首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
作为内燃机的关键部件,活塞-缸套间的润滑性能可以有效改善整机的动力性和经济型。从流体润滑基本理论出发,通过流场特性分析,结合雷诺方程和膜厚方程,比较了相同深度的圆形凹坑织构和三角形凹坑织构对内燃机活塞-缸套摩擦副之间的润滑减摩性能的影响。结果表明:圆形凹坑微织构较三角形微织构可以产生更明显的动压减摩效应,而三角形凹坑微织构对润滑油膜内产生的空化效应更明显。进一步对比圆形织构和三角形织构的承载力和摩擦系数发现:三角形织构形成的承载能力整体小于圆形凹坑微织构下的承载能力,在前半个周期约为圆形织构的68%,在后半个周期内约为圆形织构的82%;相同工况下,圆形织构的摩擦系数约为三角形微合织构的30%~50%,在上下止点处两者的摩擦系数接近。  相似文献   

2.
作为内燃机的核心部件,活塞与缸套之间的摩擦磨损不仅影响内燃机使用寿命,还会增加油耗,影响排放。基于流体润滑理论,综合挤压膜雷诺方程、膜厚方程及周期边界条件,建立活塞-缸套之间润滑油膜的控制方程。针对耦合织构之间润滑油流场特性进行分析,发现活塞-缸套间耦合织构在流体动压、空化效应以及瞬态涡流共同作用下可以有效减小摩擦副的摩擦系数。  相似文献   

3.
为了探索新型转子式油气混输泵出口球阀内流场规律,建立球阀流场的三维模型,利用Fluent软件,将标准k-ε湍流模型与多相流技术相结合,采用SIMPLE算法,对新型转子式油气混输泵出口球阀内的三维气液两相流场进行数值模拟.在容积含气率为25%,50%,75%的不同工况下,通过对球阀开启高度分别为3,5,7 mm时的速度场、压力场与气液相分布的分析,探讨在气液混输过程中阀的开启高度及不同气液比对阀内流场的影响规律.模拟结果表明:球阀开启高度越大,阀球上下压差越小;阀隙流速随着开启高度的增大而减小.在气液混输过程中气相介质主要靠近阀球壁流动,同一开启高度下气液比对阀隙流速的影响较小.研究结果直观展现了球阀内流场形态,在一定程度上揭示了气液两相介质在阀内的流动规律,为新型转子式油气混输泵出口球阀的设计与优化提供理论指导.  相似文献   

4.
随着计算机软件技术的发展,CFD计算流体数值仿真模拟被广泛地应用到实际工程中,但是在农业方面的应用还比较少。CFD通过建模和数值仿真模拟可以对真实环境的尺寸以及外形进行数值建模,能够模拟真实环境的温度、压力以及速度场等参数,并将模拟结果进行二维和三维立体呈现。运用CFD数值模拟技术,以温室的生长环境为例,对温室通风前后的温度以及湿度情况进行了数值模拟仿真。通过计算发现温室最高温度由通风前的307K降低到了304K,有了明显的改变,验证了数值模拟计算机的准确性。通过对湿度的CFD数值模拟仿真发现,进行通风之后气体流动性比较好,没有出现热空气的集聚现象,非常有利于农作物的生长,从而为日光温室农作物生长环境的研究提供了理论参考。  相似文献   

5.
激光表面织构机械密封润滑特性的试验研究   总被引:2,自引:0,他引:2  
采用调Q半导体泵浦YAG激光器,利用"单脉冲同点间隔多次"激光加工工艺在密封环端面加工具有环形阵列分布的微凹坑织构.在机械密封计算机辅助试验装置上,进行了激光表面织构机械密封与普通机械密封的试样的对比摩擦性能试验,研究了激光表面织构技术在不同的密封介质压力和转速等工况下对机械密封的润滑特性的影响.结果表明:在试验范围内,激光表面织构技术对于改善机械密封润滑特性的作用主要受密封介质压力的影响,转速的影响则相对较小.与无织构机械密封相比,在较低密封介质压力的条件下(0.2 MPa),激光表面织构机械密封能显著改善润滑特性,摩擦转矩最大可减小60%,转速对摩擦扭矩的影响不大.在较高密封介质压力的条件下(0.8 MPa),转速对摩擦扭矩的影响起到较大的作用,只有当转速达到一临界值时激光表面织构机械密封才能够起到改善润滑的作用,且作用较小.  相似文献   

