首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于机载LiDAR数据估测林分平均高   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的 ]以2016年9月广西壮族自治区高峰林场实验区获取的机载LiDAR点云数据为基础,通过提取30 m×30 m空间林分尺度下的LiDAR点云特征变量实现对林分平均高的估测。[方法 ]首先将105块实测林分平均高度的样地数据按照3:1的比例随机划分为训练样本(79)和检验样本(26),采用随机森林回归(RFR)和支持向量回归(SVR)两种机器学习算法对79个训练样本与对应的林分LiDAR点云特征变量回归建模。建模方案包括随机森林模型、支持向量机模型及随机森林+支持向量机组合模型。其次利用26个检验样本数据评价模型预测精度。最后统计3个模型中训练样本和检验样本对应的精度评价指标,以一个预测精度高、泛化能力强的模型作为最终模型进行林分平均高制图。[结果 ]表明:随机森林模型的训练样本和检验样本的决定系数(R2)分别为0.886 1和0.837 5,均方根误差(RMSE)分别为1.22和1.56;支持向量机模型的训练样本和检验样本的决定系数(R2)分别为0.886 4和0.840 9,均方根误差(RMSE)分别为1.21和1.54;组合模型的训练样本和检验样本的决定系数(R2)分别为0.859 8和0.853 2,均方根误差(RMSE)分别为1.35和1.48;[结论 ]组合模型的泛化能力及预测精度最好,支持向量机次之,最后为随机森林。利用组合模型可有效完成研究区林分平均高制图。  相似文献   

2.
为探究不同模型对林分平均胸径的预测精度,使用贵州省桂花国有林场马厂工区同步获取的机载激光雷达点云数据和地面实测样地数据,通过提取样地水平的点云特征变量,采用方差膨胀因子分析和皮尔逊相关性检验进行自变量选择,建立机器学习模型估测样地平均胸径。结果表明:1)点云特征变量,如平均冠层高度和高度偏态与林分平均胸径有很强的相关性。2)机器学习模型(随机森林、支持向量机、最近邻算法)优于多元线性回归模型,其中,随机森林的拟合效果最好。随机森林的决定系数(R2)为0.71,均方根误差(RMSE)为2.50。3)通过柳杉纯林、针叶混交林、针阔混交林、马尾松纯林4种森林类型的林分平均胸径预测值与实际值差值,进一步证实随机森林模型精度最高,拟合效果最好。利用机载激光雷达点云数据提取点云特征变量,并构建基于机器学习算法的林分平均胸径估测模型是可行的,该方法的精度能满足森林资源调查的应用需求,可作为辅助林业调查工作的技术手段。  相似文献   

3.
林分平均树高的求算与分析   总被引:1,自引:0,他引:1  
一、前言林分平均树高(记作)根据每木调查的测定结果进行推算,它是反映林分中全部林木高度平均水平的测树指标,是林分调查的一个重要测树因子。长期来使用的一些表达林分平均高方法,分别在何种场合适用,精度如何,各方法之间存在什么联系等问题,都有待进一步探讨。本文将对此作初步分析。  相似文献   

4.
本文基于低密度的机载激光雷达(LiDAR)数据生成林区树冠高度模型(CHM),结合高分辨率CCD数码相机影像勾绘林分多边形,由改进的树冠识别算法提取林分平均树高。结果表明:全部有效数据林分总体精度达74.86%,刺槐精度达75.62%,油松精度达74.74% ,结果受点云密度影响,使得阔叶树种的精度稍高于针叶树种,因此,低密度激光雷达数据结合高分辨率CCD可以快速、准确地提取林分平均高。  相似文献   

