance of pakchoi (Brassica chinensis L.) in relation to soil cadmium (Cd) fractionations was investigated to evaluate the remediating effect of poultry manure compost on Cd-contaminated soil. A yellow-brown soil (Alfisol) treated with various levels of Cd (0–50 mg Cd kg-1 soil) was amended with increasing amounts of compost from 0 to 120 g kg-1 . Compost application transformed 47.8%–69.8% of soluble/exchangeable Cd to the organic-bound fraction, and consequently decreased Cd uptake of pakchoi by 56.2%–62.5% as compared with unamended soil. Alleviation of Cd bioavailability by compost was attributed primarily to the increase of soil pH and complexation of Cd by organic matter including dissolved organic matter. In general, the improvement of pakchoi performance was more pronounced in higher Cd-contaminated soil. Addition of large amount of compost also favored the anti-oxidative capability of pakchoi against Cd toxicity. This low cost remediation method seems to be very effective in the restoration of Cd-contaminated soils.  相似文献   

17.
Ameliorative effect of silicon (Si) (2 mM as sodium silicate (Na2SiO3)) was studied in tobacco (Nicotiana rustica L.) plants grown under control at 100% field capacity (FC), mild drought (60% FC), and severe drought (30% FC) conditions. Si-treated plants had higher biomass of particularly above-ground parts both under drought and control conditions. Plants with Si supply had significantly higher net assimilation rates but lower transpiration rates. Silicon supply enhanced osmotic potentials only in the leaves, but not in the roots. A considerable rise in the concentrations of soluble sugars was observed particularly in the leaves under both drought and Si treatments. Soluble proteins, free α-amino acids, and proline concentrations increased in Si-treated plants under all watering treatments. Si enhanced the activity of antioxidative enzymes and decreased hydrogen peroxide (H2O2) concentrations. Results indicate that Si supplementation alleviates drought stress via improvement of water relation parameters, enhancement of photosynthesis, and elevation of antioxidant defenses.  相似文献   

18.
Gladiolus corms were grown in media contaminated with cadmium (Cd) (50 mg kg?1) and supplemented with silicon (Si) and potassium (K). The role of Si and K for mitigation of Cd toxicity was evaluated. Cd-induced stress generated significantly increased level of oxidative stress markers including hydrogen peroxide (H2O2), and malondialdehyde (MDA) in gladiolus. The application of K and Si improved the production of protein and proline in the treated plants. Moreover, K and Si supplemented plants exhibited an improvement in the activity of antioxidant enzymes and a reduction in the level of MDA, H2O2 and Cd uptake under Cd stress. Application of K and Si also enhanced the uptake of mineral nutrients including calcium (Ca), magnesium (Mg), manganese (Mn), sulfur (S) and K. The plants supplemented with K and Si exhibited a higher amount of total phenolics and flavonoids. The combined effect of Si and K was more pronounced regarding beneficial effects on gladiolus plants compared to individual effect of these elements under Cd stress. The current research reveals that Si and K may improve gladiolus growth by decreasing the oxidative stress and Cd uptake and by increasing the activity of antioxidant defense enzymes, the quantity of secondary metabolites and plant nutrition.  相似文献   

19.
磷水平对不同磷效率小麦叶绿素荧光参数的影响   总被引:6,自引:2,他引:4  
采用溶液培养方法,研究了磷水平(0、10、100、500和1000μmol/L)对不同磷效率小麦(西农979和小偃6号)幼苗基部第1叶叶绿素荧光参数与叶绿素含量的影响。结果表明,随着磷水平的增加,两小麦幼苗基部第1叶的叶绿素a荧光参数均表现出先升高后降低的趋势,不同的是小偃6号在磷水平为100μmol/L时就达到了峰值,而西农979的最大值则出现在500μmol/L磷水平下。说明小偃6号(磷高效)的光能转换效率和电子传递效率高于西农979,且受低磷胁迫的影响较小。  相似文献   

20.
Water stress is one of the major environmental stresses that affect agricultural production worldwide, especially in arid and semi-arid regions. This research investigated the effect of water deficit, induced by PEG-6000 on wheat genotypes (GA-2002, Chakwal-97, Uqab-2000, Chakwal-50 and Wafaq-2001) grown in modified MS medium solution. Osmotic stress caused a more pronounced inhibition in leaf relative water content and leaf membrane stability more sensitive (index in Wafaq-2001 and Uqab-2000) genotypes compared with the tolerant (Chakwal-50, GA-2002 and Chakwal-97) genotypes. Upon dehydration, an incline in proline, total soluble sugar, total soluble protein, superoxide dismutase, peroxidase, catalase and malondialdehyde activity content were evident in all genotypes, especially at osmotic stress of ?8 bars. The observed data showed that status of biochemical attributes and antioxidant enzymes could provide a meaningful tool for depicting drought tolerance of wheat genotypes. The present study shows that genotypic differences in drought tolerance could be likely attributed to the ability of wheat plants to induce antioxidant defense under drought conditions. In order to develop genotypes with stable, higher yields in dry farming conditions, it is necessary to characterise genetic resources based on drought adaptation, determine suitable genotypes, and then use them in breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号