共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用2011年8月获取的黄丰桥林场SPOT5数据为信息源,并同步开展现地样地调查,依据典型抽样,以不同的海拔、坡度、坡向进行选样,利用手持GPS和LAI-2000植物冠层分析仪,分别对选取的60块样地进行定位和叶面积指数测量。结合遥感数据和实地调查数据,对地理因子和遥感因子变量进行主成分分析,采用逐步回归法筛选出2个主成分建立多元回归方程,对该研究区域的植被叶面积指数进行模拟,精度达到84.17%。结果表明:RVI,NDVI,MSAVI,MCAVI和DVI与LAI之间存在较好的相关性。 相似文献
3.
《中南林业科技大学学报(自然科学版)》2016,(12)
叶面积指数(Leaf Area Index,LAI)作为植被冠层结构的重要描述参数之一,能体现植被光合、蒸腾和呼吸作用的能力。借助GPS和LAI-2200冠层分析仪在攸县黄丰桥林场开展LAI测量。利用ENVI软件对Geo Eye-1数据进行了辐射定标,大气校正和正射校正。通过研究LAI与Geo Eye-1影像波段及其衍生指数的相关性,筛选出2组估算LAI的指数因子(6个指数因子和10个指数因子)。应用k-NN进行叶面积指数反演,同时将反演结果与多元线性回归模型结果进行比较。结果表明:利用2组指数因子进行多元线性回归模型反演LAI中,6个指数因子的模型决定系数R2为0.386,10个指数因子的模型决定系数R2为0.498。从回归模拟的角度分析,10个指数因子得到的模拟结果要优于6个指数因子的模拟结果。利用2组指数因子通过设置4个不同的k值(k=3,5,7,10)得到8个k-NN反演结果中,以10个指数因子得到的k-NN反演结果较好,其中在k=3时效果最好,其决定系数R2为0.733,精度为85.4%。建模精度分析表明选用10个指数因子进行LAI的反演优于选用6个指数因子,其中k-NN方法的反演结果优于多元线性回归模型,说明利用k-NN方法进行LAI的反演是可行的。 相似文献
4.
5.
《林业科学》2021,57(4)
【目的】基于多角度PROBA/CHRIS遥感数据和野外实测数据,结合PROSAIL模型和随机森林模型反演森林叶面积指数(LAI),以提高植被LAI遥感反演精度,为区域土壤侵蚀遥感定量监测提供新的方法和模型。【方法】以南京市紫金山和幕府山为研究区,采用野外调查、遥感影像、辐射传输模型与数学模型相结合的方法,构建基于PROSAIL模型和多角度PROBA/CHRIS遥感数据的随机森林LAI反演模型,对PROSAIL模型进行敏感性分析和适用性评价,确定最佳LAI反演模型,并利用地面实测LAI进行精度验证和评价。【结果】PROSAIL模型中各输入参数敏感性大小为LAI叶绿素a、b含量Cab叶片干物质含量Cm热点参数SL叶片内部结构参数N等效水厚度Cw;模拟的冠层反射率精度大小为0°36°-36°55°-55°。单角度LAI反演模型中,前向观测角55°精度最高,其决定系数(R2)、均方根误差(RMSE)和平均绝对百分误差(MAPE)分别为0.915 7、0.235 7和0.042 6;相比于传统垂直观测,55°模型的R2提高0.75%,RMSE和MAPE分别降低3.76%和5.12%;相比于非线性回归模型,单角度随机森林LAI反演模型的R2提高0.7%,RMSE和MAPE分别降低15.40%和11.98%;单角度LAI反演模型精度由高到低依次为55°、36°、0°、-55°、-36°。