首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the objective of studying the effect of two nutrient solutions and two crop systems (greenhouse and openfield) on nitrate accumulation, incidence of tipburn and chlorophyll content, endive (cv. Cuartana) was planted in 8 L pots, filled with a mixture of coconut coir:perlite (1:1) in three different cycles C1 (winter), C2 (spring) and C3 (summer). Plants were irrigated with two nutrient solutions of different nitrate content: S1, low ([NO?3] = 7.91 mmol L?1) and S2 moderate nitrate content ([NO?3] = 16.91 mmol L?1). Nitrate content was determined by reflectometry, tipburn was evaluated using a qualitative scale and chlorophyll content by soil plant analysis development(SPAD) values. Plants irrigated with S2 showed higher nitrate accumulation in leaves in all cycles, however, no influence of the nutrient solution was observed on the incidence of tipburn. Greenhouse-cultivated plants accumulated more nitrates than those cultivated in open field and also showed a higher incidence of tipburn and SPAD values.  相似文献   

2.
氰在土壤中的吸附与转化   总被引:2,自引:0,他引:2  
氰(C2N2)是一种具有替代溴甲烷潜力的新熏蒸剂,明确C2N2在土壤中的吸附与转化行为对C2N2的安全应用具有重要的意义.利用静态法研究了C2N2在土壤中的吸附与转化过程,土壤对C2N2的吸附速率与土壤的理化性质有关,受环境温度、土壤含水量和土壤生物的影响较少,与熏蒸浓度无关.采用气相色谱(GC)和流动注射分析仪(FIA)测定了土壤对C2N2的吸附率和C2N2在土壤中的可能转化产物.结果表明,土壤对C2N2的吸附能力很强,熏蒸2h吸附率在75%以上,熏蒸24 h吸附率在98%以上,并可快速转化为HCN、NH4+和NO3-.其中,大约20%的C2N2转化为NH4+和NO3-,13%的C2N2转化为HCN.熏蒸48 h未检测到NO2-.HCN在土壤中不稳定,可进一步转化为其他含氮化合物.  相似文献   

3.
Summary A roller bed and rotary end-over-end shaker were compared for the extraction of mineral N from a variety of soil types; both were equally efficient with an optimum extraction time of 30 min. However, the roller bed permitted a greater operational capacity, a faster throughput of samples, and easier identification of sample bottles compared with the end-over-end shaker. More NH4 +-N and NO3 -N (P<0.001) was recovered from soil by 2 M KCl than by any other extractant, in a soil: extractant ratio of 1 to 5 (w:v), except water, which was equally efficient at removing NO3 -N from soils.  相似文献   

4.
Kentucky bluegrass (Poa pratensis L.) plants, cultivars Cheri, Merion and Touchdown were grown at complete nutrition or with low S or low N. Plants were exposed to 10 ppm (v/v) O3 for 6 h d?i, 15 pphm SO2 continuously, 15 pphm NO2 continuously, or their mixture at these concentrations for 10 days. The severity of injury was much increased by misting with deionized water for 5 min twice daily, especially with SO2 and NO2 single gas exposures. The misting did not have consistent effects on total S, total N, leaf area or fresh weight. Exposure to O3 decreased leaf area without affecting S or N content, while SO2 usually increased total S and, in some cases, increased total N. Exposure to NO2 increased total N without affecting total S, and the mixture increased both total S and total N. Low S or low N usually enhanced the effect of SO2 or NO2, respectively. Leaf area and fresh weight were not as responsive to the treatments as total S and total N. Rainfall outdoors may be a major meteorological factor affecting plant injury response to gaseous pollutants.  相似文献   

