首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
【目的】研究机载LiDAR航带旁向重叠对针叶林林分平均高和森林叶面积指数(LAI)估测的影响,为机载LiDAR点云数据区域森林结构参数估测提供参考。【方法】野外分别测定30块樟子松、33块长白落叶松样地的林分平均高和LAI,对原始LiDAR点云数据进行去噪、点云分类、高程归一化和重叠点移除等处理,从重叠点移除前、重叠点和重叠点移除后的点云数据中分别提取一系列样方点云高度分位数(HP1、HP5、HP10、…、HP99、Hmax和Hmean)和激光穿透指数(LPI),借助留一交叉验证建立并评价樟子松和长白落叶松林分平均高和LAI估测模型的精度,通过对比分析估测模型的决定系数(R2)和均方根误差(RMSE)揭示机载LiDAR航带旁向重叠对针叶林林分平均高和LAI估测的影响。【结果】对樟子松林分平均高估测而言,重叠点移除前林分平均高的最高估测精度(R2=0.873,RMSE=0.940)出现在HP90处,重叠点林分平均高的最高估测精度(R2=0.892,RMSE=0.866)出现在HP80处,而重叠点移除后林分平均高的最高估测精度(R2=0.892,RMSE=0.868)出现在HP55处;对长白落叶松林分平均高估测而言,重叠点移除前、重叠点和重叠点移除后林分平均高的最高估测精度均出现在HP99处,R2分别为0.725、0.719和0.741,RMSE分别为1.196、1.209和1.161。对樟子松LAI估测而言,重叠点移除前估测结果 R2为0.666,RMSE为0.220,重叠点估测结果 R2为0.551,RMSE为0.255,重叠点移除后R2提高到0.794,RMSE降低为0.172;对长白落叶松LAI估测而言,重叠点移除前估测结果 R2为0.654,RMSE为0.110,重叠点估测结果 R2为0.640,RMSE为0.112,与樟子松估测结果一致,重叠点移除后长白落叶松LAI估测精度大幅度提高,R2变为0.762,RMSE变为0.091。【结论】无论是林分平均高还是森林LAI,相邻航带旁向重叠点移除后的估测精度均高于重叠点移除前和重叠点,且樟子松的估测精度高于长白落叶松。对林分平均高而言,樟子松和长白落叶松达到最高估测精度时所对应的点云高度分位数不同。机载LiDAR点云数据相邻航带旁向重叠点的移除可有效提高森林结构参数的估测精度,在未来机载LiDAR点云数据预处理时应加入重叠点移除操作。  相似文献   

2.
气候变化下,森林生物量遥感监测是当前研究的热点,机载LiDAR作为重要的遥感信息源,其采样大小对生物量估测精度有着一定的影响。以机载LiDAR数据为信息源,以44块30m×30m的方形橡胶林实测样地数据为基础,对机载激光雷达数据进行不同尺寸采样(共21个采样尺寸,边长从10m至30m,间隔为1m),提取不同采样尺寸下的激光雷达参数,并与橡胶林地上生物量建立PLSR模型,就机载激光雷达采样大小对橡胶林地上生物量估测精度的影响进行研究。研究表明:当采样尺寸小于18m时,估测精度随着采样尺寸的增大而增大;而当采样尺寸大于18m时,估测精度随着采样尺寸的增大而减小,进而趋于平缓。结果虽然呈现出一定的规律性,但是差异并不是很明显。当采样尺寸为18m时估测效果最佳,模型决定系数(R^2)为0.718,均方根误差(RMSE)为17.830 t/hm^2;交叉验证精度P和RMSEcv分别为82.741%和18.874t/hm^2。相较于实际样地(30m)尺寸下的估测结果,18m采样尺寸下的R^2提高了1.989%,RMSEcv降低了2.611%。因此,生物量的估测精度受机载激光雷达数据采样尺寸大小的影响,在生物量估测过程中需结合研究对象和研究区的实际情况对采样尺寸进行选择,从而提高生物量估测精度。  相似文献   

