首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
基于虚拟样机的桁架式喷洒车稳定性动力学仿真   总被引:2,自引:0,他引:2  
为了提高卷盘式喷灌机桁架式喷洒车爬坡和抗倾覆能力,克服喷洒车试验周期长、成本高、试验优化能力受限制的缺点,采用虚拟样机软件ADAMS建立JP75型喷灌机桁架式喷洒车的动力学参数化仿真模型,对喷洒车的纵向、横向抗倾覆性以及爬坡能力进行了仿真。分析了不同坡度角工况下影响桁架式喷洒车爬坡和抗倾覆能力的几种关键因素,采用二分法控制仿真坡度角的变化,对各因素的影响程度进行了仿真试验研究,提高了仿真速度。通过对影响爬坡和倾覆性能较大的地面粘附系数、质心高度、轮距等关键因素进行优化,使临界爬坡角比现有喷洒车提高了21.48%。优化后新机型的试验运行结果表明,在同样坡度工况下新机型倾覆次数明显减少,能够达到的最大爬坡角得到提高,仿真优化取得明显效果。  相似文献   

2.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65 hm2/h,犁耕作业平均生产率为0.36 hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。  相似文献   

3.
针对贵州山地土质松软,田块面积小、坡度大,现有辣椒收获机在山地上行驶困难等问题,设计一种适用于丘陵山地的履带自走式辣椒收获机,并以该收获机的底盘为对象,研究收获机在山地行驶过程中的通过性和稳定性。利用RecurDyn对底盘在横坡行驶、纵坡行驶、翻越垂直壁和跨越壕沟等过程进行仿真。仿真结果表明,收获机在黏土路面上满载行驶时,横坡行驶最大坡度角为22°,纵坡上坡最大坡度角为30°,纵坡下坡最大坡度角为21°,翻越垂直壁最大高度为510 mm,跨越壕沟最大宽度为1 020 mm。田间试验结果表明,收获机纵坡上坡、翻越垂直壁和跨越壕沟的极限值与仿真结果的相对误差分别为10%、1.96%和3.92%,吻合度较高。试验验证了收获机在行驶过程中具有较好的稳定性和通过性,能够满足现阶段贵州山地辣椒采收要求。  相似文献   

4.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65hm2/h,犁耕作业平均生产率为0.36hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。  相似文献   

5.
针对丘陵山区马铃薯联合收获机短缺、履带底盘通过性较差等问题,设计了一款包括底盘行走装置、多级输送分离装置的自走式马铃薯收获机,开展了底盘通过性和机器收获性能理论分析。首先,对收获机底盘坡地行驶、越障性能进行理论分析,获得底盘通过性的临界参数;其次,对收获过程中马铃薯运动学进行分析,得到关键工作部件的相关参数。与此同时,运用RecurDyn仿真软件对整机进行多体动力学仿真分析,获得自走式马铃薯联合收获机适用于丘陵山区横向与纵向坡地及跨越壕沟与直壁的相关运动参数。仿真结果表明:纵向坡地行驶的最大爬坡角度为28°、横向坡地行驶的最大坡度角为20°、整机跨越垂直障碍的最大高度为150 mm、最大跨越壕沟宽度为300 mm。田间试验结果表明:收获作业时伤薯率为1.92%、破皮率为2.86%。收获机满足纵向坡度25°稳定行驶要求,跨越300 mm壕沟,翻越150 mm直壁,与仿真结果保持一致,验证了仿真的准确性,满足履带马铃薯收获机行驶通过性的设计要求。该研究可为丘陵山区根茎类履带式收获机的设计提供理论基础与参考。  相似文献   

6.
针对广西丘陵山地15°~25°坡地的经济作物种植园区坡度较大、地块分散、缺少机耕道,现有机械化割草机具难以进入并进行作业的难题,结合种植园区生草栽培的农艺技术,研发一种可遥控的履带割草机。根据园区作业环境的割草机工况要求,对整机及关键部件如履带行走系统、切割系统、变割草高度调节系统等进行计算分析与设计;设计并进行整机性能试验,实验结果表明,该割草机动力充足,最大纵向爬坡角度为36°,最大斜向爬坡角度为41°,在增程系统作用下,综合工况下作业时间由1.5 h延长至1.8 h;最小转弯半径为403.5 mm;对割草机的遥控操作性能做直线行走试验,测试路段试验最大偏驶角度不大于3°;倾翻试验台架测试纵向倾翻稳定角为48.9°,横向倾翻稳定角为64.4°;在广西某机械化茶园示范区进行割草试验,平均割草率为95%;可通过遥控实现割草机的行走、制动、转向和割草刀具高度调节,满足丘陵山地作物园区作业需求。  相似文献   