5.
Abstract

Mixtures of cation and anion exchange resins are used as part of the resin core technique to determine nitrogen transformation in forest soils as they adsorb the NH4‐N and NO3‐N from soil solution percolating through the incubated soil cores. In the field, the exchange resins may be subjected to a variety of conditions, involving drying, rehydration, freezing, and thawing. This paper examines how these processes affect adsorption of NH4‐N and NO3‐N and the stability of the resins. Lab tests were performed on the anion resin Amberlite IRA‐93, the cation resin Amberlite IR‐120, a mixture of IRA‐93 and IR‐120, and the commercially‐mixed bed resin Amberlite MB1. The background content of NO3‐N and NH4‐N on the resins was large and highly variable between different batches of resins in spite of a 2 M NaCl pre‐rinse. The IR‐120 cation resin that was subjected to 48 hours air‐drying contained significantly less NH4‐N than the moist resins, while the drying of the IRA‐93 anion resin caused a significant release of NO3‐N from resins with no N addition. Although the variation was large, the mixed bed resin MB1 indicated a release of NH4‐N, which supports results from long term in situ deployments. A reduced adsorption of NO3‐N was found on the IRA‐93 anion resins and the MB1 mixed bed resins that were dried prior to N addition while the dry IR‐120 cation resins adsorbec significantly less NH4‐N than the control resin. No effect of freezing and thawing efficiency was observed on resin stability or N adsorption efficiency. Sufficient blanks that have been subjected to similar moisture changes are necessary in N limited systems with low levels of available NH4‐N and NO3‐N.  相似文献   

6.
Nitrogen dioxide gas was rapidly absorbed by soil. After a 15 min incubation at 25°C, soil at a moisture content of 16% absorbed 99% of the NO2 introduced into the gas-phase volume of a closed system. The presence of microorganisms hatl no influence on the rate of absorption of the gas by soil. The absorption of NO2 by sandy clay loam soil was not an oxygen- or temperature-dependent process nor did it depend upon the moisture content of the soil. These physical factors acquired significance only in determining the initial rate of absorption of the gas and the rate at which NO2 diffused through the soil. Exposure of soil to NO2 resulted in substantial increases in the levels of NO inf2 sup? N in the soil. Chemical oxidation of the NO inf2 sup? N resulted in an increase in NO inf3 sup? N levels. During a 14-day incubation, NO inf2 sup? N concentrations in sterile soil exposed to an atmosphere containing 100 μg ml?1 of NO2 decreased from 190 μg g?1 of soil to 105 μg g?1 with an accompanying increase in NO inf3 sup? N from 2 μg g? 1 to 63 μg g?1 of soil. Nitrogen dioxide severely inhibited the growth of both aerobic and anaerobic asymbiotic N2-fixing bacteria in soil. After a 48 h incubation at 25°C, soil aggregates exposed to an atmosphere containing 100 μg ml?1 of NO2 contained 88% and 98% fewer aerobic and anaerobic N2-fixing bacteria, respectively. C2H2-reduction measurements showed that nitrogenase synthesis and activity in artificial soil aggregates amended with 2% glucose were inhibited by 20% and 48%, respectively, when exposed to atmospheric concentrations of 35 and 3.5 μg ml?1 of NO2, respectively.  相似文献   

7.
The modified activated carbon (MAC) derived from commercial coconut shell activated carbon (AC) with mixture of seven metal salts was used as an adsorbent to remove target residual organic compound (sucrose) from aqueous solutions in batch modes. The results indicated that the highest adsorption capacity of sucrose onto MAC reached when the AC was modified at the ratio of impregnation of AC with mixture of seven metal salts, including nitrate silver (AgNO3), manganese nitrate (Mn (NO3)2), potassium bichromate (K2Cr2O7), nitrate cobalt (Co (NO3)2·6H2O), nitrate copper (Cu (NO3)2·3H2O), nitrate nickel (Ni (NO3)2·6H2O) and nitrate iron (Fe (NO3)2·9H2O) of 3% (w/w). The most appropriate conditions for sucrose adsorption onto MAC in batch experiments obtained at pH 7, contact time of 120 min, 800 mg MAC/50 mL of sucrose solution with initial concentration of 1500 mg/L. At this condition, the highest adsorption capacity of sucrose onto MAC reached 28.28 mg/g. The Langmuir, Freundlich, and Sips adsorption isothermal equilibrium models can adequately describe the adsorption properties of sucrose on MAC. The adsorption kinetic of sucrose onto MAC obeyed pseudo-first-order and pseudo-second-order models with the chemical sorption process. The saturated MAC was recovered by heat from an oven. The highest recovery efficiency of saturated MAC obtained at 180 °C in 120 min. The highest adsorption capacity of sucrose onto recovered MAC was 24.31 mg/g, appropriately adsorption capacity of initial MAC.  相似文献   

