首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brian P. Forster 《Euphytica》2001,120(3):317-328
A review of research at the Scottish Crop Research Institute (SCRI) on the effects of semi-dwarfing genes on salt tolerance in barley is given. Work began in1993 with the fortuitous and unexpected result that the cultivar ‘Golden Promise’ showed considerable tolerance to salt. Golden Promise is a gamma-ray induced semi-dwarf mutant of the cultivar ‘Maythorpe’. The parent and mutant cultivars are presumed to be isogenic, but show significant differences in their responses to salt stress. The positive and pleiotropic effects of the mutant gene, commonly known as GPert were found to be effective in a number of genetic backgrounds. Earlier, in 1991 Frackowiak showed that the GPert mutation was allelic to the ari-e mutants in barley. The ari-emutants were salt tested and found to show the same positive responses to salt stress as Golden Promise. This supported the allelism tests, and consequently the GPert symbol was changed to ari-e.GP. The semi-dwarf mutant sdw1 (also known as denso) and the erectoides semi-dwarf mutant,ert-k 32 were also tested for their effects on tolerance to salt, but did not show any positive effects. Salt tolerance was therefore not a general phenomenon of semi-dwarf stature but specific to mutations at the Ari-e locus in these lines. Genetic markers (RAPDs, AFLPs and SSRs) have been used for fingerprinting, genetic mapping, and QTL analysis. The markers have helped 1) confirm the isogenic relationship between Maythorpe and Golden Promise, 2)clarify the confusion over the pedigree of Golden Promise, and 3) genetically map the ari-e.GPlocus and examine its pleiotropic effects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Aluminum (Al) toxicity is a major limiting factor in acid soils and more adequate genetic tolerance is needed to improve barley adaptation and production in affected regions. To study the inheritance and chromosome location of the Alp gene controlling Al tolerance in ‘Dayton’ barley the primary trisomics of sensitive ‘Shin Ebisu 16’ were crossed to ‘Dayton’. Parental, F1 and F2 seedlings were grown in nutrient solution containing 0.03, 0.06 and 0.09mM Al. and classified for tolerance by haematoxylin staining of the roots. In diploid F2 progeny, Alp was inherited as a single gene, dominant at 0.06mM and recessive at 0.09 mM concentrations, as indicated by the 3:1 and 1:3 (tolerant: sensitive) segregation ratios, respectively. Segregation of the trisomic Frderived F2 seedlings at 0.06mM Al deviated significantly from the 3:1 only for the triplo 4/‘Dayton’ cross. Data for this cross fit the expected trisomic ratios, indicating that the Alp gene is distally located from the centromere on chromosome 4. These results confirm that tolerance is simply inherited, but expression of tolerance is dependent on Al concentration and allele dose.  相似文献   

3.
K. Rikiishi    T. Matsuura    M. Maekawa    K. Noda  K. Takeda 《Plant Breeding》2003,122(2):105-111
Eighty‐four cultivars of barley (Hordeum vulgare) and 95 wild strains (82 of H. spontaneum and 13 of H. agriocrithon) were surveyed for the production of callus, callus growth, and shoot regeneration in cultures derived from immature embryos. All cultivars except for ‘Turkey 381′, induced calli from more than 90% of embryos. On the other hand, the wild lines showed a large variation in the percentage of callus induction from 0 to 100%. Among the cultivars, those with the brittle rachis genotype, bt Bt2, on chromosome 3H, regenerated shoots with a significantly higher percentage than the cultivars with the Bt bt2 genotype. Green shoots were produced in a higher ratio (0.84) in the cultivars than in the wild lines (0.52). Among the lines examined,‘Lenins’ regenerated shoots efficiently (90.4%) and produced the highest number of calli with green shoots per embryo (4.77) followed by ‘Golden Promise’ (3.15). Examination of callus growth and shoot regeneration from embryos at different developmental stages revealed that scutellum development affected the quantity and quality of callus and shoot regeneration.  相似文献   