多角度LAI反演模型中,3角度组合(0°、36°、55°) LAI反演精度最高,其R2、RMSE和MAPE分别为0.918 4、0.231 9和0.041 5,相比于单角度55°,R2提高0.29%,RMSE和MAPE分别降低1.61%和2.58%;相比于传统垂直观测,3角度组合模型的R2提高1.05%,RMSE和MAPE分别降低5.31%和7.57%;相比于非线性回归模型,多角度随机森林LAI反演模型的R2提高0.79%,RMSE和MAPE分别降低6.72%和9.19%。紫金山西部区域LAI介于0.44~6.70之间,林地LAI均值为3.04;紫金山西部林地LAI整体上呈北部和南部高、中间低的空间分布格局。【结论】最佳LAI反演模型为基于3角度组合(0°、36°、55°)的随机森林LAI反演模型;一方面,增加观测角度可提供更多植被冠层结构信息,LAI反演精度随观测角度增加而增加,但另一方面,观测角度过多会使像元空间重采样、叶片阴影和土壤阴影等问题带来更多不确定性,LAI反演精度反而下降;无论是单角度还是多角度数据,随机森林LAI反演模型精度均高于非线性回归模型,随机森林模型能够明显提高LAI反演精度,适用于区域植被LAI反演;多角度遥感数据能够反映森林立体结构信息和地物多维空间结构特征,显著改善传统垂直观测数据反演LAI精度较低的问题,从而有效提高植被LAI反演精度。 相似文献
6.
以内蒙古赤峰市旺业甸实验林场人工针叶林为研究区域,以哨兵2A(Sentinel-2A)多光谱遥感影像和外业测量的LAI为基础,探讨了5-scale+Liberty机理耦合模型和经验统计模型反演人工针叶林LAI的规律。结果表明:基于一元线性模型估测的LAI精度较低,R2=0.619,RMSE=1.6107;基于机理模型反演的LAI较高,R2=0.8222,RMSE=0.9414,并进一步分析了不同步长情况下,5-scale+Liberty模型反演的LAI与实测的LAI之间的关系,步长的大小一定程度上影响LAI反演精度。 相似文献
7.
8.
以内蒙古赤峰市旺业甸实验林场人工针叶林为研究对象,以哨兵2A(Sentinel-2A)多光谱遥感影像和外业测量的叶面积指数为数据基础,反演人工林叶面积指数。通过5-scale模型和Liberty模型耦合得到不同输入参数与冠层反射率相对应的查找表,利用编程读取查找表与遥感影像,通过对比遥感影像中红光波段和近红外波段反射率,与查找表中红光波段和近红外波段的反射率最接近的值所对应的叶面积指数值,进而实现叶面积指数反演。结果表明:基于5-scale模型反演的叶面积指数,R2=0.822 2,RMSE=0.941 4,其精度要高于一元线性模型的精度,利用5-scale模型反演人工针叶林叶面积指数是可行的。 相似文献
9.
森林叶面积指数(Lai)作为森林的重要结构参数,对于研究森林物质能量交换相关的生理活动具有重要意义。为提高森林Lai的反演精度,本研究充分利用激光雷达点云数据多回波类型之间所含信息的差异,通过对机载激光雷达点云数据预处理后,基于点云数据的多回波类型,共提取了6个激光穿透指数(Lpi),分别与野外样方实测Lai建立线性回归模型用于估测森林Lai。结果发现:单变量估测模型中,基于首次回波强度Lpi(i LPIfirst)模型最好(R2=0.836,Mad=0.091)。多变量模型中,基于首次回波强度Lpi(i LPIfirst)、冠层回波数量Lpi(n LPIcan)及冠层回波能量Lpi(i LPIcan)的三变量模型估测精度最高(R2=0.883,Mad=0.076),相比于单变量估测模型而言,R2提高了0.047,Mad减少了0.015。结果表明,基于点云回波类型分类的Lpi能够较好的估测森林Lai,且多变量模型的估测精度要优于单变量模型的估测精度。 相似文献
10.