3.
为了研究2种不同采样方法对细小可燃物含水率预测模型精度的影响,对2010年春、秋季大兴安岭地区盘古林场樟子松、兴安落叶松、白桦林分下细小可燃物含水率进行连续的观测。结果表明:春季,3种林分破坏性采样和非破坏性采样的平均绝对误差和平均相对误差差异均不显著(P0.05),而秋季非破坏性采样的平均绝对误差和平均相对误差极显著低于破坏性采样(P0.01),这表明2种采样方式对预测模型精度有很大的影响;春季2种采样法差异不显著,预测效果相近,而在秋季使用非破坏采样更好。此研究结果对提高我国利用气象要素回归法预测细小可燃物含水率模型精度具有重要的理论意义和实践指导价值。  相似文献   

4.
基于机载LiDAR数据估测林分平均高   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的 ]以2016年9月广西壮族自治区高峰林场实验区获取的机载LiDAR点云数据为基础,通过提取30 m×30 m空间林分尺度下的LiDAR点云特征变量实现对林分平均高的估测。[方法 ]首先将105块实测林分平均高度的样地数据按照3:1的比例随机划分为训练样本(79)和检验样本(26),采用随机森林回归(RFR)和支持向量回归(SVR)两种机器学习算法对79个训练样本与对应的林分LiDAR点云特征变量回归建模。建模方案包括随机森林模型、支持向量机模型及随机森林+支持向量机组合模型。其次利用26个检验样本数据评价模型预测精度。最后统计3个模型中训练样本和检验样本对应的精度评价指标,以一个预测精度高、泛化能力强的模型作为最终模型进行林分平均高制图。[结果 ]表明:随机森林模型的训练样本和检验样本的决定系数(R2)分别为0.886 1和0.837 5,均方根误差(RMSE)分别为1.22和1.56;支持向量机模型的训练样本和检验样本的决定系数(R2)分别为0.886 4和0.840 9,均方根误差(RMSE)分别为1.21和1.54;组合模型的训练样本和检验样本的决定系数(R2)分别为0.859 8和0.853 2,均方根误差(RMSE)分别为1.35和1.48;[结论 ]组合模型的泛化能力及预测精度最好,支持向量机次之,最后为随机森林。利用组合模型可有效完成研究区林分平均高制图。  相似文献   

5.
基于机载LiDAR的单木结构参数及林分有效冠的提取   总被引:4,自引:0,他引:4  
【目的】基于机载激光雷达(LiDAR)数据提取单木树冠三维结构参数(树冠顶点位置、树高、冠幅和冠长),并在此基础上对林分有效冠进行提取,为进一步研究林分尺度上的有效冠结构及其动态提供依据,以更好掌握并改进林业经营措施。【方法】采用一定规则下的局部最大值窗口搜索树冠顶点,进行单木树冠顶点探测和单木树高提取;以树冠顶点为标记,利用标记控制分水岭分割算法提取单木冠幅;采用垂直方向点云高程检测方法获取枝下高位置,提取冠长;在标记控制分水岭分割出的树冠边界,提取树冠接触高,取平均值作为该样地的林分有效冠高。【结果】树冠分割正确率为88.5%;结合样地实测参数对提取值进行相关性分析,树高R~2=0.886 2,冠幅R~2=0.786 4,冠长R~2=0.800 0,树高、冠幅和冠长精度分别为90.34%、86.80%和89.90%;同一林分内单木接触高相对比较稳定,对提取的林分有效冠高进行单因素方差分析,无显著差异。【结论】基于机载LiDAR数据,采用可变大小的动态窗口搜索局部最大值点,能提高单木结构参数的提取精度;利用树冠顶点标记控制分水岭算法,将高空间分辨率航片作为辅助数据,可完成较高精度的单木冠幅提取;垂直方向点云高程检测方法可提取单木冠长;LiDAR点云数据可对林分有效冠进行提取,在同一林分中,不同样本数量对接触高提取的变异性影响不大,有效冠高大致相同。机载LiDAR数据具有良好的单木树冠三维结构参数提取能力,能够满足现代林业调查对单木结构参数提取的需要,实现对林分有效冠的提取。  相似文献   

