首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

2.
REASONS FOR PERFORMING STUDY: In order to evaluate its potential as an adjunct to inhalant anaesthesia in horses, the pharmacokinetics of fentanyl must first be determined. OBJECTIVES: To describe the pharmacokinetics of fentanyl and its metabolite, N-[1-(2-phenethyl-4-piperidinyl)maloanilinic acid (PMA), after i.v. administration of a single dose to horses that were awake in Treatment 1 and anaesthetised with isoflurane in Treatment 2. METHODS: A balanced crossover design was used (n = 4/group). During Treatment 1, horses received a single dose of fentanyl (4 microg/kg bwt, i.v.) and during Treatment 2, they were anaesthetised with isoflurane and maintained at 1.2 x minimum alveolar anaesthetic concentration. After a 30 min equilibration period, a single dose of fentanyl (4 microg/kg bwt, i.v.) was administered to each horse. Plasma fentanyl and PMA concentrations were measured at various time points using liquid chromatography-mass spectrometry. RESULTS: Anaesthesia with isoflurane significantly decreased mean fentanyl clearance (P < 0.05). The fentanyl elimination half-life, in awake and anaesthetised horses, was 1 h and volume of distribution at steady state was 0.37 and 0.26 l/kg bwt, respectively. Anaesthesia with isoflurane also significantly decreased PMA apparent clearance and volume of distribution. The elimination half-life of PMA was 2 and 1.5 h in awake and anaesthetised horses, respectively. CONCLUSIONS AND POTENTIAL RELEVANCE: Pharmacokinetics of fentanyl and PMA in horses were substantially altered in horses anaesthetised with isoflurane. These pharmacokinetic parameters provide information necessary for determination of suitable fentanyl loading and infusion doses in awake and isoflurane-anaesthetised horses.  相似文献   

3.
4.
Lidocaine is administered as an intravenous infusion to horses for a variety of reasons, but no study has assessed plasma lidocaine concentrations during a 12-h infusion to horses. The purpose of this study was to evaluate the plasma concentrations and pharmacokinetics of lidocaine during a 12-h infusion to postoperative horses. A second purpose of the study was to evaluate the in vitro plasma protein binding of lidocaine in equine plasma. Lidocaine hydrochloride was administered as a loading dose, 1.3 mg/kg over 15 min, then by a constant rate IV infusion, 50 microg/kg/min to six postoperative horses. Lidocaine plasma concentrations were measured by a validated high-pressure liquid chromatography method. One horse experienced tremors and collapsed 5.5 h into the study. The range of plasma concentrations during the infusion was 1.21-3.13 microg/mL. Lidocaine plasma concentrations were significantly increased at 0.5, 4, 6, 8, 10 and 12 h compared with 1, 2 and 3 h. The in vitro protein binding of lidocaine in equine plasma at 2 microg/mL was 53.06+/-10.28% and decreased to 27.33+/-9.72% and 29.52+/-6.44% when in combination with ceftiofur or the combination of ceftiofur and flunixin, respectively. In conclusion, a lower lidocaine infusion rate may need to be administered to horses on long-term lidocaine infusions. The in vitro protein binding of lidocaine is moderate in equine plasma, but highly protein bound drugs may displace lidocaine increasing unbound concentrations and the risk of lidocaine toxicity.  相似文献   

