首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
管道式磁力泵轴向力研究   总被引:3,自引:0,他引:3  
阐述了磁力传动泵中轴向力的影响,结合200GYC-60型管道式磁力传动泵的实例,探讨了管道式磁力传动泵轴向力产生的原因。给出各轴向力的计算公式,列出各轴向力计算所需的参数值及最终结果,并通过试验加以验证,最后分析了各轴向力改变的可能性,提出陕衡轴向力的各种方法。  相似文献   

2.
为了改善高速磁力泵的抗汽蚀性能,在泵吸入口处设置导流栅.建立了吸入口设置导流栅和未设置导流栅的两种模型,采用Fluent软件对高速磁力泵内流场进行数值模拟,给出了各自内部压力分布以及粒子流动迹线图.通过两组数据的比较,得到了内部流场的主要特征,模拟表明高速磁力泵吸入口设置轴向可变位导流栅可以有效提高抗汽蚀性能.数值模拟与高速磁力泵真机的试验对比表明,两者几乎一致,为高速磁力泵的改进设计提供了一定的理论依据.  相似文献   

3.
离心泵轴向力的迭代计算方法   总被引:1,自引:0,他引:1  
本文通过对边界层内流动分析,简化泵腔中液体流动的N-S方程推导出泵腔内压力分布与泄漏量之间的关系,从而在理论上推导出进一步精确计算轴向力的编程迭代求解公式。  相似文献   

4.
新型轴向力平衡装置轴向力的计算   总被引:2,自引:0,他引:2  
介绍了一种新型轴向力平衡装置及其平衡原理,并分析计算了装有这种平衡装置的多级泵在工作过程中末级叶轮所受的轴向力。推导出该平衡装置在设计工况下实现无轴向力工作应满足的条件,并将轴向力平衡装置应用于生产中。  相似文献   

5.
【目的】多级离心泵在运行过程中易产生较大的轴向力,严重影响泵的稳定运行,亟需探究切除部分后盖板以平衡轴向力方法的可行性。【方法】基于修正的SST k-ω湍流模型,利用CFX软件对不同流量工况下多级离心泵的内部流动进行了数值模拟分析,得到了在不同流量工况下离心泵的各级前后盖板压力云图。【结果】1)在所研究的流量工况范围内,多级离心泵由于水力损失严重,一开始的效率和功率整体偏低,随着流量不断增大,效率呈先增后减趋势,功率不断增大,扬程曲线为陡降曲线。2)多级离心泵各级前后盖板所受压力从首级开始呈逐级递增趋势,级数越大盖板所承受的轴向力越大,且轴向力的方向均由前盖板指向后盖板。【结论】选择合适的流量工况对于提升多级离心泵的工作效率十分重要。切除部分后盖板,使前盖板与后盖板的面积相近,受力时更加均匀,能够达到平衡轴向力的效果,证明了设计方法的可行性。  相似文献   

6.
磁力泵隔离套中的有限元分析及优化设计   总被引:2,自引:1,他引:2  
在传统经验设计基础上,利用有限元分析软件ANSYS对磁力泵隔离套进行结构参数的性能分析,并根据某些功能要求对隔离套的结构参数进行优化设计,得出了性能参数的影响因素,从而能够迅速准确地满足生产的实际需要,具有一定的实用价值。  相似文献   

7.
对新结构闭式叶轮旋涡泵进行数值模拟,采用RANS湍流模型求解三维不可压缩问题,计算了旋涡泵的水力特性,分析了旋涡泵工作时叶轮与泵壳间隙处油膜对叶轮的轴向承载机理,并进一步讨论了叶轮两侧的楔形槽对油膜承载能力的影响.结果表明:旋涡泵的水力特性与试验数据趋势吻合,数值相近,验证了仿真计算的可靠性.轴向力分析显示,旋涡泵工作时浮动叶轮的轴向支撑由在叶轮两侧形成的油膜实现,油膜因厚度不同,造成径向的压力降不同,油膜较薄则泄压慢,油膜较厚则压力更均匀,叶轮上下表面受力不等而产生支撑力,而楔形结构能够产生附加的支撑力,强化了支撑效果.研究结果对旋涡泵的设计和研究提供参考依据.  相似文献   