6.
《林业科学》2021,57(9)
【目的】探索一种适用于已具备林下地形,可协同利用少量实测样地数据、抽样式采集的机载激光雷达(LiDAR)条带数据和区域全覆盖的资源三(ZY3)立体像对数据有效估测区域森林平均高的方法,为提高森林资源调查效率和精度提供技术支撑。【方法】以广西高峰林场2个分场为研究区,2018年获取覆盖整个研究区的机载LiDAR、ZY3立体像对和少量实测样地数据。将LiDAR数据提取的DEM作为历史已存在的林下地形,从全覆盖的LiDAR数据中抽取12条飞行条带的LiDAR数据"模拟"抽样式采集的LiDAR数据,形成"林下地形+LiDAR抽样+ZY3立体像对+样地"数据集;以样地和LiDAR数据提取出LiDAR抽样数据对应的森林平均高为模型建立的参考数据(因变量Y),以ZY3立体像对提取的数字表面模型(DSM)减去数字高程模型(DEM)得到的CHM_(ZY3)为自变量(X),采用普通最小二乘(OLS)模型、k-邻近(KNN)模型和回归克里格(RK)模型估测森林平均高,并对其估测效果进行比较评价。【结果】OLS和KNN模型的均方根误差(RMSE)分别为1.88和1.96 m,估测精变(EA)分别为87.18%和86.64%;RK模型估测精度相对较高,RK_(OLS)模型的RMSE=1.84 m,EA=87.42%;RK_(KNN)模型的RMSE=1.86 m,EA=87.32%。【结论】本研究中2类4种模型均可有效估测森林平均高,回归克里格模型(RK_(OLS)、RK_(KNN))优于非空间模型(OLS、KNN),RK_(OLS)模型估测精度最高;在林下地形已知时,协同利用少量实测样地数据、抽样式采集的机载LiDAR条带数据和区域全覆盖的ZY3立体像对数据能够实现区域森林平均高的高效、高精度估测。  相似文献   

7.
提出一种将资源三号(ZY-3)立体影像的空间连续测量特性与LiDAR数据的高精度定位测高优势相结合的林分平均树高估测方法。首先从LiDAR离散点云提取地面点并内插生成分辨率为1m的林区DEM,同时根据点云强度提取与DEM同源且分辨率为1m的正射影像,分别作为ZY-3数据定向处理的高程控制基准和平面控制基准。通过ZY-3多类像对组合提取研究区DSM,其中三视DSM较二视DSM高程精度最佳。基于三视DSM,林区DEM,ZY-3多光谱数据提取的植被指数和野外实测树高数据,利用回归分析方法及高程误差修正方法分别建立了四个树高估测模型,实验表明,经高程误差修正后的改进树高估测模型精度最高,模型Adj R~2=0.913,其精度达到93.29%,是最佳树高估测模型。  相似文献   

8.
随着激光雷达获取的点云密度不断增加,提取样地尺度的林分平均高成为可能。但样地尺度林分平均高的提取精度与树种之间的关系尚不明确,急需一种能适应各种树种的林分平均高提取方法。以广西国有高峰林场为例,采用机载LiDAR点云数据生成的冠层高度模型(Canopy height model,CHM),结合地面实测的201个样地数据,提出了一种结合自适应阈值与峰值的林分平均高提取算法,并分析了树种对提取精度的影响。结果表明:1)不同树种的林分平均高提取精度存在差异,杉木精度最高,而桉树和其他阔叶树种精度次之;2)自适应阈值结合峰值的算法能够较好提取林分平均高(R2=0.75,RMSE=3.11m,rRMSE=22.07%),并且对于不同的树种都有较强的稳健性;3)阔叶树种和针叶树种对不同的提取方法存在敏感性差异。研究提取的林分平均高可为森林蓄积量与生物量反演研究提供依据和参考。  相似文献   