7.
履带底盘作为农机通用底盘的一种优选方案,在山地果园环境中的应用仍然存在较大优化空间。为了进一步提高履带底盘在复杂行驶路况下的地形适应性,结合山地果园的地形地貌特征,开展了履带底盘的坡地通过性能分析,并基于多体动力学分析软件RecurDyn的仿真结果,进行样机优化和试验验证。首先,以果园通用履带底盘为研究对象,通过理论分析探讨影响履带底盘斜坡平地通过性、斜坡越障通过性的关键结构参数,然后搭建RecurDyn虚拟仿真样机,分析关键结构参数对坡地通过性能的影响规律,进而以提高现有底盘坡地通过性能为优化目标,根据仿真分析结果提出了一种重心调节系统,最终进行样机试制与室内土槽试验。试验结果表明,在坡度为10°的试验路面下,优化后样机在偏航45°时最大牵引力均值为1 926 N,相比调控前增加了14.03%。优化后样机最大翻越台阶高度为230 mm,相比优化前增加了27.78%。优化后样机最大跨越壕沟宽度为640 mm,相比优化前增加了28%。研究结果可为山地果园履带底盘的坡地行驶性能优化提供参考。  相似文献   

8.
针对丘陵山地拖拉机坡地适应性差,易翻倾,通过性差等问题,设计一种具有自动调平机构的504型丘陵山地拖拉机。整机采用机械传动,四驱轮式行走系统,两侧独立传动转向系统,平行四杆自动调平机构,可实现拖拉机姿态自动仿形调平。基于SolidWorks对拖拉机进行整机三维建模,运用ADAMS软件对虚拟样机进行侧倾稳定性动态仿真分析。结果表明: 自动调平机构调平动作范围732 mm,可在25°的坡地上保证车身横向水平。上坡极限翻倾角及下坡极限翻倾角均为45°,上坡纵向滑移角为33.69°,下坡纵向滑移角为16°,前后驱动轮越障高度为214 mm。调平状态下车身的最大侧倾角为37.5°,与理论计算35.93°非常接近。该机前后驱动桥均可进行独立调平,保证机身始终处于水平姿态,能够满足丘陵山地生产作业要求。  相似文献   

9.
利用地面车辆力学理论,对坡地上的圆形和平移式喷灌机的塔架车进行受力分析,以纵向坡度角作为衡量塔架车爬坡能力和抗翻倾能力的指标,推导出纵向坡度角与驱动力、塔架车结构尺寸、地面状况等因素之间的关系式及塔架车质心高度的计算公式,通过试验测得塔架车的纵向稳定性特性曲线.结果表明,适当增大塔架车的轮距、降低质心高度、减小驱动轮动力半径,合理匹配驱动功率,提高减速器传动效率、增大传动比,均可提高塔架车的爬坡能力和纵向稳定性.  相似文献   

10.
差高机构对微型履带山地拖拉机稳定性的影响   总被引:1,自引:0,他引:1  
为使微型履带山地拖拉机更好地适应丘陵、山地等地带作业,在现有履带拖拉机的基础上,对其行走系统进行了改进,增加了液压差高机构。根据差高机构的工作原理,运用矢量矩阵理论,建立了差高机构工作时整机质心位置变化的数学模型,并进一步给出了在坡道行驶时允许的最大坡度角。实例分析表明,差高机构使微型履带山地拖拉机纵向稳定性有所降低,但可提高其横向稳定性。  相似文献   