5.
ObjectiveTo determine if general anaesthesia influences the intravenous (IV) pharmacokinetics (PK) of acetaminophen in dogs.Study designProspective, crossover, randomized experimental study.AnimalsA group of nine healthy Beagle dogs.MethodsAcetaminophen PK were determined in conscious and anaesthetized dogs on two separate occasions. Blood samples were collected before, and at 5, 10, 15, 30, 45, 60 and 90 minutes and 2, 3, 4, 6, 8, 12 and 24 hours after 20 mg kg–1 IV acetaminophen administration. Haematocrit, total proteins, albumin, alanine aminotransferase, aspartate aminotransferase, urea and creatinine were determined at baseline and 24 hours after acetaminophen. The anaesthetized group underwent general anaesthesia (90 minutes) for dental cleaning. After the administration of dexmedetomidine (3 μg kg–1) intramuscularly, anaesthesia was induced with propofol (2–3 mg kg–1) IV, followed by acetaminophen administration. Anaesthesia was maintained with isoflurane in 50% oxygen (Fe′Iso 1.3–1.5%). Dogs were mechanically ventilated. Plasma concentrations were analysed with high-performance liquid chromatography. PK analysis was undertaken using compartmental modelling. A Wilcoxon test was used to compare PK data between groups, and clinical laboratory values between groups, and before versus 24 hours after acetaminophen administration. Data are presented as median and range (p < 0.05).ResultsA two-compartmental model best described time–concentration profiles of acetaminophen. No significant differences were found for volume of distribution values 1.41 (0.94–3.65) and 1.72 (0.89–2.60) L kg–1, clearance values 1.52 (0.71–2.30) and 1.60 (0.91–1.78) L kg–1 hour–1 or terminal elimination half-life values 2.45 (1.45–8.71) and 3.57 (1.96–6.35) hours between conscious and anaesthetized dogs, respectively. Clinical laboratory variables were within normal range. No adverse effects were recorded.Conclusions and clinical relevanceIV acetaminophen PK in healthy Beagle dogs were unaffected by general anaesthesia under the study conditions. Further studies are necessary to evaluate the PK in different clinical contexts.  相似文献   

6.
The anesthetic and cardiovascular effects of a combination of continuous intravenous infusion using a mixture of 100 g/L guaifenesin-4 g/L ketamine-5 mg/L medetomidine (0.25 ml/kg/hr) and oxygen-sevoflurane (OS) anesthesia (GKM-OS anesthesia) in horses were evaluated. The right carotid artery of each of 12 horses was raised surgically into a subcutaneous position under GKM-OS anesthesia (n=6) or OS anesthesia (n=6). The end-tidal concentration of sevoflurane (EtSEV) required to maintain surgical anesthesia was around 1.5% in GKM-OS and 3.0% in OS anesthesia. Mean arterial blood pressure (MABP) was maintained at around 80 mmHg under GKM-OS anesthesia, while infusion of dobutamine (0.39+/-0.10 microg/kg/min) was necessary to maintain MABP at 60 mmHg under OS anesthesia. The horses were able to stand at 36+/-26 min after cessation of GKM-OS anesthesia and at 48+/-19 minutes after OS anesthesia. The cardiovascular effects were evaluated in 12 horses anesthetized with GKM-OS anesthesia using 1.5% of EtSEV (n=6) or OS anesthesia using 3.0% of EtSEV (n=6). During GKM-OS anesthesia, cardiac output and peripheral vascular resistance was maintained at about 70% of the baseline value before anesthesia, and MABP was maintained over 70 mmHg. During OS anesthesia, infusion of dobutamine (0.59+/-0.24 microg/kg/min) was necessary to maintain MABP at 70 mmHg. Infusion of dobutamine enabled to maintaine cardiac output at about 80% of the baseline value; however, it induced the development of severe tachycardia in a horse anesthetized with sevoflurane. GKM-OS anesthesia may be useful for prolonged equine surgery because of its minimal cardiovascular effect and good recovery.  相似文献   

7.
A double-blind comparison of carbonated lidocaine and lidocaine hydrochloride in caudal epidural anesthesia was performed in 8 horses. Among 5 horses with successfully paired bilateral caudal epidural blockades, no significant differences in onset time, duration, or sensory blockade were demonstrated. In the present study, carbonated lidocaine did not offer an advantage over the hydrochloride salt for caudal epidural anesthesia in the horse.  相似文献   