6.
基于CFD技术的玻璃温室加热环境数值模拟   总被引:8,自引:3,他引:5  
提出采用CFD技术数值模拟温室热风供热条件下的温度环境三维场分布.采用标准R-ε湍流模型和PSIO算法的有限体积法对流场微分方程进行离散,并考虑辐射模型,选择Fluent软件进行温室加热环境的模拟与仿真.通过在Venlo型玻璃温室中试验现场采集关键点温度数据,与仿真结果比较的均方根误差为0.67 K,且在温室内温度场的总体趋势是一致的.验证了建立CFD模型的正确性,以及采用Fluent软件进行夜间热风加热条件下的温室热环境数值分析是可行的.  相似文献   

7.
针对排污阀因长期排污工作导致的冲蚀失效问题,采用CFD仿真模拟的方法开展关于流体流速、颗粒粒径、含砂体积比与阀门开度等因素对阀套式排污阀冲蚀磨损性能影响的评价分析.结果表明:阀芯、阀座密封接触壁面间的冲蚀破坏是造成整个排污阀失效的主要原因.在流速1~9 m/s、颗粒粒径0.1~0.5 mm、含砂体积比2%~10%、阀门...  相似文献   

8.
针对育秧大棚内部空气流动对水稻秧苗生长环境的影响问题,分析了水稻育秧大棚内部环境分布情况。同时,利用Gambit对大棚进行三维建模、Fluent求解计算、CFD-post后处理分析,并运用k-ε湍流模型、太阳辐射追踪器、组分模型来计算模拟大棚内部温湿度场及气流速度场分布。结果表明:温湿度模拟值与测量值吻合较好,相对误差均控制在5%以内。本模型可以为其他气候和边界条件下的大棚环境预测、结构参数优化提供参考及理论依据。  相似文献   

9.
目前,水草污染对环境造成严重影响,针对滩涂深水水草难以收割的问题,设计了一种水草水下收割台。为了研究割台水下作业时内部水流与水草的流动规律,应用Fluent软件中的Eulerian多相流与Realizable k-ε湍流模型进行液固两相流三维数值模拟,分析了在不同的搅龙转速、搅龙螺旋叶片圈数、搅龙滚筒直径参数影响下割台体内水流与水草的速度分布。结果表明:在搅龙转速为90r/min,两侧螺旋叶片分别为3片、螺距360mm、搅龙滚筒直径为200mm时,水草收割台的水流流场与水草流动更为稳定、流畅,模拟结果较好地反映了割台内流体的运动过程,为割台的结构优化提供了一定的理论依据。  相似文献   

10.
11.
为研究流量脉动系数对外啮合斜齿轮高压泵内部流场的影响,通过理论推导流量脉动系数的计算公式,分析螺旋角对流量脉动系数的影响,并结合计算流体力学(CFD),对外啮合斜齿轮高压泵的流场进行数值模拟,得到高压泵在不同转速、不同径向间隙下的压力脉动和流量特性.结果表明:增大螺旋角会减小流量脉动系数,有利于改善出口流量的品质,降低齿轮泵泄漏;另外,转速和径向间隙在一定范围内增大时,脉动系数逐渐减小,泄漏涡强度也会减小.当转速和径向间隙继续增大时,脉动系数趋于平稳波动;转速增大时,啮合区域的压力变化较大,但是靠近泵腔壁处的齿轮压强变化较小;径向间隙增大时,泄漏流动和泄漏涡强度会降低,在设计中适当增大转速和径向间隙可以改善出口流量品质.研究高压泵内部流场的运动规律和流量脉动特性对于外啮合斜齿高压泵的设计和优化具有一定的参考价值.  相似文献   