9.
【目的】采用TanDEM-X单极化InSAR数据,研究基于相干系数的SINC模型森林高度估测方法,并分析5 m高分辨率的LiDAR DEM和30 m中等分辨率的SRTM DEM对模型估测精度和稳定性的影响。【方法】首先对观测的相干性进行非体散射失相干校正得到体散射失相干γVol,然后基于SINC模型将γVol的相干系数作为输入估测森林高度。以LiDAR提取的森林高度为验证数据,均匀选取150个检验样本,分别在15 m×15 m、30 m×30 m、50 m×50 m和100 m×100 m大小的样本尺度上进行精度评价,并与DSM-DEM差分法进行对比,分析2种方法的精度和适用性。【结果】5 m和30 m分辨率的参考DEM对SINC模型森林高度估测结果影响较小,随样本尺度增大其影响可逐渐忽略,当样本大小为100 m×100 m时,LiDAR DEM和SRTM DEM估测结果的R~2分别为0.54、0.51,RMSE分别为2.38、2.51 m,精度分别为77.19%、75.99%;相比SINC模型法,DSM-DEM差分法在各样本尺度上的表现更好,但森林高度估测结果存在明显低估现象,必须采用森林高度实测数据进行校正,当样本大小为100 m×100 m时,R2为0.79,校正前后的RMSE分别为2.57、1.63 m,精度分别为75.44%、84.41%。【结论】基于相干系数的SINC模型法估测森林高度,以30 m空间分辨率的SRTM DEM进行地形补偿和地理编码,可以取得较好结果;虽然该方法的精度相比DSM-DEM差分法略有下降,但既不需要实测森林高度数据进行标定,也不需要输入高分辨率的DEM,具有大范围森林高度制图的潜力和更大的实际应用价值。  相似文献   

10.
基于地基激光雷达的亚热带森林单木胸径与树高提取   总被引:2,自引:0,他引:2  
【目的】以云南省普洱市天然林与杉木人工林为研究对象,针对云南省山区森林树种繁多、林下灌木草本茂密的林分环境,根据森林中树木的形态特征,利用地基激光雷达(TLS)扫描数据提取样地尺度单木胸径与树高,为森林调查工作提供参考。【方法】将获取的多站地基激光雷达扫描数据分为多站拼接及单站2种分析方式,采用Hough变换算法及树干的形态特征对样地内单木进行识别与胸径提取,根据树干生长方向及单木在垂直方向上的分布提取树高。【结果】1)对于多站拼接数据,即使在林分条件最为复杂的原始林,单木识别率仍可达到81%;对于单站数据,随着扫描距离增加,单木识别率降低,实际操作时单站布设比多站拼接简单;2)多站拼接胸径及胸高断面积估测结果更接近于样地真实值,多个单站平均结果比只使用一站扫描数据提取的结果更加适合估测样地胸径及胸高断面积,半径10 m比半径5 m及15 m范围内数据更加适合估测样地胸径及胸高断面积;3)天然林单木树高估测结果为R~2=0.77,RMSE=1.46 m;人工林单木树高估测结果为R~2=0.94,RMSE=0.96 m。【结论】本研究根据树干垂直向特征,设置的一系列参数可以剔除Hough变换算法在非树干处的识别圆,可提高单木识别及胸径、树高的估测精度。受扫描站布设及林分条件影响,人工林的估测结果好于天然林。多站拼接相比单站扫描更加接近于样地实测结果,多个单站平均更能代表样地实际情况,只用一站数据具有一定的偶然性。  相似文献   

11.
基于机载激光雷达的落叶松组分生物量反演   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]构建基于机载LiDAR的落叶松组分生物量反演模型,讨论不同方法对模型构建的影响。[方法]以地面实测样地数据和同步获取的机载LiDAR点云数据为数据源,分别采用多元线性回归(MLR)和随机森林(RF)方法,估测了长白落叶松的组分生物量,利用"刀切法"评价了模型的泛化能力。[结果]表明:(1)MLR筛选得到的H_(interval)、H_(80)、D_(10)、D_(20)与各组分生物量普遍表现为显著(P0.05)或极显著水平(P0.01)。(2)MLR模型的R~2高于0.82(枝、叶除外);RF模型的R~2均高于0.91,且均拥有较小rRMSE、TRE值。(3)MDI和MDA方法的变量相对重要值排序均能较好地体现LiDAR变量与生物量之间的关系,MDI在趋势性判断和阈值设定方面更具优势。[结论] LiDAR变量与组分生物量具有显著的相关性。RF拥有更好的拟合效果和泛化能力,MLR则对LiDAR和组分生物量的关系有更明确的解释能力。反演模型能较好地反映林分的现势特征,生物量被低估的现象会随着林龄的增加而逐步增多。  相似文献   