4.
Polyamine levels and diamine and polyamine oxidase activities have been investigated in the first leaves of barley (Hordeum vulgare L.) in the absence of or following inoculation with conidia of powdery mildew (Blumeria graminis f. sp. hordei). Two cultivars with varying sensitivity to powdery mildew, viz., Chariot (resistant) and Golden Promise (susceptible) were used. The levels of putrescine, spermidine and spermine were found to be higher in the leaves of Chariot than in the leaves of Golden Promise and, with the exception of spermine, were generally higher in both cultivars after inoculation. In inoculated leaves of Chariot, levels of putrescine and spermidine peaked at 9 days and 12 days, respectively. In controls (uninoculated leaves), the activities of these enzymes, and putrescine and spermidine levels also increased but not to the same extent as in inoculated leaves. With Golden Promise, the levels of putrescine and spermidine in the inoculated leaves changed very little over sampling times but were always higher than in the controls. In this cultivar, there was little difference between inoculated leaves and the controls in diamine oxidase activity which reached a maximum value at 9 days post-inoculation. Activity of the bound form of diamine oxidase was low in both the cultivars. Polyamine oxidase was not detected at 3 days after inoculation in either cultivar but activity at fairly low levels was recorded at later times, usually reaching a maximum value at 9 days. The results suggest that polyamine metabolism and diamine oxidase activity in particular may be involved in the mechanism conferring resistance to barley powdery mildew in Chariot.  相似文献   

5.
Y. Turuspekov    N. Kawada    I. Honda    Y. Watanabe    T. Komatsuda 《Plant Breeding》2005,124(6):542-545
General knowledge of the closed flowering trait, or cleistogamy, of barley is still limited. The relationship between cleistogamy and spike morphology characters was studied and linkage of cleistogamy genes with a highly significant quantitative trait locus (QTL) for rachis internode length on the long arm of chromosome 2H was detected. The mapping populations consisted of 129 doubled haploid lines of ‘Mikamo Golden’ × ‘Harrington’ and 150 F2 plants of ‘Misato Golden’ × ‘Satsuki Nijo’. The phenotypic variance explained by this QTL accounted for 77.5% and 82.6% of the variance in rachis internode lengt, respectively, in these two populations. The peaks of the QTL coincided with the positions of the cleistogamy gene loci.  相似文献   

6.
Genetic analysis of resistance in barley to barley yellow dwarf virus   总被引:1,自引:0,他引:1  
J. Ovesná    J. Vacke    L. Kucera    J. Chrpová    I. Nováková    A. Jahoor  V. &#;ip 《Plant Breeding》2000,119(6):481-486
The inheritance of resistance to barley yellow dwarf virus (BYDV) was studied in the selected 24 spring and winter barley cultivars that showed a high or intermediate resistance level in 1994‐97 field infection tests. The polymerase chain reaction diagnostic markers YLM and Ylp were used to identify the resistance gene Yd2. The presence of the Yd2 gene was detected with both markers in all the resistant spring barley cultivars and lines from the CIMMYT/ICARDA BYDV nurseries. The results of field tests and genetic analyses in winter barley corresponded with marker analyses only when the Ylp marker was used. Genes non‐allelic with Yd2 were detected by genetic analyses and the Ylp marker in moderately resistant spring barley cultivars ‘Malvaz’, ‘Atribut’ and ‘Madras’, and in the winter barley cultivars ‘Perry’ and ‘Sigra’. Significant levels of resistance to BYDV were obtained by combining the resistance gene Yd2 with genes detected in moderately resistant cultivars. The utilization of analysed resistance sources in barley breeding is discussed.  相似文献   

7.
Powdery mildew resistance in Czech and Slovak barley cultivars   总被引:5,自引:0,他引:5  
Fifteen powdery mildew resistance genes and the gene MlaN81 derived from ‘Nepal 81’were found in 76 Czech and Slovak spring and winter barley cultivars when tested for reaction to a set of powdery mildew isolates. Nine cultivars (‘Donum’, ‘Expres’, ‘Jubilant’, ‘Orbit’, ‘Primus’, ‘Progres’, ‘Stabil’, ‘Vladan’ and ‘Zlatan’) are composed of lines with different resistance genes. The Mlat gene is present in nine cultivars and was transferred from the Anatolian landrace ‘A‐516′. The resistances derived from ‘KM‐1192’and ‘CI 7672’were identical and designated Ml(Kr). Five winter barley cultivars possess the Ml(Bw) resistance. The winter barley line ‘KM‐2099’carries the mlo gene. The parental cultivar ‘Palestine 10’was also tested in which the genes Mlk1, MlLa were identified. The German cultivar ‘Salome’, a parent of seven cultivars tested, probably carries the gene MlLa in addition to mlo and Mla7. The gene mlo6 may be present in the cultivar ‘Heris’. Most of the results were confirmed by the pedigrees of the cultivars.  相似文献   