12.
为了实现水肥一体化施肥装备流量精确且无水头损失,设计了一种基于柱塞泵与单片机的高精度可控施肥机,开展了恒流模式下6个流量梯度的喷灌系统施肥均匀性试验;以喷头总流量变化幅度为变量,设计了在1∶10的水肥配比下2种灌溉总流量变化幅度的不同工况,对比启、闭可控施肥机恒定水肥比例模式对水肥一体化支管内肥料浓度稳定性的影响效果.试验结果表明,高精度可控施肥机在流量分别为100,200,400,600,800,1 000 L/h的6种恒流模式时,喷灌均匀系数CU为99.33%~99.71%、变异系数CV为0.35%~0.75%;CU,CV与施肥机流量分别呈正相关与负相关关系,且喷头喷洒肥液的电导率总平均值EC_-与施肥机流量之间具有显著的正相关性.在恒定水肥比例模式时,试验组管道内肥液浓度在160 s时趋于稳定,且稳定后肥液电导率与目标值偏差率小于4%.高精度可控施肥机恒流模式试验表明施肥机大流量下施肥均匀性变异系数仅为小流量下的50%,且改变施肥机的流量是水肥一体化喷灌系统实现高均匀度变量施肥的一种有效途径;试验证明恒水肥配比模式可有效减小支管肥料浓度受外界的影响.  相似文献   

13.
介绍了典型高压水热态除鳞系统的构成及工作原理,以除鳞系统核心装备的往复式柱塞泵装置在系统中的综合运行性能为研究对象,从装置的节能、可靠性和安全性3方面出发,以评价往复式柱塞泵装置综合运行表现力为目标,构建了完整的评价指标体系,以层次分析法(AHP)和模糊评价为核心,建立了评价指标体系评价要素权重分析方法,开展了评价指标体系评价要素实测物理参数模糊隶属度分析方法研究,在此基础上构造了基于AHP的高压水热态除鳞系统往复式柱塞泵装置综合运行性能模糊评价数学模型,形成了判定热态除鳞系统往复式柱塞泵装置综合运行力的评价方法,并通过实例分析了高压水热态除鳞系统往复式柱塞泵装置综合运行表现力评价指标体系评价要素的权重,以及评价要素实测物理参数模糊隶属度,对往复式柱塞泵装置综合运行表现力结果进行了分析,验证了该评价方法的可行性.  相似文献   

14.
磁力泵冷却系统的数值模拟   总被引:2,自引:0,他引:2  
介绍了磁力泵内外两种冷却方式,应用公式估算冷却流量,对内冷却系统中导流孔的尺寸进行设计计算.基于FLUENT数值模拟软件,采用SIMPLE算法和标准k-ε湍流模型,通过求解三维N-S方程和能量方程,对磁力泵冷却循环回路进行流场模拟.结合传热学知识对模型的边界条件进行设置.重点分析了轴截面温度场云图、隔离套底面流体温度场云图和轴中心孔开倒角前后的局部速度矢量分布图,结果表明:隔离套底部介质粘性底层是造成易挥发冷却介质汽化的主要原因;通过增大冷却流量可以避免易挥发液体在隔离套底部发生汽蚀;通过增大轴中心孔直径可以降低冷却介质出口处流速.  相似文献   

15.
基于CFD的多扎管热风数值模拟与设计方法   总被引:3,自引:0,他引:3  
针对目前温室热风采暖效率较低的现状,提出将多孔管应用于温室热风采暖的设计方法.利用Pro/E软件完成多孔管造型,应用Fluent6.2软件并设置三维雷诺平均Navier—Stokes方程、RNG k-ε紊流模型和SIMPLEC算法对多孔管内部流场进行了数值模拟.采用二分法搜索原理、数值传热学理论、流体力学和逆递推法对多孔管热风采暖进行设计计算,并运用VB6.0软件对其进行编程计算,得到了多孔管滴灌器的流态指数为0.507,性能良好;当设定进、出口压力分别为10,0kPa,进、出口温度分别为300,278K,边界壁面传热系数为0.055时,多孔管各出风孔口温度值几乎不变,压力值沿多孔管产生压降,约为200Pa.设计方法所得结果比数值模拟结果略高,各出风孔口处压力值和温度值的设计曲线和模拟曲线趋势一致,且压力值和温度值的均匀系数均大于0.8,满足多孔管热风流动均匀性的要求.  相似文献   