12.
【目的】精确估测银杏人工林有效叶面积指数(eLAI),以更好了解银杏人工林的生长和竞争、理解人工林生态系统的功能和生产力。【方法】基于多旋翼无人机激光雷达(LiDAR)系统获取的点云数据,结合45块地面实测样地数据,使用孔隙度模型法(通过计算点云的冠层穿透率,根据Beer-Lambert定律计算有效叶面积指数)和统计模型法(首先通过地面实测的有效叶面积指数和所提取的LiDAR特征变量建模,然后借助拟合的模型估测有效叶面积指数)对我国典型银杏人工林进行样地尺度的有效叶面积指数估测。【结果】1)使用统计模型法估测eLAI时,仅利用LiDAR高度特征变量估测精度为R2=0. 38(rRMSE=54%),引入其他特征变量(冠层密度特征、冠层容积比以及强度特征变量)后精度分别达到R2=0. 64(rRMSE=26%)、R2=0. 61(rRMSE=28%)、R2=0. 74(rRMSE=23%); 2)根据Cover将样地分组建模后发现,分组建模的精度优于不分组建模的精度;3)孔隙度模型法估测有效叶面积指数的精度为R2=0. 71(rRMSE=32. 0%)。【结论】结合多组LiDAR特征变量估测有效叶面积指数能够充分挖掘LiDAR数据包含的冠层结构特性,从而提升估测精度;同时,使用孔隙度模型法可以有效估测银杏人工林有效叶面积指数。无人机LiDAR点云在估测银杏人工林有效叶面积指数上具有较好的潜力。  相似文献   

13.
在六盘山香水河小流域选择了一个水平长398.2 m和生长33年生华北落叶松人工林的典型坡面,调查分析了华北落叶松胸径与树高的坡位差异及随坡面水平长度变化的空间尺度效应。结果表明:(1)林分的胸径和树高都存在明显的坡位差异,从坡顶向下均表现为先增加后减小的变化趋势。(2)林分平均胸径、平均树高、优势木平均高均存在坡面尺度效应,即平均胸径的坡面滑动平均值在离开坡顶的0~200 m和200~398 m的水平距离范围内每增加100 m时增大0.33 cm和减少0.21 cm;平均树高的滑动平均值在0~67、67~305、305~398 m的水平距离范围内每增加100 m时分别减少1.12 m、增大0.31 m、减少0.10 m;优势木平均高的坡面滑动平均值在0~250 m、250~398 m的水平距离范围内每增加100 m时增大0.42 m和0.07 m。(3)各样地的平均胸径、平均树高、优势木平均高与坡面加权平均值的比值(Y_1、Y_2、Y_3,小数)随离开坡顶相对水平坡长(X,小数)变化的数量关系为:Y1=-0.312 8X2+0.239 1X+0.986 4(R~2=0.56)、Y_2=-0.483 4X3+0.304 3X2+0.125 0X+0.959 2(R~2=0.43)、Y_3=-0.177 5X~2+0.230 8X+0.941 6(R~2=0.26),藉此可由特定坡位的样地调查值推算整个坡面平均值,实现树木生长指标从样地到坡面的尺度转换。  相似文献   

14.
地面固定样地是大区域尺度范围内开展森林资源监测的基本抽样调查单元。地面固定样地对林分的预估精度将直接影响到整体区域监测结果的准确性。从样地类型、空间排列方式、样地尺度大小出发,在1 hm2大样地中采用随机抽样法,通过抽样精度验证在不同类型林分中开展森林资源监测的最优样地类型。结果表明:1)在不同类型林分中开展蓄积量监测的最优样地面积尺度大小不一,在布设地面固定样地时,应当根据林分起源、龄组的不同,确定样地面积、间距;2)在样地面积相同情况下,单一圆形样地抽样监测精度略高于单一方形样地,群团样地的蓄积抽样监测精度明显高于单一样地,四点圆形群团样地抽样监测精度略高于方阵式群团样地。  相似文献   

15.
利用落叶松林分和白桦林分连年生长量(Z)与林龄(t)的数学模型;以及落叶松林分和白样林分的蓄积生长率估测模型,模型分别为:Z_落=3.8795t~(-0.3775)、Z_白=4.2252t~(-0.3587);P_(M落%)=0.6225/t、P_(M白%)=0.6413/t。只要在航片上能准确的判读小班林龄,就能估测出小班林分蓄积生长量(Z)及生长率(P%)。而林龄(t)与优势木冠幅(G_k)相关极为紧密,有如下关系:t落=9.2692G_k~(1.4039)(R=0.9927)、t白=16.1089G_k~(1.1964)(R=0.9509)。在航片上可量测优势木冠幅(G_k)得林龄(t),再将林龄(t)代入上式各式,即可得林分蓄积生长量(Z)及生长率(P%)。  相似文献   