5.
为降低小光斑机载激光雷达因光斑直径太小而导致的脉冲首次回波无法代表冠层高度的影响,以进一步提高小光斑机载激光雷达波形数据在森林结构参数估测中的应用潜能。以内蒙古依根地区为研究区,以机载激光雷达波形数据为基础数据,在波形数据高斯分解的基础上提出一种基于小光斑波形形成伪大光斑波形数据的方法。通过计算样地内各高斯分量脉冲能量占总脉冲能量的比例,将其视为各高斯分量特征参数对应权数,分别求特征参数振幅、位置和半波宽的加权平均数,即为样地伪大光斑波形数据对应高斯函数的特征值。基于小光斑波形数据和伪大光斑波形数据提取特征参数,分别结合野外样方实测平均树高建立回归模型,并进行比较分析。结果小光斑波形反演模型的决定系数R2为0.47,总体平均精度P为78.19%,伪大光斑反演模型的决定系数R2为0.61,估测林分平均高总体平均精度P为90.65%。结果表明,伪大光斑模型反演精度高于小光斑波形反演模型,降低了小光斑LiDAR因光斑直径过小带来的影响,挖掘了小光斑机载LiDAR波形数据的应用潜力。  相似文献   

6.
以吉林省汪清林业局经营区域为例,基于星载激光雷达ICESat-GLAS回波参数,构建了平均树高回归模型,预估精度为84.05%;利用反距离加权法,对ICESat-GLAS光斑平均树高估测值进行差值运算,得到初始CHM(Canopy Height Model),实现了平均树高空间连续分布制图;再利用坡度校正和3×3移动窗口差分滤波平滑初始CHM,得到研究区平均树高修正CHM,预估精度达到91.52%。研究结果表明,坡度校正和移动窗口差分滤波方法能有效削弱坡度影响,剔除异常点,提高平均树高估测精度。  相似文献   

7.
《林业科学》2021,57(9)
【目的】探索一种适用于已具备林下地形,可协同利用少量实测样地数据、抽样式采集的机载激光雷达(LiDAR)条带数据和区域全覆盖的资源三(ZY3)立体像对数据有效估测区域森林平均高的方法,为提高森林资源调查效率和精度提供技术支撑。【方法】以广西高峰林场2个分场为研究区,2018年获取覆盖整个研究区的机载LiDAR、ZY3立体像对和少量实测样地数据。将LiDAR数据提取的DEM作为历史已存在的林下地形,从全覆盖的LiDAR数据中抽取12条飞行条带的LiDAR数据"模拟"抽样式采集的LiDAR数据,形成"林下地形+LiDAR抽样+ZY3立体像对+样地"数据集;以样地和LiDAR数据提取出LiDAR抽样数据对应的森林平均高为模型建立的参考数据(因变量Y),以ZY3立体像对提取的数字表面模型(DSM)减去数字高程模型(DEM)得到的CHM_(ZY3)为自变量(X),采用普通最小二乘(OLS)模型、k-邻近(KNN)模型和回归克里格(RK)模型估测森林平均高,并对其估测效果进行比较评价。【结果】OLS和KNN模型的均方根误差(RMSE)分别为1.88和1.96 m,估测精变(EA)分别为87.18%和86.64%;RK模型估测精度相对较高,RK_(OLS)模型的RMSE=1.84 m,EA=87.42%;RK_(KNN)模型的RMSE=1.86 m,EA=87.32%。【结论】本研究中2类4种模型均可有效估测森林平均高,回归克里格模型(RK_(OLS)、RK_(KNN))优于非空间模型(OLS、KNN),RK_(OLS)模型估测精度最高;在林下地形已知时,协同利用少量实测样地数据、抽样式采集的机载LiDAR条带数据和区域全覆盖的ZY3立体像对数据能够实现区域森林平均高的高效、高精度估测。  相似文献   

8.
9.
利用西藏自治区森林资源连续清查的天然林实测样地资料,研究建立了冷杉、云杉、柏木、松类、栎类、桦类、阔叶类、针阔类8个树种组的平均直径、平均树高和平均蓄积估测模型,为预估西藏天然林的有关林分因子提供参考依据。  相似文献   

10.
通过常用7种理论生长方程的对福建省连续清查成果数据中的乔木林样地进行建模,比较各生长方程的拟合效果。结果表明杉木人工林和阔叶树天然林使用Mitscherlich方程建立的生长模型最优,马尾松天然林和阔叶树人工林使用Logistic方程建立的生长模型最优,马尾松人工林使用Richards方程建立的生长模型最优,杉木天然林使用Gompertz方程建立的生长模型最优。  相似文献   