8.
为了准确预测泵作透平时轴向力的大小,采用流场分析软件CFX对泵作透平进行了全流场三维数值模拟,获得了叶轮盖板、叶轮流道内表面、叶片的压力分布及腔体内液体角速度的分布情况.结果表明:泵作透平在最高效点时每级叶轮受到的盖板力并非相等,随着级数的增加叶轮受到的盖板力呈现越来越小的趋势,而各级叶轮受到的轴向力随着来流水头的增大逐渐增大;并且各级腔内液体角速度的平均值均要高于传统认为的叶轮角速度的一半,且该值并非恒定,范围为0.42~0.70倍的叶轮转速.  相似文献   

9.
离心泵变工况流场分析及径向力数值预测   总被引:3,自引:1,他引:3  
王洋  张翔  黎义斌 《排灌机械》2008,26(5):18-22
针对离心泵内部流场进行了数值计算,计算采用雷诺时均方程和RNGk-ε湍流模型,压力和速度耦合采用SIMPLEC算法.在分析变工况离心泵流场的基础上,提出了离心泵径向力数值预测的数学模型,并计算了不同工况下径向力的大小和方向.结果表明,离心泵在设计点运行时径向力最小.通过对比径向力数值预测值和Stepanoff公式预测值的差异可以看出,其差值随流量增大从负到正,相对误差不超过7%,表明离心泵径向力数值预测方法是可行的.  相似文献   

10.
为了研究叶轮背叶片对离心泵轴向力特性的影响规律,以降速后的IS80-50-315型离心泵为研究对象,通过改变背叶片的宽度和数目,共设计出13种叶轮背叶片方案,并经过试验测试获得背叶片宽度和数目对泵性能、泵腔内液体压力及轴向力的影响规律.研究表明,当背叶片数目不变时,随着背叶片宽度的增大,试验泵的扬程和轴功率均增大,泵的效率逐渐降低;当背叶片宽度和数目增大到一定值时,轴向力的方向会发生改变,这将影响整机运行的稳定性.从平衡离心泵轴向力的角度出发,分析得出背叶片宽度t=3.5 mm、数目Z=5为最佳方案,此时轴向力方向为正、变化幅度较小.对比分析3种背叶片数目下,背叶片端部和泵盖的间隙δ与轴向力系数cF关系曲线,得出间隙δ越小,背叶片平衡轴向力效果越显著.该研究成果为工程实践中背叶片的设计提供了理论依据.  相似文献   

11.
潜水轴流泵结构动应力分析   总被引:1,自引:0,他引:1  
采用CFX 和Workbench软件在多工况下对潜水轴流泵的转子部件进行耦合计算,分析了转子部件在流体作用力、离心力以及重力作用下的应力、应变的分布规律,指出转子部件由于变形过大以及强度不足而引发失效事故的可能性.结果表明:轮毂受到的轴向力方向与叶轮受到的轴向力相反,且其受到的轴向力随着流量的增大而增大,在大流量情况下,轮毂可起到平衡轴向力的作用.从径向、轴向和周向变形可以看出,径向变形极小,周向变形最大,是叶轮的主变形,说明了扭矩在整个变形中占据了主要作用.叶片背面的压力值明显低于工作面,在叶片工作面靠近进口侧轮毂处附近区域出现较高应力区,会产生应力集中现象,且随着流量的增大,主应力减小.对水泵进行静力结构分析、强度校核,不仅可以降低事故的发生率,而且可以为轴流泵的水力优化设计提供有力的参考.  相似文献   