8.
Four breviaristatum (short awned and semi-dwarf) barley mutants; ari-e.1, ari-e.119, ari-e.156 and ari-e.228 were compared with other semi-dwarf mutants; Golden Promise, Alf, Pallas and Diamant along with their non-mutant parents; Bonus, Foma, Maythorpe, Bomi and Valticky, for response to salt stress. Plants were exposed to hydroponic salt treatments (NaCl at 25 and 175 mol m-3) for 4 weeks, after which response was measured in terms of shoot dry weight, sodium content and δ13C. In general ari-e mutants and Golden Promise had significantly lower Na+ contents than the other mutants. They also had significantly more negative δ13C values than the other lines in stressed (175 mol m-3 NaCl) conditions. There was a positive correlation (r = 0.71, p < 0.01) between shoot Na+ and δ13C values so that δ13C became less negative with increasing Na+ content. Shoot dry weights were compared to shoot Na+ and δ13C values. The ari-e and Golden Promise mutants showed less reduction in dry matter production in salt stress relative to the control treatment than all the other lines. The data suggest that ari-e mutants and Golden Promise are better adapted to salt stressed environments than the other lines examined. Tests for gibberellic acid sensitivity revealed that ari-e mutants and Golden Promise responded weakly to GA3, while other dwarf mutants Pallas, Diamant and Alf along with their parents Bonus, Foma, Maythorpe, Valticky and Bomi were highly sensitive. Our results support previous findings that ari-e mutants and the GPert mutant are allelic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The aim of the present study was to produce backcross progenies in a new winter wheat (‘Asakaze komugi’) × winter barley (‘Manas’) hybrid produced in Martonvasar. As no backcross seeds were obtained from the initial hybrids, young inflorescences of the hybrids were used for in vitro multiplication in three consecutive cycles until a backcross progeny was developed. The chromosome constitution of the regenerated hybrids was analysed using genomic in situ hybridization (GISH) after each in vitro multiplication cycle. The seven barley chromosomes were present even after the third in vitro multiplication cycle but abnormalities were observed. Sixteen BC; plants containing, according to GfSH analysis, one to three complete barley chromosomes, two deletion barley chromosomes and a dicentric wheat‐barley translocation were grown to maturity from the single backcross progeny. The barley chromatin was identified using 20 chromosome‐specific barley SSR markers. All seven barley chromosomes were represented in the BC: plants. A deletion breakpoint at FL ±0,3 on the 5HL chromosome arm facilitated the physical localization of microsatellite markers.  相似文献   

10.
S. B. Thomsen    H. P. Jensen    J. Jensen    J. P. Skou  J. H. Jørgensen   《Plant Breeding》1997,116(5):455-459
In order to determine more precisely the location of the barley leaf stripe gene, called the ‘Vada-resistance gene’, on barley chromosome 2, 63 chromosome-doubled barley lines were tested. Using data on known chromosome 2 genetic markers, the ‘Vada-resistance gene’ was estimated to be located between the markers MSU21 and Xris45b, and at a distance of about 20% recombination from the powdery mildew resistance gene MILa. We suggest that the ‘Vada-resistance gene’ is designated Rdg1a and that all former leaf stripe resistance gene designations should be rejected. To identify possible new sources of resistance, 11 barley cultivars/lines known to possess leaf stripe resistance and originating from different parts of the world, were tested with one Danish and two Syrian isolates of the leaf stripe fungus. Three apparently genetically different sources of race-specific resistance were found. The ‘Vada-resistance’ in the cultivar ‘Golf was effective against seven out of eight isolates’ populations of the leaf stripe fungus differing in geographical origin.  相似文献   