16.
森林作为陆地生态系统的主体和自然界功能最完善的资源库,不仅为人类的生存发展提供了物质保障,也在维护陆地乃至全球生态平衡上发挥着重要作用。LIDAR技术作为一种主动遥感手段,在对森林植被空间结构的探测和参数反演方面具有显著的优势。而在森林参数反演之前,对研究区进行合理的林分分割很有必要。利用祁连山大野口林区2008年的激光雷达点云数据,首次引进国外先进的LiDAR点云数据处理软件ArboLiDAR,经过前期的数据分类和相关预处理操作,将数据代入ArboLiDAR软件,通过多次设定相关分割参数,选择最优参数设置,以完成对研究区林分分割操作。并通过对该地区进行了林分平均树高的提取与精度评价,来估测林分自动分割结果,以期提高其他林分参数的估测精度。结果表明:LiDAR数据对林分平均高估测的相关性系数达到0.807,RMSE为1.12 m,精度较高,表明ArboLiDAR平台可以对LIDAR数据做较高精度的林分自动分割,为林分水平上的其他森林参数提取奠定基础,也为LIDAR数据的林分区划提供新的思路。  相似文献   

17.
日本落叶松生长过程与林分结构特征研究   总被引:1,自引:0,他引:1  
以长岭岗林场日本落叶松为研究对象,通过调查分析不同龄级林分胸径、树高及材积等生长量指标,以揭示日本落叶松生长过程和林分特征。结果表明,日本落叶松胸径生长拟合方程D=5.838 lnt-5.241 1;树高拟合方程为H=1.110 3t~(0.8917),树高与胸径之间拟合方程H=2.474 6e~(0.1527D),材积拟合方程V=0.000 1t~(2.2518),各拟合方程效果显著(R~2大于0.98)。从胸径、树高株数累积分布曲线和平均生长量来看,日本落叶松幼龄林胸径、树高生长较快,但由于林分密度大,胸径生长没有达到最优状态;中龄林胸径、树高生长稳定;近熟林分胸径生长量和高生长量都放缓,林分内枯立木、濒死木占有一部分,其林分健康状况欠佳;成熟林多为日本落叶松与柳杉行间混交,林分状况良好。  相似文献   

18.
【目的】利用国产合成孔径雷达(SAR)系统(CASMSAR)获取的机载P-波段全极化SAR(PolSAR)数据,分析SAR对森林地上生物量(AGB)的响应与地形的关系,建立融合地形因子的高精度多项式模型,以提高森林AGB的估测精度。【方法】首先以基于机载激光雷达(Li DAR)数据得到的研究区坡度分布图与结合实测样地AGB数据得到的森林AGB分布图作为参考数据进行系统抽样,分析森林AGB与P-波段PolSAR后向散射强度的关系以及不同坡度下二者的相关性变化;然后利用Li DAR得到的高精度数字高程模型(DEM)结合机载P-波段的轨道数据计算当地入射角,进而建立以后向散射强度、当地入射角以及雷达视角为输入特征的多项式统计模型,同时将以上系统抽样得到的样本一部分作为模型训练样本,一部分作为精度检验样本。为避免样本尺度引起的偶然性,检验了20 m×20 m至100 m×100 m不同样地尺度下的估测精度。【结果】以90 m×90 m样本为例,当坡度为0°~5°时,引入当地入射角(第2组特征)的估测精度与未引入当地入射角(第1组特征)的估测精度分别为:决定系数(R~2)为0.634和0.634,均方根误差(RMSE)为12.07和12.08 t·hm~(-2),总精度(Acc.)为78.91%和78.89%;当坡度为5°~10°时,第2组特征与第1组特征的估测精度分别为:R2为0.524和0.523,RMSE为13.52和13.97 t·hm~(-2),Acc.为80.57%和80.52%;当坡度大于10°时,第2组特征与第1组特征的估测精度分别为:R~2为0.628和0.519,RMSE为13.16和15.70 t·hm~(-2),Acc.为81.05%和78.55%。随着样地尺度增大,2组特征的估测精度均增大,且第2组特征的估测精度大于第1组。【结论】当坡度小于10°时,地形对森林的后向散射强度几乎无影响;当坡度大于10°时,地形的影响显著,在不同尺度下,引入当地入射角的估测模型均可以有效提高估测精度,充分说明模型的有效性和稳定性。此外,随着尺度增大,无论采用的模型是否考虑了地形影响,其估测精度都逐渐提高并趋于稳定,揭示出对复杂地形下森林AGB估测模型效果的评价必须考虑尺度的影响,且参考样地要足够大,否则难以得到客观的结论。  相似文献   