12.
针对螺旋离心泵轴向力求解时,数学模型建立和方程难以封闭等问题,为了实现螺旋离心泵轴向力的定量求解,研究其轴向力受介质的影响和随介质的变化规律,以150×100LN-32型螺旋离心泵为研究对象,选用清水和两相流含沙水作为介质,应用计算流体力学软件Fluent,建立相对坐标系下的时均连续方程及Navier-Stocks方程,并采用标准k-ε方程湍流模型和SIM-PLE算法进行数值模拟,得到螺旋离心泵内流场的压力分布后计算出轴向力,从而避开了单纯数学上定量求解螺旋离心泵轴向力的许多难题.在此前提下,通过研究在固液两相流介质中,颗粒体积分数、颗粒直径及不同的流量对轴向力的影响和变化规律,结果表明:螺旋离心泵的轴向力随两相流介质体积分数的增大而增大;随流量和颗粒粒径的增大反而减小.该结论对于提高螺旋离心泵的稳定性和延长其使用寿命具有重要意义.  相似文献   

13.
基于单片机的磁力泵温度监测系统的设计   总被引:1,自引:0,他引:1  
针对磁力泵运转中多数故障及故障表现形式均与隔离套温度密切相关的特性,在分析磁力泵监控技术发展现状的基础上,结合磁力泵密闭式结构的特点,采用以单片机为核心技术,通过温度传感器对隔离套温度进行采样,将采样得到的模拟量通过转换电路,将温度信号放大修正,由A/D转换器转化为数字量,并由CPU读入单片机对磁力泵运行过程中隔离套温度状态进行实时监测,实现了温度数值实时显示、高温越限报警及停机保护.试验结果表明,该系统运行稳定、响应迅速准确,对磁力泵故障预防与诊断,确保磁力泵系统安全可靠运行,具有一定的实用价值.  相似文献   

14.
轴流泵马鞍区水力性能与压力脉动测试与分析   总被引:1,自引:0,他引:1  
为了分析轴流泵在马鞍区工况的运行特性,对一轴流泵不同工况下的外特性和压力脉动进行了测试,重点分析了轴流泵马鞍区水力特性和压力脉动特性.试验结果表明:模型泵H-Q曲线在0.50Qd~0.60Qd内表现出明显的马鞍形,且扬程在马鞍区内0.55Qd工况时达到最小值,较0.60Qd工况扬程降低0.33 m,为设计工况下扬程的5.5%;叶轮进口和泵出口处压力脉动具有较为明显的周期性,单个周期内压力脉动表现出明显的4波峰4波谷特征;0.55Qd工况时,叶轮进口处压力脉动峰峰值为设计工况的2.3倍;各工况下导叶中间和出口处压力脉动规律较为复杂;叶轮进口压力脉动主频为叶片通过频率,0.55Qd工况叶频处的幅值最大,高于设计工况27.6%.小流量工况下,导叶中间、导叶出口处压力脉动在频域内出现较多低频信号,压力脉动频率成分较复杂.泵出口压力脉动主频在1.00Qd工况下明显表现为叶频.研究成果可为轴流泵不稳定运行特性的优化提供参考.  相似文献   

15.
许多环境工程设备需要针对不同的废水情况进行设计,但是污水处理反应器中的内部流场极其复杂,单靠经验很难判断设备的工作情况和净化效果.为了研究旋转磁场光磁污水处理反应器的流场空间分布特点,采用Gambit软件建立光磁反应器的物理模型,利用Fluent软件对三维模型的流场进行数值模拟,讨论了3种转速下对内部流场的影响,并分析了不同转速下液相流的流场分布特点.结果表明,流体流速随转速增大而增大,转速为0.2 rad/s时,流体流动较弱;而转速为0.5 rad/s时,流体能充分循环流动,但流场流速偏低;虽然转速为1.0 rad/s相比转速为0.5 rad/s时的流体紊动动能大,流场分布均匀,但此时会形成旋涡.分析不同转速下的流体流场特点,可为反应器结构设计优化提供参考.  相似文献   