16.
为了探究不同泵结构参数对单螺杆泵泄漏的影响,以1/2型线全金属单螺杆泵为例构建几何模型,基于PumpLinx软件进行瞬态数值计算,并结合外特性试验验证其可靠性,对不同总螺旋角下单螺杆泵的流量变化规律及流场分布展开研究.研究结果表明:单位螺旋角恒定条件下,时均流量随着总螺旋角的增加、单位压差的减小而增大;瞬时流量极小值随着总螺旋角的增加而减小,极大值基本保持一致,接近理论流量17.9 m3/h.斜向泄漏缝隙两侧压力随定子转子啮合位置变化,特定位置压力差随着总螺旋角的增大而减小;特定啮合区监测点的瞬态泄漏流速极大值随着总螺旋角的增大而减小,其极大值最小为4.3 m/s.相关研究成果对于单螺杆泵的泄漏分析具有一定的借鉴意义与参考价值.  相似文献   

17.
基于Fluent的贯流泵数值模拟   总被引:3,自引:0,他引:3  
郑源  刘君  陈阳  李玺  杨雪林 《排灌机械》2010,28(3):233-237
为更深入研究贯流泵数值模拟的真实性与准确性,结合上海某双向贯流泵正向模型能量试验数据,选用不同的参数对模型泵进行数值模拟.对具体贯流泵模拟计算过程中参数的设定,如网格划分、计算模型选取以及边界条件设定等进行了比较和分析,观察管路内的压强、流态等特性,选出与试验数据最接近的一种方案,作为贯流泵数值模拟计算的一种参考方案.通过与试验数据比较并观察内部流场流态和压力分布,结果表明,S-A湍流模型比Realizablek-ε紊流模型计算的结果更接近模型试验值;当进口压力值选为0时,数值模拟的效果最好.  相似文献   

18.
为研究混流式水轮机主轴密封泵板装置内泄漏水流动特性,应用计算流体动力学软件,针对新疆红山嘴一级电站4号水轮机,将不同泵板装置作为研究对象,研究提高其水力效率的可行性以及对主轴密封降压的效果.在模型准确基础上对泵叶角度和泵盖高度分别改进,对两者联合结构共计22种改进模型进行数值模拟.研究结果表明:泵叶斜置45°且泵盖高度比为0.081 5的联合改进结构对主轴密封真空度提高率可达60.9%;泵盖高度比比泵叶角度改变对该装置水力效率提高更有利;泵盖存在“最不利高度比”,泵盖位置的确定需避免最不利高度比0.135 9.该研究结果将模型结构参数化使得结论的普适性有一定提高,为工程实际主轴密封设计改造提供了一定的理论依据.  相似文献   

19.
罗欣  郑源  张新 《排灌机械》2014,(6):466-471
为了分析轴流泵不稳定运行马鞍区工况内叶轮的结构,并研究该结构的稳定性,采用雷诺时均离散方法和标准k-ε湍流模型对泵装置流场进行CFD数值模拟,利用ANSYS的Workbench平台,通过单向流固耦合模型对叶轮的应力和应变进行计算,得到了不同工况下叶轮受流体压力作用所产生的等效应力及变形量,研究了叶轮结构的应力和变形量随流量的变化特征.研究结果表明:在40%~75%设计流量下不稳定运行马鞍区,数值模拟能准确地计算轴流泵内部流场,泵装置内部流态随流量的减小逐渐紊乱.轴流泵叶片表面应力分布不均,集中分布在叶片根部,随着流量的减小最大应力逐渐增大,马鞍区工况叶片结构应力有较大的安全余量,满足强度要求;叶片进水边外缘叶尖处变形较大,振动现象明显,最大总变形量随着流量的减小先增大后减小,但大变形区域由叶尖向叶缘扩散.研究结果为轴流泵马鞍区安全稳定性研究提供了一定参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号