11.
随着激光雷达获取的点云密度不断增加,提取样地尺度的林分平均高成为可能。但样地尺度林分平均高的提取精度与树种之间的关系尚不明确,急需一种能适应各种树种的林分平均高提取方法。以广西国有高峰林场为例,采用机载LiDAR点云数据生成的冠层高度模型(Canopy height model,CHM),结合地面实测的201个样地数据,提出了一种结合自适应阈值与峰值的林分平均高提取算法,并分析了树种对提取精度的影响。结果表明:1)不同树种的林分平均高提取精度存在差异,杉木精度最高,而桉树和其他阔叶树种精度次之;2)自适应阈值结合峰值的算法能够较好提取林分平均高(R2=0.75,RMSE=3.11m,rRMSE=22.07%),并且对于不同的树种都有较强的稳健性;3)阔叶树种和针叶树种对不同的提取方法存在敏感性差异。研究提取的林分平均高可为森林蓄积量与生物量反演研究提供依据和参考。  相似文献   

12.
【目的】研究通过集成波形信号处理、空间解析和重构建模以及综合波形信息提取方法,探索基于小光斑全波形LIDAR特征变量高精度反演林分特征的新方法。【方法】以江苏南部丘陵地区的亚热带天然次生林为研究对象,在预处理和分析小光斑全波形 LIDAR 数据的基础上,首先基于体元空间框架分解和提取波形的振幅能量信息,并构建伪垂直波形模型;然后,从中提取空间位置信息(即点云)及几何辐射变量,计算 LiDAR点云和波形特征变量,并通过相关性分析筛选特征变量;最后,结合地面实测林分特征参数构建反演模型并验证精度。【结果】1)各 LiDAR特征变量对 Lorey’s树高的敏感性最高,对蓄积量和地上生物量次之,对胸高断面积最低,而返回脉冲总能量和返回脉冲峰值点数对胸高断面积的敏感性却高于其他林分特征因子;在点云特征变量组中,平均高、高度百分位数及冠层上部的返回点云密度与各林分特征之间的相关性较高,而在波形特征变量组中,能量中值高度的均值、返回脉冲长度的标准差和冠层粗糙度的标准差与各林分特征之间的相关性较高;2) Lorey’s 树高的模型估算精度最高( RMSE为实测均值的7.26%),而蓄积量、地上生物量和胸高断面积的模型估算精度略低且较相近( RMSE为实测均值的15.91%~19.82%);模型自变量的数量都在3个以内,选中的自变量为高度百分位数、冠层返回点云密度、返回脉冲长度和冠层粗糙度的标准差;3)各林分特征实测值与交叉验证估算值的拟合结果表明, Lorey’s树高的拟合效果最好(R2=0.85),地上生物量(R2=0.68)和蓄积量(R2=0.59)次之,而胸高断面积(R2=0.45)最低;4) Lorey’s 树高、蓄积量和地上生物量的空间分布状况基本一致,源于它们内在的相关性;相比其他3个特征变量,胸高断面积的空间分布不够连续,这可能是由于其预测模型精度较低所致。【结论】各林分特征综合回归模型的拟合效果和精度都高于仅使用点云特征变量拟合模型的精度,表明了波形特征变量提取森林中下层信息的潜力。点云特征变量描述了森林冠层及上部的三维结构及密度信息,而波形特征变量则获得了森林冠层及以下部分完整的垂直分布和能量信息,二者互补可提升林分特征反演的精度。  相似文献   

13.
采样形状及采样尺度的合理选择对于节约人工成本、提高计算效率以及进一步提高森林结构参数估测精度均具有重要意义。以长春净月潭国家森林公园激光雷达(LiDAR)数据为基础,通过对LiDAR数据进行圆形及方形采样,并在方形采样的基础上对LiDAR数据进行不同空间尺度采样,从中提取一系列点云分位数高用于估测樟子松及落叶松的林分均高,以此量化LiDAR采样形状及采样尺度对不同林分均高估测的影响。结果表明:对樟子松而言,无论是圆形还是方形采样,林分均高估测结果最优时所对应的参数均为HP55,且方形采样林分均高估测结果(R~2=0.896,R_(mse)=0.853 m)高于圆形采样估测结果(R~2=0.892,R_(mse)=0.868 m);对落叶松而言,圆形和方形采样均是在HP99时林分均高估测结果最优,且圆形采样林分均高估测结果(R~2=0.741,R_(mse)=1.161 m)高于方形采样估测结果(R~2=0.705,R_(mse)=1.238 m)。在方行采样条件下,樟子松林分均高估测精度最高(R~2=0.904,R_(mse)=0.820 m)时所对应的采样尺度为35 m;落叶松估测精度最高(R~2=0.720,R_(mse)=1.206 m)时所对应的采样尺度为15 m。结果表明:不同LiDAR数据采样形状对不同林分类型均高估测的影响不同,且不同林分类型均高估测结果精度达到最高时所对应的采样尺度不同。  相似文献   