8.
NO2 enters spruce needles by gas exchange through the slomata. Nitrate formed from NO2 is reduced in the cytosol by nitrate reductase (NR), the rate limiting enzyme of the nitrogen assimilatory pathway. A linear relationship was found between the nitrate reductase activity (NRA), NO2 concentration and the amount of N incorporated into amino acids and proteins, so that NRA was suggested as an estimate of NO2-uptake. In the present field study, 50 spruce trees (Picea abies) have been selected, which grow in a natural habitat in a NO2 concentration gradient in a forest crossed by a highway which is a major NO source. At part of the sites, the microclimatic conditions have been recorded, so that common models of local gas exchange of the needles could be used to estimate stomatal uptake of NO2. NRA was investigated as a function of radiation and stomatal uptake on the day before needle sampling. Close to the highway NRA was permanently elevated with a maximum in summer. As with the laboratory results, a linear relationship between stomatal uptake and NRA was found. Total N — content of current year shoots was not affected by the additional N-source provided by airborne NO2. The present study shows that the gas exchange models are consistent with the physiological reactions of spruce needles on a local level and therefore contribute to the validation of calculations of NO2 dry deposition to spruce forests.  相似文献   

9.
The objective of this research was to study the effects of nitrogen (N) forms (NO3, 2.6 mM; NH4+, 2.6 mM; NO3, 1 mM + NH4+, 1.6 mM) on the growth and mineral composition of kiwifruit plants exposed to three boron (B) levels (0.025, 0.1, 0.3 mM). The kiwifruit plants were grown in a 1:1 sand : perlite mixture and irrigated daily with nutrient solutions. Shoot height, mean shoot dry weight, the number of leaves, mean leaf dry weight, and N concentration of NH4‐treated plants were significantly higher compared to the NO3 treatment at all B levels. The concentration of 0.3 mM B significantly reduced shoot height for all N treatments. Boron toxicity symptoms appeared 14 days after starting the experiment, when plants were treated with 0.1 and/or 0.3 mM B. The nitrate supply reduced the B concentration of roots, but B levels of different leaf parts were hardly affected by the N form. Furthermore, the NH4‐N form significantly reduced the Mg concentration of the leaves.  相似文献   

10.
Casuarina cunninghamiana and Eucalyptus camadulensis (Egyptian var.) plants were exposed to 0.20 and 0.40 μL L?1 O3, SO2 or NO2 for 6 hr daily for 10 days. Eucalyptus plants were very sensitive to SO2 and NO2 and less sensitive to O3. Casuarina plants were insensitive to the 3 gases. The rate of sorption of the 3 gases was estimated over a 10 day exposure to 0.20 μL L?1 pollutant concentration singly and in a 3-gas mixture. Casuarina plants removed air pollutants more efficiently than Eucalyptus plants. Leaves of both species generally sorbed about the same volume of a given gas from the mixture and from the same single gas. The sorption rate over the 10 day exposure was almost constant after a higher sorption rate during the first day for both species.  相似文献   