《中南林业科技大学学报(自然科学版)》2019,(8)
森林蓄积量是评价森林资源数量的一个重要指标。结合遥感影像和地面调查数据估测森林蓄积量受遥感影像、遥感因子、预处理方法、估测方法等多方面的影响。为研究国产GF-1遥感影像估测森林蓄积量的最佳遥感因子组合方式和较优估测方法,并绘制森林蓄积量空间分布图,为我国森林蓄积量的研究提供理论基础和科学依据。为研究GF-1遥感影像估测森林蓄积量的遥感因子和估测方法,以湖南省醴陵市为研究对象,以国产GF-1遥感影像为数据源,通过对遥感图像预处理,获取光谱信息、纹理因子、植被指数作为特征变量,结合同时期的二类调查样地数据,从GF-1遥感影像像元与样地不匹配角度出发,应用移动窗口的方法解决像元与样地的对应关系,采用多元逐步回归、偏最小二乘回归和随机森林模型对研究区森林蓄积量进行估测,采用建模精度和估测精度进行分析评价。实验结果表明:1)3个模型选择的因子都包含了NDVI、 Band2、DI3、CO1和DVI等5个遥感因子,说明其对森林蓄积量的估测比较敏感;2)随机森林模型优于偏最小二乘回归和多元逐步回归,其决定系数R2为0.73、估测精度为83.69%。利用GF-1遥感影像结合随机森林模型应用于森林蓄积量的估测结果趋于真实分布,效果较理想;采用移动窗口法,利用国产GF-1遥感影像并结合随机森林进行森林蓄积量估测具有较好的应用前景。 相似文献
11.
崂山林场森林冠层叶面积指数反演研究 总被引:1,自引:0,他引:1
本文以地处崂山林场东部林区作为研究区,运用逐步分析方法对6种植被指数和海拔、坡向、坡度等立地信息进行比较分析,筛选出3种植被指数NDVI、RVI、SAVI可敏感反映森林冠层LAI,建立分别以NDVI、DVI、SAVI为自变量的二次曲线模型、幂函数曲线模型、指数曲线模型以及包含这3种植被指数的多元线性模型,从决定系数(R2)和标准误差两个方面对基于不同植被指数LAI反演模型进行定量分析。结果表明,崂山林场LAI最佳的统计模型是多元线性模型,模型的R2是0.812,具有较好的估测效果。利用该模型反演了研究区的林分冠层LAI,并把崂山林场的林分冠层LAI分为5个等级,研究区的森林冠层LAI分布呈现西北部和东南部较低,而东北部和南部相对较高的特点。 相似文献
12.
13.
高光谱遥感森林叶面积指数估测方法研究 总被引:1,自引:1,他引:1
叶面积指数(LAI)是反映植物叶片数量、冠层结构变化、植物群落生命活力及其环境效应的重要参数,其定义为植株所有叶片单面面积总和与植株所占的土地面积的比值。文中总结国内外利用高光谱遥感数据估测森林叶面积指数的研究进展,并对众多的估测方法进行比较,最后分析了高光谱遥感森林叶面积指数估测研究的发展趋势。
相似文献
14.
15.
16.
《中南林业科技大学学报(自然科学版)》2019,(11)
准确估算森林碳密度是研究森林生态系统的核心。基于Matlab工作平台,以森林资源连续清查(湖南省第七次复查)及同期Landsat 8影像为本底,建立非线性回归模型、RF随机森林模型和RBF径向基神经网络模型进行森林碳密度反演。结果表明:RBF神经网络精度最高,决定系数为0.96,均方根误差为1.33 t·hm-2,很好的拟合了样地实测碳密度;RF随机森林优于非线性回归模型,拟合精度、均方根误差分别为0.91、2.50 t·hm-2;非线性回归模型精度最低,决定系数和均方根误差分别为:0.62、3.87 t·hm-2。故应用RBF神经网络对森林碳密度的反演具有很好的效果。 相似文献
17.