14.
为了精细管理森林资源,需要简便易行、准确可靠的估测生境质量的方法,本研究的目的是根据树高(H)与相应的胸高直径(D)检验估测生境质量的方法.森林生产力是单位时间(年)的材积生产量.是预报资源管理所必须的数据,森林生产力的估测取决于生境类型和时间.与时间无关的生境质量可不考虑林龄进行无偏估计.以往用的生境指数法,把年龄对应的树高值作为生境指数(SI).  相似文献   

15.
基于机载LiDAR的单木结构参数及林分有效冠的提取   总被引:4,自引:0,他引:4  
【目的】基于机载激光雷达(LiDAR)数据提取单木树冠三维结构参数(树冠顶点位置、树高、冠幅和冠长),并在此基础上对林分有效冠进行提取,为进一步研究林分尺度上的有效冠结构及其动态提供依据,以更好掌握并改进林业经营措施。【方法】采用一定规则下的局部最大值窗口搜索树冠顶点,进行单木树冠顶点探测和单木树高提取;以树冠顶点为标记,利用标记控制分水岭分割算法提取单木冠幅;采用垂直方向点云高程检测方法获取枝下高位置,提取冠长;在标记控制分水岭分割出的树冠边界,提取树冠接触高,取平均值作为该样地的林分有效冠高。【结果】树冠分割正确率为88.5%;结合样地实测参数对提取值进行相关性分析,树高R~2=0.886 2,冠幅R~2=0.786 4,冠长R~2=0.800 0,树高、冠幅和冠长精度分别为90.34%、86.80%和89.90%;同一林分内单木接触高相对比较稳定,对提取的林分有效冠高进行单因素方差分析,无显著差异。【结论】基于机载LiDAR数据,采用可变大小的动态窗口搜索局部最大值点,能提高单木结构参数的提取精度;利用树冠顶点标记控制分水岭算法,将高空间分辨率航片作为辅助数据,可完成较高精度的单木冠幅提取;垂直方向点云高程检测方法可提取单木冠长;LiDAR点云数据可对林分有效冠进行提取,在同一林分中,不同样本数量对接触高提取的变异性影响不大,有效冠高大致相同。机载LiDAR数据具有良好的单木树冠三维结构参数提取能力,能够满足现代林业调查对单木结构参数提取的需要,实现对林分有效冠的提取。  相似文献   

16.
目测法估测树高的误差分析   总被引:4,自引:0,他引:4  
利用目测法和VertexⅣ测高仪对黑龙江省凉水林场的部分树木高度进行测量,通过实测数据和目测数据的比较分析,结果表明:目测数据普遍低于实测数据,而且随着树高和冠幅的增加,估测误差也呈增大趋势,估测误差的波动范围很大,平均估测误差为3.4 m,目测数据和实测数据的拟合效果一般,平均估测精度为82.6%。几个主要树种的估测误差平均值在3~4 m左右,误差大于5 m的数据主要集中在红松和水曲柳中。  相似文献   