11.
Dissimilatory nitrate reductase in soils is the enzyme that catalyzes the reduction of NO33 to NO2 under anaerobic conditions. The detection of this enzyme in soils is reported, and a simple, sensitive and precise method to assay its activity is described. The method involves determination of the NO2-N produced when soil. 2,4-dinitrophenol (DNP), and KNO3 are incubated under waterlogged conditions at 25°C for 24 h. At a certain concentration, depending on the soil type, DNP inhibits nitrite reductase but not nitrate reductase. The DNP concentration required for optimum NO2 production in five soils ranged from 5 to 300 μg DNP g−1 soil. The nitrate reductase activity of six soils studied ranged from 18 to 80 μg NO2-N produced g−1 soil 24 h−1. Optimum activity was found at 5 mM KNO3 and nitrate reductase was inhibited at >5 mM KNO3. Nitrate reductase activity in soils is inactivated at temperatures above 40°C and is completely destroyed by steam sterilization. The relationship between duration of incubation and the amount of NO2-N produced showed a lag of about 10 h, but in general, thereafter, this relationship was linear for a certain period of incubation, which varied among the soils studied. The duration of the lag was reduced, but not completely eliminated, either by previous incubation for 10 h or by bubbling N2 gas in the soil-water mixture for 3 min to remove the dissolved O2 in the soil-water mixture before addition of NO3. The relationship between the amount of soil used and the NO2-N produced was linear unless the substrate concentration was limiting the reaction rate. Application of the Lineweaver-Burk transformation of the Michaelis-Menten equation indicated that the Km values for nitrate reductase in Ames and Okoboji soils were 3.7 and 2.9, respectively, and the Vmax values were 122 and 126μg NO2-N produced g soil 24 h.  相似文献   

12.
Abstract

The determination of nitrate in waters and soil extracts by the reduction of nitrate to nitrite by metallic or liquid reductants followed by the colorimetric determination of NO2 using the Griess‐Ilosvay reaction has been automated for use with air‐segmented auto‐analyzers or flow injection techniques. However, this technique is not applicable to plant extracts as organic species in the extracts inactivate the reduction columns. The objective of this study was to develop an automated procedure that would allow the determination of NO3 in plant extracts without the necessity of prior manual treatment. A flow injection technique was developed that successively traps and releases NO3in an anion exchange column thereby removing pigments and other non‐ionic and cationic species that otherwise interfere with conversion of NO3 to NO2 on a copperized cadmium column. This reduction step is subsequently followed by standard Griess‐Ilosvay colorimetric detection of this ion at a wavelength of 530 nm. The technique uses relatively simple and inexpensive equipment, principally a spectrophotometer equipped with a flow‐through cell and a pen recorder output, a 6‐channel peristaltic pump with accompanying tubing and a Perspex injector/commutator valve made in a laboratory workshop. The technique was found to avoid any significant interference of pigments or other organic compounds in the plant extracts, and the results compared favorably with those obtained using the manual transnitration technique. Analysis time was approximately 1.5 min per sample and could detect NO3’ concentration as low as 0.1 ug NO3’‐N ml/1 in plant extracts (10 ug NO3’‐N g‘1of plant material).  相似文献   

13.
The performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills using landfill cover soil as the filter bed medium. From the batch experiment to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10–15% by weight and 25–35°C, respectively. From the model biofilter experiment to measure the influence of inlet CH4 concentration and landfill gas inflow rate on CH4 removal capacity of a biofilter system, it was found that the removal percentage of CH4 increased as the inlet CH4 concentration decreased. Up to a landfill gas inflow rate of 1,000 mL min?1 (empty bed retention time?=?7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Up to CH4 loading rate of 278.5 g CH4 m?3 h?1, the ratio of elimination capacity to CH4 loading rate was 1 while they were 0.68 and 0.34 at CH4 loading rate of 417.8 and 557.1 g CH4 m?3 h?1, respectively. The CH4 removal by biofilter was also confirmed by measuring the change of temperature and moisture content of the filter medium in the model biofilter. The results demonstrated that the installation of a properly managed biofilter system should be effective to reduce atmospheric CH4 emissions from modern sanitary landfills at the low CH4 generation stage.  相似文献   

14.
In model experiments (60 % water holding capacity and 30°C) with a loamy clay (pH 8.3) and a calcareous sand (pH 7.9) the effect of biuret upon the breakdown of urea was studied. Ammonification and nitrification occured very quickly, in case of the calcareous sand at the beginning more NH4 was evolved. Biuret in concentration from 0.4 to 8 % maximum did not influence urea hydrolysis, however it resulted in higher NO2-figures at the beginning of the experiments demonstrating an initial marked inhibition of the process NO2 → NO3 especially in the calcareous sand. The total nitrification seemed to be a little retarded but did not differ very much finally.  相似文献   