11.
Investigations were carried out to assess the suitability of the intergeneric cross Hordeum vulgare×Psathyrostachys fragilis for haploid barley production. H. vulgare cvs. ‘Emir’ and ‘Vada’ were each pollinated with P. fragilis P.I. 343192 and plants regenerated from embryos cultured on a modified B5 medium. Seed sets on ‘Vada’ were significantly lower than on ‘Emir’, and all the planes from ‘Vada’×P. fragile remained hybrid. Several of these flowered but there was little pairing between the parental chromosomes. Most of the plants from ‘Emir’×P. fragilis died, as seedlings but 3 plants developed into haploid barley. Because of the practical limitations of pollen availability from P. fragilis and the inconsistencies in haploid plant formation, it is unlikely that the cross will prove as valuable as that between H. vulgare×H. bulbosum for a doubled haploid barley programme.  相似文献   

12.
Leaf‐rust resistance (Rph) genes in 61 Czech and Slovak barley cultivars and 32 breeding lines from registration trials of the Czech Republic were postulated based on their reaction to 12 isolates of Puccinia hordei with different combinations of virulence genes. Five known Rph genes (Rph2, Rph3, Rph4, Rph7, and Rph12) and one unknown Rph gene were postulated to be present in this germplasm. To corroborate this result, the pedigree of the barley accessions was analysed. Gene Rph2, as well as Rph4, originated from old European cultivars. The donor of Rph3, which has been mainly used by Czech and Slovak breeders, is ‘Ribari’ (‘Baladi 16’). Rph12 originates from barley cultivars developed in the former East Germany. Rph7 in the registered cultivar ‘Heris’ originates from ‘Forrajera’. A combination of two genes was found in 10 cultivars. Nine heterogeneous cultivars were identified; they were composed of one component with an identified Rph gene and a second component without any resistance gene. No gene for leaf rust resistance was found in 17 of the accessions tested. This study demonstrates the utility of using selected pathotypes of P. hordei for postulating Rph genes in barley.  相似文献   

13.
Previous studies established that the Australian barley cultivar ‘Prior’ possessed resistance to Puccinia hordei (RphP), displaying the same specificity as an uncharacterized resistance in the differential cultivar ‘Reka 1’ (also possessing Rph2). Multipathotype tests confirmed the presence RphP in nine additional barley cultivars and indicated that RphP differed in specificity to the genes Rph1 to Rph15 and Rph18, plus the gene RphX present in the barley cultivar ‘Shyri’. RphP was inherited as a single dominant gene. Mapping studies using a doubled haploid population derived from ‘Chebec’/‘Harrington’ located RphP to the long arm of chromosome 7H, and demonstrated linkage with an restriction fragment length polymorphism marker (pTAG732), a resistance gene analogue marker (RLch4(Nc)), and two microsatellite markers (HVM11 and HVM49) at genetic distances of about 4‐10 cM. RphP showed linkage of 28 ± 4.3 cM with Rph3. RphP was designated Rph19, with the allele designation Rph19.ah. Previous studies have established that virulence for Rph19 occurs in many barley growing regions of the world.  相似文献   

14.
A barley drought tolerance Quantitatif Trait Locus (QTL) on chromosome 2 was transferred from tolerant cultivar ‘Tadmor’ to susceptible ‘Baronesse’ and ‘Aydanhanım’. Effects of this QTL on drought tolerance and other traits were studied using near-isogenic lines under controlled environments and field trials for two years. This QTL resulted in 5.0% and 9.1% improvement in leaf relative water content of ‘Baronesse’ and ‘Aydanhanım’ cultivars, respectively, under controlled environments. The QTL accelerated heading and maturity by 2.5 days in ‘Baronesse’ and by 5–6 days in ‘Aydanhanım’. It was associated with shorter stature and more ears. This QTL region increased grain yields by 1.1 and 0.6 t/ha in ‘Baronesse’ and ‘Aydanhanım’, respectively, mainly by increasing the number of tillers. There were previous reports related to yield promoting effects of this region harbouring flowering locus eps2 (barley HvCEN gene). However, sequencing of 1025 bp fragment encompassing HvCEN coding region revealed that our parents and near-isogenic lines had no Single Nucleotide Polymorphism (SNP) variation, ruling out direct involvement of eps2. These findings pointed to the possible effect of another flowering locus in the QTL region.  相似文献   