11.
山地履带拖拉机坡地等高线作业土壤压实应力研究   总被引:1,自引:0,他引:1  
山地履带拖拉机(配备姿态调整机构)具有良好的稳定性和越障性能,特别适宜在丘陵山区坡地作业,然而由于坡地角的存在导致拖拉机两侧履带下的应力分布极不均匀,使得拖拉机附着性和通过性均降低。本文针对山地履带拖拉机坡地等高线行驶/作业时,坡地土壤内部应力分布规律不明确以及如何提高应力均匀性缓解土壤压实等问题,在深入分析坡地工况下履带最大接地比压与应力传递基本规律的基础上,采用EDEM-RecurDyn耦合方法进行了仿真试验,并采取土压力盒埋设法分别开展了基于小型坡地土槽的静态试验和坡地试验田的动态试验;其中,静态试验探究了不同深度土壤在含水率、初始紧实度、加载质量及坡地角等影响下的垂直应力分布规律;动态试验探究了山地履带拖拉机坡地等高线行驶/旋耕作业时履带下方土壤应力随作业速度、车身状态(调平/未调平)及牵引负载的变化规律;并分析了履带张紧力对土壤垂直、水平应力分布的影响。试验结果表明:履带下垂直应力在各支重轮的轴线处呈现一个应力峰值;水平应力在各支重轮轴线的前、后方分别出现一个应力峰值;适当增大作业速度,可减小土壤内部垂直和水平应力峰值,拖拉机速度由0.5 km/h增加到1.5 km/h,垂直...  相似文献   

12.
为了进一步提升山地果园运输机械的复杂地形适应性,设计了一种基于重心自适应调控的山地果园运输车.根据山地果园实际环境特点,进行运输车的总体设计并阐述基本工作原理;根据设计要求,分别开展履带底盘、可移动载物台以及控制系统的关键部件设计,并针对斜坡、斜坡台阶和斜坡壕沟3种路况制定整机重心控制策略;基于多体动力学分析软件Rec...  相似文献   

13.
丘陵山地拖拉机姿态主动调整系统设计与实验   总被引:3,自引:0,他引:3  
为保证拖拉机在丘陵山地的安全作业,并提高作业效率及乘坐舒适性,设计了基于双闭环PID算法的丘陵山地拖拉机姿态主动调整系统。首先,根据丘陵山地特定作业需求设计了姿态主动调整系统,包括姿态调整机构、液压驱动系统和控制系统;然后,建立了系统动力学模型,通过数值分析验证了该自动调平控制算法的有效性;最后,在山东五征集团生产的拖拉机上安装此系统,并进行了实验验证。结果表明:所设计的姿态主动调整系统在±10°的坡地上调平时间为7. 5 s,最大调平误差小于0. 5°,左右摆动机构摆角绝对值的差在±1°以内,能有效满足丘陵山地作业需求。同时,该拖拉机在高低起伏较大的坡地上以1挡速度(1. 98 km/h)行驶时,车身倾斜角可控制在±3°范围内,左右摆动机构摆角绝对值差在±5°范围内。所设计的姿态主动调整系统能适应恶劣作业环境的作业需求。  相似文献   

14.
双齿轮式排肥器设计与试验   总被引:4,自引:0,他引:4  
为了提高颗粒肥料的施肥均匀性,设计了双齿轮式排肥器。利用离散元软件对排肥过程进行仿真分析,以排肥轮压力角、排肥轮间隙为试验因素,以排肥均匀度变异系数为排肥效果评价指标,分析因素对指标的影响。单因素试验结果表明,排肥轮压力角在15°~25°,排肥轮间隙在4~6 mm,排肥效果较好;通过二次通用旋转组合试验,建立了两个因素与评价指标的回归方程,试验结果表明,随排肥轮压力角、排肥轮间隙的增大,排肥均匀度变异系数均呈现先增大、后减小的趋势,当排肥轮压力角为19. 52°、排肥轮间隙为4. 7 mm时,排肥器具有最优的排肥效果,此时理论计算和仿真试验的排肥均匀度变异系数分别为15. 30%和14. 58%,两者偏差为0. 72个百分点,说明回归模型准确。最优结构参数组合下双齿轮式排肥器的台架试验结果表明,排肥量可通过排肥轮转速线性调节,排肥均匀度变异系数为15. 42%,与仿真值及理论值基本一致;同等条件下外槽轮排肥器的排肥均匀度变异系数为20. 29%,试验排肥器排肥均匀度变异系数提高了31. 58%,排肥均匀性得到明显改善。  相似文献   