《中南林业科技大学学报(自然科学版)》2020,(8)
【目的】森林是陆地生态系统的重要组成部分,精确估测森林地上生物量对森林资源的经营管理具有指示作用,对研究全球碳循环具有重要意义。为了改善单一来源遥感数据估测森林地上生物量的不足,探讨了联合高分三号(Gaofen-3,GF-3)全极化(Polarimetric synthetic aperture radar,PolSAR)数据极化分解参数和Landsat-8 OLI数据估测森林地上生物量的可行性,并针对多源遥感数据的冗余问题优化特征组合。【方法】以广西南宁市高峰林场为研究区,结合森林样地调查数据,提取GF-3 PolSAR数据的后向散射系数、极化分解参数和Landsat-8 OLI数据的光谱信息、植被指数、纹理,使用基于序列前向特征选择的K最近邻法(K-nearest neighbor based on sequence forward feature selection,KNN-SFS)估测研究区的森林地上生物量,以留一法交叉验证得到的森林地上生物量预测值和实测值之间的均方根误差(Root mean square error,RMSE)最小为原则,对比验证使用多源遥感数据和单一来源遥感数据时的估测结果,寻求估测森林地上生物量的最优特征组合,基于最优特征组合绘制研究区的森林地上生物量空间分布图。【结果】结合GF-3 PolSAR数据和Landsat-8 OLI数据估测研究区森林地上生物量的精度为RMSE=21.05 t·hm~(-2),R~2=0.75,优于仅使用GF-3 PolSAR数据估测的精度(RMSE=28.38 t·hm~(-2),R~2=0.47)和仅使用Landsat-8 OLI数据估测的精度(RMSE=29.52 t·hm~(-2),R~2=0.42)。【结论】多源数据协同反演森林地上生物量可以提高估测的精度,基于KNN-SFS方法联合GF-3 PolSAR数据与Landsat-8 OLI数据可以较好地估测森林地上生物量。 相似文献
18.
19.
叶面积指数是森林的重要结构参数,对于研究与植被叶片相关的生物物理活动具有重要意义。为了提高针叶林叶面积指数的估测精度,以吉林省长春市净月潭国家森林公园为研究区,通过对小光斑激光雷达离散点云进行滤波分类处理、拟合波形数据,从中提取5个能量参数,分别用于估测针叶林样方的叶面积指数,通过分析得出I2预测模型最好,R=0.911,P=0.968。结果表明小光斑激光雷达离散点云的能量信息能够较好地估计针叶林的叶面积指数,未来应加大小光斑激光雷达能量参数的应用。 相似文献
20.
《中南林业科技大学学报(自然科学版)》2015,(11)
湿地遥感变化信息检测并识别一直是遥感动态监测的一个技术难点。以东洞庭湖为研究区,2期GF-1遥感影像为研究对象,在数据预处理的基础上,将研究区分为芦苇、苔草、辣蓼与泥蒿、水体、泥滩地等6种类型。研究引进了NDVI植被指数波段与第一主分量波段(PC1)对传统的图像差值算法进行改进,提取出两期影像的变化信息,并与支持向量机的多时相影像分类后检测算法相比较。结果表明:(1)研究区遥感影像经过大气校正和图像配准等预处理之后,GF-1遥感影像变化检测的最佳波段组合为RGB=432;(2)利用支持向量机分类器对两期遥感影像进行分类时,样本选择的可分离度均在1.9~2.0之间,分类结果的总体精度为85.34%,Kappa系数为0.8,满足分类后比较算法提取变化信息的要求;(3)引进NDVI与第一主分量区分变化信息,并采用直方图积累区间确定变化阈值,信息增加的变化阈值设置为0.3,信息减少的变化阈值设置为0.2,Smooth Kernel Size设置为3,Aggregation Min Size设置为30,优化结果最佳。利用2期GF-1遥感影像提取湿地变化信息,分类后比较算法与改进后图像差值算法,图像差值法快速、直接提取变化信息,检测精度为89.6%,Kappa系数为0.9,且不受分类精度与分类样本一致性的限制,明显优于传统分类比较算法,是一种高效可行的方法。 相似文献