19.
[目的]利用能够反映植被季相变化和物候差异的中空间分辨率高重访周期遥感数据以及其他多源数据,提取区域树种(组)成数空间分布信息,间接表达主要树种(组)的空间分布,为大区域树种(组)空间分布制图提供新的方法和思路。[方法]以吉林省为试验区,以250 m空间分辨率的MODIS NDVI 8天合成时间序列数据和国家森林资源连续清查固定样地数据为主要数据源,综合利用气象观测数据和地形数据,基于梯度最近邻(GNN)方法对省级树种(组)成数进行估测。首先利用典型对应分析(CCA)对特征变量进行特征变换;然后采用k-NN方法对树种(组)成数进行分层估测,并对k-NN方法中的k值进行优选,分析k-NN估测精度随k值的变化规律;最后基于9个县的森林资源二类调查样地和省级一类清查固定样地数据,对树种(组)成数分布图进行精度检验。[结果]对在吉林省分布较广的蒙古栎、白桦、紫椴、春榆、杨树、胡桃楸和长白落叶松7个树种(组)成数进行估测,并制作相应的树种(组)成数空间分布图。估测结果表明,树种成数分布与固定样地成数分布呈现出一致的空间分布特征。其中,县级尺度下的k-NN预测精度检验结果为:R2为0.83,RMSE为0.35;在20 km×20 km,30 km×30 km,40 km×40 km和50 km×50 km 4个尺度下的k-NN估测结果显示,各类树种(组)在40 km×40 km和50 km×50 km尺度下的估测结果较优,春榆在各个尺度下的估测精度均较高,其平均RMSE为0.35,蒙古栎的估测精度相对较低,其平均RMSE为0.65。在不同尺度下的估测结果表明,随着k值的增加,RMSE均呈现先快速减小、后趋于相对平衡的趋势,根据该规律可确定最佳k值。另外,k-NN分层估测的估测精度高于k-NN直接估测的估测精度,其在不同尺度下的RMSE相对直接估测的结果均低0.1左右。[结论 ]本文提出的基于多源数据的森林树种(组)成数空间分布估测方法是一种有效的森林参数估测方法,基于该方法能够获取较高精度的树种(组)成数空间分布图。为了得到最佳的估测效果,需要对k-NN方法中的k值进行优选,该值将随试验区和数据有所不同。另外,采用分层估测的策略可以有效提高最终估测精度。  相似文献   

20.
林分蓄积量估测是林业遥感的重要研究领域,由于云雾天气和光谱饱和现象等因素限制了光学遥感影像估测林分蓄积量的精度。合成孔径雷达(SAR)具有穿透性强、受云雾影响小等特点,弥补了光学遥感的不足。以江西省龙南县的针叶林为研究对象,结合Landsat 8与PALSAR-2双极化SAR影像数据,在遥感数据预处理基础上,提取了光谱信息、植被指数、纹理信息和后向散射系数等共245个遥感因子。基于Pearson相关系数法和多元逐步回归法,筛选出65个遥感因子参与林分蓄积量估测。以林分郁闭度作为分层因子,分别采用线性、KNN、支持向量机(SVM)、多重感知机(MLP)和随机森林(RF)5种模型估测林分蓄积量,并对估测结果进行精度检验。实验结果表明:1)相比单独使用Landsat 8的光谱和纹理信息,基于郁闭度分级并融合PALSAR-2的后向散射信息明显提高了蓄积量的反演精度;2)对于低郁闭度林分,线性模型精度最高(rRMSE=21.16%),中郁闭度林分,多重感知机模型估测效果最好(rRMSE=30.61%),高郁闭度林分,多重感知机模型估测效果最好(rRMSE=27.53%)。在结合PALSAR-2的后向散射系数的基础上,郁闭度分层能有效改善中高蓄积量区域的反演精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号