15.
针对黄淮海地区玉米免耕播种作业时,过量小麦秸秆残茬堵塞开沟器的问题,提出一种以拨离残茬和浅旋根茬形式实现苗床清整的斜置式防堵装置。通过理论分析对防堵装置结构参数进行设计,确定了各参数的范围和相互关系,并根据装置结构对耕刀拨茬入土和脱茬离土的过程进行受力分析,确定了影响工作性能的因素。运用离散元方法模拟防堵装置在田间作业过程,以秸秆清除率、土壤扰动系数和功耗为评价指标,对装置倾角、转速和前进速度进行回归分析和显著性检验,确定了各因素对评价指标的影响及主次顺序。通过对回归模型进行多目标函数优化求解,得到最优参数组合为:转速400r/min、前进速度6km/h、倾角18.5°,此时秸秆清除率为74.5%、土壤扰动系数为34.7%、功耗为1.36kW。以优化得到的参数对装置进行土槽试验,试验结果表明:转速为400r/min、前进速度6km/h、倾角18.5°时,秸秆清除率为92.5%、土壤扰动系数为29.6%、功耗为1.51kW,试验结果与仿真试验优化结果相吻合,满足设计要求。  相似文献   

16.
针对玉米种子三轴尺寸差异大,在取种过程中易造成漏取和重取的问题,设计了一种摆动夹取式玉米精量排种器,阐述其结构组成及工作原理,并对关键部件进行设计;通过建立的模型进行力学和运动学分析,得到了影响排种器取种性能的关键因素;通过EDEM软件建立仿真模型,分析种群高度及排种器转速对种群流转速度的影响规律,得到了排种器取种性能曲线;以取种块开合角、进种筒安装高度、排种器转速为试验因素,取种单粒率、漏取率、重取率为评价指标进行二次正交旋转组合仿真试验,结果表明最优参数组合为取种块开合角43.87°、进种筒安装高度37.84 mm、排种器转速0.41 r/s,在最优参数组合下进行排种性能台架验证试验,得到排种器排种合格指数为94.11%、漏播指数为2.52%、重播指数为3.37%,满足行业标准及农艺要求,研究结果为机械式玉米精量排种器关键部件的设计优化提供了理论参考。  相似文献   

17.
针对丘陵山地拖拉机作业地形复杂,传统电液悬挂控制系统地形适应性差的问题,设计了一套横向姿态可调的丘陵山地拖拉机电液悬挂仿形控制系统。根据丘陵山地拖拉机仿形控制作业需求,在传统悬挂结构基础上加装一个液压驱动旋转装置,设计了一种仿形悬挂机构,基于液压多点动力输出技术设计了带有负载反馈的闭心式液压控制系统,并提出了一种基于带死区的经典PID算法的控制方法。通过对阀控非对称液压缸工作原理的分析,建立了其数学模型并推导出仿形控制系统的传递函数,运用Matlab/Simulink建立了电液悬挂仿形控制系统的动力学模型并进行了仿真分析,仿真结果表明,系统在0°~11°阶跃信号的作用下,调整时间约为0.4s,几乎无超调,系统稳定后农机具横向倾角约为11.1°,稳态误差约为0.1°,仿真结果验证了该控制算法的有效性。通过对传统拖拉机的液压悬挂装置进行改装,将原来的手柄操纵式液压悬挂装置改装成带有虚拟终端的电液悬挂控制系统,搭建了仿形控制试验台并进行了室内台架试验,试验结果表明,系统调整时间约为2.2s,几乎无超调,系统稳定后农机具横向倾角约为11.2°,稳态误差约为0.2°,在系统允许误差(0.5°)范围内,试验结果验证了所设计的丘陵山地拖拉机电液悬挂仿形控制系统调节的快速性与稳定性,满足拖拉机等高线坡地作业需求。  相似文献   

18.
以丘陵山地姿态调整轮式拖拉机为研究对象,提出了一种基于改进遗传算法的运动控制方法,可根据地形条件实现对拖拉机的实时调平控制,提高其车身稳定性。首先,根据拖拉机机构间的运动关系,建立表征其轮心位置与车身姿态参数关系的运动学模型,并进行算例求解,验证了运动学模型的正确与准确性。然后,以提高拖拉机车身稳定性为控制目标,在运动学建模的基础上设计了一种基于改进遗传算法的运动控制方法。最后,对算法进行仿真验证,结果表明,使用算法进行运动控制可有效降低其车身姿态角,横向坡地最大侧倾角降低13.3°,纵向坡地最大俯仰角降低4.3°;在两种坡度兼有的路面上进行综合调整,其最大侧倾角和最大俯仰角分别降低13.8°和4°,极大提高了车身稳定性。同时将改进遗传算法与传统遗传算法进行对比,结果表明,改进遗传算法在响应时间和控制精度方面均优于传统遗传算法,其算法响应时间较传统遗传算法缩短63.93%,大幅提高了算法效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号