16.
为了解喷水推进泵内部压力脉动特性,以对旋轴流式喷水推进泵为研究对象,应用计算流体动力学(CFD)方法,采用雷诺时均法并引入SST k-ω湍流模型使方程封闭,对对旋轴流式喷水推进泵进行设计工况下非定常数值模拟.经网格无关性检验后,计算得到的推进泵功率与扬程与设计值基本一致.在首级叶轮进口处,首、次级叶轮轮缘间隙处,轴向间隙及导叶进口处设置监测点,监测不同位置的压力脉动数据.得到各监测点的时域图和频域图并对各监测点压力脉动特性进行了对比分析.结果表明:对旋轴流式喷水推进泵内压力脉动主要受叶频的影响,首级叶轮和次级叶轮轮缘间隙处的压力脉动不仅与首、次级叶轮的叶片数有关,还与喷水推进泵叶轮数量有关;受两级叶轮反向旋转的影响,轴线方向上首级叶轮与次级叶轮之间轴向间隙处的压力脉动幅值最大, 轴向间隙的压力受到首级叶轮和次级叶轮的共同影响;次级叶轮出口与导叶进口处压力脉动主要受到导叶回流的影响.  相似文献   

17.
为了研究轴流泵内部流动数值模拟中不同湍流模型的适用性,分别采用standard k-ε模型、RNG k-ε模型、SST k-ω模型以及大涡模拟(LES)方法,基于结构化网格与网格滑移技术,对叶轮直径为200 mm、名义比转数ns为700的模型轴流泵进行了性能预测和全流场数值模拟;计算了水泵的扬程和效率,并与在水泵试验台上测试得到的外特性结果进行了对比和分析.结果表明,在最优工况附近,standard k-ε模型、RNG k-ε模型和SST k-ε模型都能较精确地预测轴流泵的外特性,基于RNG k-ε湍流模型的扬程和效率误差相对较小;在非设计工况下,不同湍流模型具有不同的特性.在0.8Qopt,1.0Qopt和1.2Qopt工况下,针对叶轮与导叶间的轴向间隙处进行了PIV内部流场测试;将各个湍流模型下的数值模拟结果与PIV的测量结果进行比较,发现基于雷诺时均方程的3种湍流模型的内流场流线与PIV的测量结果进行比较,发现基于雷诺时均方程的3种湍流模型的内流场流线与PIV的试验结果具有基本相同的趋势性,从而证明了数值模拟计算的可靠性和有效性;而采用LES计算得到的流场与PIV测量结果产生一定的偏差.同时,对轴流泵在不同流量工况下内流场的流动结构进行了分析.  相似文献   

18.
为了研究对旋式轴流泵后置叶轮对其水力性能的影响,采用CFD软件对该对旋式轴流泵装置进行数值模拟计算,将前置叶轮与后置叶轮水力特性进行对比分析,研究后置叶轮的进口安放角对整个装置水力特性的影响,最后通过模型试验验证数据的可靠性.结果表明:在设计工况下,对旋式轴流泵扬程为11.32 m,效率为87.57%.在小流量工况下,流量为300 L/s左右泵提前进入马鞍区,此时泵扬程为14.06 m,效率为79.48%;在大流量工况下,流量为440 L/s时,泵装置扬程为2.24 m,效率为54.16%.对旋泵后置叶轮的水流进口冲角要大于前置叶轮的水流进口冲角,导致后置叶轮叶片做功能力增强,后置叶轮扬程增大.改变后置叶轮安放角,特别在小流量工况下,后置叶轮的马鞍区同样提前,后置叶轮的进口液流角几乎相同.研究结果对于对旋式轴流泵后置叶轮的设计和优化提供参考依据.  相似文献   

19.
射流式自吸喷灌泵内部流场的数值分析   总被引:2,自引:0,他引:2  
利用三维造型软件创建了50ZB-25D型射流式自吸喷灌泵的内部全流场,运用FLUENT软件计算了该泵在3种情况,即回流阀完全关阀、不使用回流阀、回流阀完全关阀但不考虑分离室和储液室的影响等情况下的效率,探讨了回流阀、分离室和储液室对泵效率的影响.为了验证运用FLUENT计算射流式自吸喷灌泵效率的准确性,对该泵做了效率试验.运用FLUENT软件提供的M ixture两相流模型,对泵自吸过程中的气液两相流进行了非定常计算,探讨了自吸过程中泵体内气液两相流流动规律.结果表明,回流阀对泵效率的影响很大,而分离室和储液室结构的复杂性并不会产生大的影响;数值模拟结果与试验结果的吻合度较高,效率在各个流量点下相差不超过3%,扬程相差不超过1.5 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号