8.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

9.
ObjectiveTo compare isoflurane alone or in combination with systemic ketamine and lidocaine for general anaesthesia in horses.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses (ASA I-III) undergoing elective surgery.MethodsHorses were assigned to receive isoflurane anaesthesia alone (ISO) or with ketamine and lidocaine (LKI). After receiving romifidine, diazepam, and ketamine, the isoflurane end-tidal concentration was set at 1.3% and subsequently adjusted by the anaesthetist (unaware of treatments) to maintain a light plane of surgical anaesthesia. Animals in the LKI group received lidocaine (1.5 mg kg−1 over 10 minutes, followed by 40 μg kg−1 minute−1) and ketamine (60 μg kg−1 minute−1), both reduced to 65% of the initial dose after 50 minutes, and stopped 15 minutes before the end of anaesthesia. Standard clinical cardiovascular and respiratory parameters were monitored. Recovery quality was scored from one (very good) to five (very poor). Differences between ISO and LKI groups were analysed with a two-sample t-test for parametric data or a Fischer's exact test for proportions (p < 0.05 for significance). Results are mean ± SD.ResultsHeart rate was lower (p = 0.001) for LKI (29 ± 4) than for ISO (34 ± 6). End-tidal concentrations of isoflurane (ISO: 1.57% ± 0.22; LKI: 0.97% ± 0.33), the number of horses requiring thiopental (ISO: 10; LKI: 2) or dobutamine (ISO:8; LKI:3), and dobutamine infusion rates (ISO:0.26 ± 0.09; LKI:0.18 ± 0.06 μg kg−1 minute−1) were significantly lower in LKI compared to the ISO group (p < 0.001). No other significant differences were found, including recovery scores.Conclusions and clinical relevanceThese results support the use of lidocaine and ketamine to improve anaesthetic and cardiovascular stability during isoflurane anaesthesia lasting up to 2 hours in mechanically ventilated horses, with comparable quality of recovery.  相似文献   

10.
11.
REASONS FOR PERFORMING STUDY: Lidocaine constant rate infusions (CRIs) are common as an intraoperative adjunct to general anaesthesia, but their influence on quality of recovery has not been thoroughly determined. OBJECTIVES: To determine the effects of an intraoperative i.v. CRI of lidocaine on the quality of recovery from isoflurane or sevoflurane anaesthesia in horses undergoing various surgical procedures, using a modified recovery score system. HYPOTHESIS: The administration of intraoperative lidocaine CRI decreases the quality of recovery in horses. METHODS: Lidocaine (2 mg/kg bwt bolus followed by 50 microg/kg bwt/min) or saline was administered for the duration of surgery or until 30 mins before the end of surgery under isoflurane (n = 27) and sevoflurane (n = 27). RESULTS: Horses receiving lidocaine until the end of surgery had a significantly higher degree of ataxia and a tendency towards significance for a lower quality of recovery. There was no correlation between lidocaine plasma concentrations at recovery and the quality of recovery. CONCLUSIONS: Intraoperative CRI of lidocaine affects the degree of ataxia and may decrease the quality of recovery. POTENTIAL RELEVANCE: Discontinuing lidocaine CRI 30 mins before the end of surgery is recommended to reduce ataxia during the recovery period.  相似文献   

12.
13.
Cimetidine was administered intravenously and by the intragastric route to six mares at a dose of 4.0 mg/kg of body weight (bw). Specific and sensitive high performance liquid chromatographic methods for the determination of cimetidine in horse plasma and urine and cimetidine sulfoxide in urine are described. Plasma cimetidine concentration vs. time data were analysed by non-linear least squares regression analysis to determine pharmacokinetic parameter estimates. The median (range) plasma clearance (Cl) was 8.20 (4.96–10.2) mL/min.kg of body weight, that of the steady-state volume of distribution (Vdss) was 0.771 (0.521–1.15) L/kg bw, and that of the terminal elimination half-life ( t ½β) was 92.4 (70.6–125) minutes. The median (range) renal clearance of cimetidine was 4.08 (2.19–6.23) mL/min.kg bw or 55.4 (36.3–81.8)% of the corresponding plasma clearance. Cimetidine sulfoxide was excreted in urine and its urinary excretion through 8 h accounted for 12.0 (9.8–16.6)% of the plasma clearance of cimetidine. The median (range) extent of intragastric bioavailability was 14.4 (6.82–21.8)% and the maximum plasma concentration after intragastric administration was 0.31 (0.24–0.50) μg/mL.
Intravenous cimetidine had no effect on the disposition of intravenous phenylbutazone or its metabolites except that the maximum plasma concentration of γ-hydroxyphenylbutazone was less after cimetidine treatment.  相似文献   