17.
气候变化下,森林生物量遥感监测是当前研究的热点,机载LiDAR作为重要的遥感信息源,其采样大小对生物量估测精度有着一定的影响。以机载LiDAR数据为信息源,以44块30m×30m的方形橡胶林实测样地数据为基础,对机载激光雷达数据进行不同尺寸采样(共21个采样尺寸,边长从10m至30m,间隔为1m),提取不同采样尺寸下的激光雷达参数,并与橡胶林地上生物量建立PLSR模型,就机载激光雷达采样大小对橡胶林地上生物量估测精度的影响进行研究。研究表明:当采样尺寸小于18m时,估测精度随着采样尺寸的增大而增大;而当采样尺寸大于18m时,估测精度随着采样尺寸的增大而减小,进而趋于平缓。结果虽然呈现出一定的规律性,但是差异并不是很明显。当采样尺寸为18m时估测效果最佳,模型决定系数(R2)为0.718,均方根误差(RMSE)为17.830 t/hm2;交叉验证精度P和RMSEcv分别为82.741%和18.874t/hm2。相较于实际样地(30m)尺寸下的估测结果,18m采样尺寸下的R2提高了1.989%,RMSE...  相似文献   

18.
【目的】研究机载LiDAR航带旁向重叠对针叶林林分平均高和森林叶面积指数(LAI)估测的影响,为机载LiDAR点云数据区域森林结构参数估测提供参考。【方法】野外分别测定30块樟子松、33块长白落叶松样地的林分平均高和LAI,对原始LiDAR点云数据进行去噪、点云分类、高程归一化和重叠点移除等处理,从重叠点移除前、重叠点和重叠点移除后的点云数据中分别提取一系列样方点云高度分位数(HP1、HP5、HP10、…、HP99、Hmax和Hmean)和激光穿透指数(LPI),借助留一交叉验证建立并评价樟子松和长白落叶松林分平均高和LAI估测模型的精度,通过对比分析估测模型的决定系数(R2)和均方根误差(RMSE)揭示机载LiDAR航带旁向重叠对针叶林林分平均高和LAI估测的影响。【结果】对樟子松林分平均高估测而言,重叠点移除前林分平均高的最高估测精度(R2=0.873,RMSE=0.940)出现在HP90处,重叠点林分平均高的最高估测精度(R2=0.892,RMSE=0.866)出现在HP80处,而重叠点移除后林分平均高的最高估测精度(R2=0.892,RMSE=0.868)出现在HP55处;对长白落叶松林分平均高估测而言,重叠点移除前、重叠点和重叠点移除后林分平均高的最高估测精度均出现在HP99处,R2分别为0.725、0.719和0.741,RMSE分别为1.196、1.209和1.161。对樟子松LAI估测而言,重叠点移除前估测结果 R2为0.666,RMSE为0.220,重叠点估测结果 R2为0.551,RMSE为0.255,重叠点移除后R2提高到0.794,RMSE降低为0.172;对长白落叶松LAI估测而言,重叠点移除前估测结果 R2为0.654,RMSE为0.110,重叠点估测结果 R2为0.640,RMSE为0.112,与樟子松估测结果一致,重叠点移除后长白落叶松LAI估测精度大幅度提高,R2变为0.762,RMSE变为0.091。【结论】无论是林分平均高还是森林LAI,相邻航带旁向重叠点移除后的估测精度均高于重叠点移除前和重叠点,且樟子松的估测精度高于长白落叶松。对林分平均高而言,樟子松和长白落叶松达到最高估测精度时所对应的点云高度分位数不同。机载LiDAR点云数据相邻航带旁向重叠点的移除可有效提高森林结构参数的估测精度,在未来机载LiDAR点云数据预处理时应加入重叠点移除操作。  相似文献   

19.
树高是计算材积三要素之一,林分平均树高的高低直接影响林分蓄积量的大小。然而,现实林分的平均树高与原始林分平均树高(未经破坏)不一样,原始林分平均树高比现实林分平均树高要高。各径级树高的差异也较明显,笔者收集了丽江县云南松未经破坏的原始  相似文献   

20.
利用57块落叶松纯林林分标准地中的57株最粗直径与冠幅材料,建立了最粗胸径与最大冠幅的落叶松林回归模型,即:D 最大=a+bG_k 最大;在同龄纯林林分中,最粗胸径约为平均胸径的17—18倍,依据这一林学界公认的原理,通过在航片上判读量测最粗胸径的树木冠幅,即可对平均胸径进行估测。31个小班的试验表明:效果较好,为简便快速地从航片上获取平均胸径提供了一套系统的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号