15.
The allelic polymorphism and inheritance of MdACS1 and MdACO1 genes were analysed in 28 apple cultivars, which were derived from reciprocal crosses of the following parental pairs: ‘Golden Delicious’ × ‘James Grieve’, ‘Golden Delicious’ × ‘Jonathan’, ‘Cox's Orange Pippin’ × ‘Golden Delicious’, ‘Cox's Orange Pippin’ × ‘Jonathan’. Polymorphisms were detected by PCR and the use of two restriction enzymes (BamH1 and RsaI). In addition, new primers were designed for the further discrimination of MdACO1 alleles. Two alleles of MdACS1 gene (MdACS1‐1 and MdACS1‐2) and three alleles of MdACO1 gene (a, b and c) were detected. Cloning and sequencing of MdACO1 alleles confirmed a high conservation and some differences within the coding regions and helped to reconcile between different numbering systems. Observed segregations confirmed that alleles a, b and c belonged to the MdACO1 gene. It is apparent that polymorphisms within the MdACS1 and MdACO1 genes could aid cultivar genotyping and identification and, furthermore, that the MdACS1‐2/2 genotype is correlated with a long apple storage life.  相似文献   

16.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

17.
P. Devaux    T. Adamski  M. Surma 《Plant Breeding》1990,104(4):305-311
Crosses were made between four spring barley (Hordeum vulgare L.) cultivars and five F1, hybrids with one genotype of Hordeum bulbosum L. in two locations to investigate further previous low crossabilities which had been found in the barley cultivar ‘Apex’ with H. bulbosum. Data at all the main steps of the H. bulbosum technique were recorded and statistically analyzed. Significant differences between barley genotypes were demonstrated for all characters. It was confirmed that ‘Apex’ has poor crossability with H. bulbosum. Out of the three F1 hybrids having ‘Apex’ as one parent, two exhibited low crossability similarly to ‘Apex’ but one showed significantly higher seed setting than ‘Apex’. The effect of the location was only significant on seed setting, while genotype X location interactions were significant on seed setting, seed quality and rate of haploid plants in relation 10 florets pollinated. Another problem which has influenced the success rate of the H. bulbosum method was found in the cultivar ‘Havilla’. Although seed setting and seed quality were high for this cultivar, embryo differentiation was low. However, this latter problem was found to influence less the overall success rate than poor crossability. Mahalanobis's distances were calculated and the dendrite of the shortest distances between barley genotypes was plotted.  相似文献   

18.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

19.
In order to identify the chromosome arm carrying a gene for resistance to barley mild mosaic virus (BaMMV) in German winter barley cultivars, a line trisomic for the long arm of chromosome 3 (telo-trisomic 3L) was crossed to the resistant cvs. ‘Sonate’ and ‘Ogra’. Results of tests for BaMMV reaction in the F2 indicate that the gene for resistance in German cultivars is located on the long arm of chromosome 3.  相似文献   

20.
Manganese (Mn) deficiency is a major constraint of alkaline soils around the world, particularly for cultivation of durum wheat, which is more intolerant of low Mn levels than either common wheat or barley. Genetic variation for Mn efficiency exists in the current germplasm of durum wheat. Several restriction fragment length polymorphisms (RFLPs) previously shown to be linked to the Mel1 locus for Mn efficiency on chromosome 4HS of barley were tested on 88 selected F2 plants of the durum cross, ‘Stojocri 2’ (Mn efficient) בHazar’ (Mn inefficient). The Mel1‐linked RFLP marker Xcdo583a was closely linked to the trait and explained over 42% of the total variation for Mn efficiency in the ‘Stojocri 2’/‘Hazar’ F2 progeny. This marker has the potential to provide a valuable tool for the marker‐assisted selection of Mn‐efficient durum progeny derived from crosses with ‘Stojocri 2’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号