15.
一种直接测定硝化—反硝化气体的15N示踪—质谱法   总被引:3,自引:0,他引:3  
本文对15N示踪—质谱法的可靠性进行了检验。结果表明,在不同的15N丰度气体样品的测定中,用两种方法(反硝化作用源的15N丰度法和气样的15N丰度法)计得的反硝化损失量基本一致,故建立起来的15N示踪—质谱法是可靠的。该方法的测定偏差随气样15N丰度的降低而增大。此外,回收率结果表明,(N2+N2O+NOx)-15N累积释放量占加入NO3-15N量的94.1%。因此,这一方法可用于直接测定氮肥的硝化—反硝化损失的研究中。  相似文献   

16.
Plants of Rumex induratus and Marrubium vulgare, collected in the mining area of Almadén, were transferred to pots and grown for 2 months using perlite as substrate and treated with soluble mercury (Hg) in the applied nutrient solution. Mercury resistance, Hg bioaccumulation, and some stress biomarkers were investigated in both plant species. Mercury concentration increased in both plant species in response to Hg supply, but R. induratus was more effective in Hg accumulation. Rumex induratus and M. vulgare showed higher [Hg]shoot‐to‐[Hg]root ratios than other plant species. Mercury in the growth medium perlite was also investigated, distinguishing soluble, available, and total amounts of Hg in the medium. At the lower doses, one half of the applied Hg was retained by perlite. Rumex induratus decreased the available Hg fraction in perlite more than M. vulgare. The bioaccumulation factor ([Hg]plant/[Hg]available) was similar in both species and similar as found in previous field studies. Plant growth, water content, and chlorophyll concentration, and nutrient translocation were reduced in both plant species by the Hg. Rumex induratus showed higher resistance and Hg‐accumulation capacity than M. vulgare, due to the accumulation of thiols in roots and the absence of a lipid oxidative response.  相似文献   

17.
Abstract

Biosolids compost is used in media to grow potted plants. Nitrogen (N) in media leachate may contribute to nitrate (NO3‐N) contamination of surface or ground water. Addition of sawdust to potting media containing biosolids compost will increase the carbon (C) to nitrogen ratio and could prevent N leaching without adversely affecting plant growth. A control medium containing 0% sawdust (v/v), 30% perlite, 50% municipal biosolids compost, and 20% sand was modified to contain either 10, 20, or 30% (v/v) fresh hardwood sawdust. The sawdust replaced either 1/3, 2/3, or all of the perlite in the control medium. Slow release fertilizer, slow plus quick release fertilizer, or no fertilizer was added to each of the four media to determine how the sawdust affected fertilizer needs. Coreopsis (Coreopsis grandiflora L.) and Rudbeckia (Rudbeckia hirta L. ’Goldstrum') were grown in pots for five months. Leachate was tested for NO3‐N and ammonium N (NH4‐N). Increasing amounts of sawdust produced no differences in growth of Coreopsis and few differences in the growth of Rudbeckia. The addition of slow or slow plus quick release fertilizer had little effect on the growth of Coreopsis and a greater effect on the growth of Rudbeckia. Sawdust and fertilizer had no effect on the leaching of N. Nitrogen leached primarily as NH4‐N during the first four weeks of the experiment.  相似文献   

18.
The effects of NO2 and O3 exposure alone or in combination were investigated with respect to the amino acid content and composition in kidney bean. The short-term exposure (up to 8 h) to NO2 at a concentration of 4.0 ppm alone or in combination with O3 at a concentration of 0.4 ppm induced a rapid increase in the total amino acid content among which glutamine accounted for most of the part. Total amino acid content was also increased by O3 exposure at 0.4 ppm after 2 hours’ lag period. Ammonium level became higher in the case of combined exposure to NO2 and O3, while it remained constant in the case of exposure to NO2 and O3 alone.