14.
Six horses were administered either 15 or 20 mg/kg body weight (b.w.) procainamide (PA) as an intravenous (i.v.) dose over 10 min. The plasma concentrations of PA and N-acetylprocainamide (NAPA) as well as the pharmacodynamic effect (prolongation of the QT interval) were monitored. The PA plasma concentrations could be described by a one-compartment model with a t ½ of 3.49 ± 0.61 h. The total body clearance of PA was 0.395 ± 0.090 1/hr/kg and the volume of distribution was 1.93 ± 0.27 l/kg. As observed after PA administration, NAPA (an active metabolite) had a t ½ longer than PA of 6.31 ± 1.49 h. Peak NAPA concentrations (1.91 ± 0.51 μg/ml) occurred at 5.2 h after the PA i.v. dose. The ratio of area under the curves for NAPA to PA was 0.46 ± 0.15 which is similar to that expected in humans classified as slow acetylators. Percentage change in the QT interval was examined with respect to PA and PA + NAPA plasma concentrations. For PA, %ΔQT = 41.2 log (PA) - 13.26 and correlations ( r ) ranged from 0.77 to 0.91 among the horses. In the case of PA + NAPA,%ΔQT= 57.3 log(PA+NAPA)-31.83 andrangedfrom0.77to0.90. No evidence of toxicity was noted with respect to changes in the PR interval.  相似文献   

15.
To investigate an adequate infusion rate of propofol for total intravenous anesthesia (TIVA) in horses, the minimum infusion rate (MIR) comparable to the minimum alveolar anesthetic concentration (MAC) of inhalation anesthetic was determined under constant ventilation condition by intermittent positive pressure ventilation (IPPV). In addition, arterial propofol concentration was measured to determine the concentration corresponding to the MIR (concentration preventing reaction to stimulus in 50% of population, Cp(50)). Further, 95% effective dose (ED(95)) was estimated as infusion rate for acquiring adequate anesthetic depth. Anesthetic depth was judged by the gross purposeful movement response to painful stimulus. MIR and Cp(50) were 0.10 +/- 0.02 mg/kg/min and 5.3 +/- 1.4 microg/ml, respectively. ED(95) was estimated as 0.14 mg/kg/min (1.4MIR).  相似文献   

16.
17.
REASONS FOR PERFORMING STUDY: Continuous-rate infusions (CRI) of lidocaine are often used for prolonged duration but, to date, only limited time/concentration relationships administered as a short term (24 h) CRI have been reported. OBJECTIVE: To determine the time/concentration profile of lidocaine and its active metabolites glycinexylidide (GX) and monoethylglycinexylidide (MEGX) during a 96 h lidocaine infusion. METHODS: Lidocaine was administered to 8 mature healthy horses as a continuous rate infusion (0.05 mg/kg bwt/min) for 96 h. Blood concentrations of lidocaine, GX and MEGX were determined using high performance liquid chromatography during and after discontinuation of the infusion. RESULTS: Serum lidocaine concentrations reached steady state by 3 h and did not accumulate thereafter. Concentrations were above the target therapeutic concentration (980 ng/ml) only at 6 and 48 h, and did not reach the range described as potentially causing toxicity (>1850 ng/ml) at any time. MEGX did not accumulate over time, while the GX accumulated significantly up to 48 h and then remained constant. The serum concentrations of lidocaine, MEGX and GX were below the limit of detection within 24 h of discontinuation of the infusion. None of the horses developed any signs of lidocaine toxicity during the study. CONCLUSIONS: The metabolism of lidocaine was not significantly impaired by prolonged infusion and no adverse effects were observed. Prolonged infusions appear to be safe in normal horses but the accumulation of GX, a potentially toxic active metabolite, is cause for concern.  相似文献   

18.
19.
Atracurium (0.4 mg/ml in isotonic NaCl solution) was administered by IV infusion to 7 healthy adult horses for 2 hours. Over the 2-hour period, a 95 to 99% reduction of train-of-four hoof-twitch response was maintained by 0.17 +/- 0.01 mg of atracurium/kg of body weight/h, for a total of 161 +/- 6 mg of atracurium (mean +/- SEM) for horses 1 to 4, 6, and 7. Horse 5, a mare in estrus, required 0.49 mg of atracurium/kg/h to maintain comparable relaxation. Hoof-twitch recovery time from 10 to 75% of baseline strength was 19.8 +/- 2.5 minutes for all horses. The 10 to 75% recovery time for horse 5 was 18 minutes. Recovery time from discontinuation of halothane until standing was 86 +/- 14 minutes (range, 55 to 165 minutes). Horse 5 had a 165-minute recovery. Regarding recovery from anesthesia, 3 recoveries were rated as excellent, 1 recovery good, and 2 recoveries as fair. Horse 5 laid quietly until she stood with 1 strong, smooth effort.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号