When the exposure period was extended to 2 to 7 days (long-term exposure), the increase in the content of the total amino acids was observed in most of treatments. Roots of the plants exposed to various concentrations of NO2 and O3 showed the most remarkable increase in the content of total amino acids. Asparagine, in place of glutamine, became a major amino acid. The percentage of asparagine was especially increased by the mixed exposure to NO2 and O3 These results indicate that glutamine which accumulates considerably in the early phase of the gas exposure (short-term exposure) seems to be gradually converted into other amino acids, mainly asparagine.

The correlation between the content of each amino acid, ammonium and total amino acids was calculated using data from the above experiment. Most of the amino acids in the primary and trifoliate leaves showed a high correlation with the total amino acids, suggesting that the changes in the amount of total amino acids caused by the air pollutants may be reflected not only by a particular amino acid, but also by an individual amino acid composing soluble metabolite pool. A high correlation was obtained among amino acids belonging to the serine family such as glYCine, serine, and cysteine.  相似文献   

19.
利用玻璃微电极技术测定了扬稻6号(籼稻)幼苗根尖细胞在吸收不同NO3-浓度(0.01、0.02、0.1、0.2、0.5、1.0和2.0.mmol/L)过程中膜电位的变化。结果表明,1)水稻根系吸收NO3-引起膜的去极化,去极化到一定程度后出现复极化;有小部分水稻根表现为超极化。在0.01~1.0.mmol/L范围内,去极化大小随外界NO3-浓度的增加而增加,且差异显著(P0.05)。0.01.mmol/L.NO3-产生较小的去极化,平均为3.8.mV;0.5.mmol/L.NO3-产生了最大去极化,平均为40.2.mV;当外界NO3-浓度大于1.0.mmol/L时膜电位去极化大小呈下降趋势。根系吸收不同浓度的NO3-而使膜电位去极化的进程符合Michaelis-Menten动力学。2)复极化有部分复极化和完全复极化两种。超极化也有两种:一种是膜电位先超极化,后缓慢复极化;另一种是先出现一个小的去极化,然后是较大幅度的超极化。3)运输蛋白抑制剂PGO抑制了根系吸收NO3-而产生的膜电位的响应。4)对于经CaSO4溶液预培养的水稻来说,C2+主要引起膜电位超极化。  相似文献   

20.
The objective of this study was to investigate the effect of adding flue gas desulphurization gypsum (FGDG) on the transformation and fate of nitrogen during co-composting of dairy manure and pressmud of a sugar refinery. The ammonia absorption of FGDG was investigated. The changes in compost temperature, pH, electrical conductivity (EC), moisture, organic matter, the C/N ratio, Kjeldahl N, NH4+-N, NO2?-N, NO3?-N were assessed. The addition of FGDG did not significantly affect compost temperature, pH, EC, moisture, and organic matter degradation. However, the addition of FGDG significantly increased the NH4+-N content in the compost during the thermophilic phase, and the NH4+-N maximal content in the compost with FGDG (CP+G) was 59.9% more than that in the compost without FGDG (CP–G). FGDG was thought to create the formation of (NH4)2SO4 and the cation exchange between NH4+ and Ca2+. The NO2?-N content in the CP+G peaked on day 15, and was not observed in the CP–G. In the final compost products, the NO3?-N concentration in the CP–G was more than that in the CP+G, which was 1451 (CP–G) and 1109 mg·kg?1 (CP+G) dry material. This might be due to the NO2? accumulation in the CP+G, which accelerated N loss in the form of N2O. There is a strong correlation between N2O emission and NO2?-N accumulation in the composting process. Compared with the original N content in the compost mixture, the N loss in CP–G and CP+G were 15.0 and 10.8%, respectively. These results revealed that NH4+-N conservation effect was improved during the thermophilic phase and the total N loss was mitigated by adding FGDG into composting materials. FGDG could be utilized as a potential amendment to conserve nitrogen during composting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号