首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 216 毫秒
1.
生物炭和AM真菌提高矿区土壤养分有效性的机理   总被引:1,自引:0,他引:1  
【目的】矿区土壤贫瘠、有效养分含量低,而生物炭和丛枝菌根(arbuscular mycorrhizal, AM)真菌能够改善土壤养分,提高植物对环境胁迫的抗性和养分的利用。因此探究生物炭和AM真菌对矿区土壤的改良效果,可为矿区污染土壤生态恢复和新型肥料的开发提供参考。【方法】温室盆栽试验的土壤采自河南省洛阳市新安县江春矿区,以玉米"弘单897"为试验材料。试验设计4个处理,分别为原状土壤对照(CK)、添加生物炭(B)、接种AM真菌(M)、添加生物炭和接种AM真菌(BM),每处理重复8次,完全随机区组设计,玉米于矿区土壤中培育2个月后收获,测定根系生长、生理特性和土壤养分含量。【结果】施用生物炭和接种AM真菌均能够促进玉米生长,提高玉米叶片的净光合速率(P_n)、蒸腾速率(T_r)、气孔导度(G_s)、叶色值(SPAD值)和抗氧化酶活性,提高土壤养分含量。接种AM真菌对促进玉米生长、改善生理特性和磷吸收的效果优于生物炭,而生物炭提高土壤pH值和玉米对钾吸收的效果较好。生物炭和AM真菌联合处理玉米的总根长、根部和地上部干重分别较CK增加了84.22%、176.67%和45.84%,玉米叶片的净光合速率、蒸腾速率、气孔导度分别较对照提高35.42%、56.44%和88.31%,叶色值比CK提高了22.77%,菌根侵染率较CK提高234.20%,菌丝密度可达到4.37 m/g,总球囊霉素和易提取球囊霉素分别达到4.32 g/kg和1.60 g/kg,有机质、碱解氮、有效磷、速效钾含量分别较对照提高24.23%、43.26%、98.63%和33.93%。【结论】生物炭和AM真菌单独或复合处理均能够促进玉米生长和提高土壤养分有效性,生物炭和AM真菌联合处理可促进玉米生长、改善生理特性、促进养分吸收、提高土壤养分效果,可作为退化土壤生态修复和农业生产安全的一项有效措施。  相似文献   

2.
探讨接种丛枝菌根(AM)真菌和根瘤菌对连作花生作用效果及可能机制,有益于缓解花生连作障碍,促进花生养分高效和持续高产。在花生典型种植区,选择有代表性的酸性砂姜黑土,设置不接种(CK)、接种AM真菌(AM)、接种根瘤菌(Rb)、双接种(AM+Rb)4个处理,采用微区试验,研究AM真菌与根瘤菌对花生生长、根系形态、养分吸收及土壤微生物特性的影响。结果表明:接种处理增加了花生第一侧枝长和分枝数,显著提高了花生根和地上部生物量、荚果重和根瘤数,其中AM+Rb处理提高效果最显著。同时AM+Rb处理的花生根系总根长、总表面积、总体积分别显著提高30.1%、20.2%和59.7%,土壤微生物总量、细菌/真菌、放线菌/真菌明显提高,不同部位氮、磷、钾、钙、镁积累量显著增加,效果优于单接种。比较AM真菌和根瘤菌2种接种方式,Rb处理的花生不同部位氮积累量较高,而AM处理的根系形态状况较好,且花生不同部位磷、钾、钙、镁吸收量较高。可见,在酸性砂姜黑土区,接种AM真菌和根瘤菌尤其是双接种有益于改善根系形态状况和根际微生物环境,增强花生养分吸收能力,从而促进花生的生长及产量的提高。  相似文献   

3.
【目的】本研究通过探讨小麦和玉米残体与其生物炭配施对土壤各组分有机碳及其自身有机碳矿化的影响,揭示其在土壤固碳和培肥方面的效应,为农田有机物资源合理利用提供理论支撑。【方法】采用室内恒温培养试验,共设置小麦或玉米残体(根茬、秸秆)和秸秆制成的生物炭单施(WS、WR、WB、MS、MR、MB),配施(WS+WB、WR+WB、MS+MB、MR+MB)以及对照(CK)构成的11个处理,培养期间测定土壤CO2释放量,培养结束后测定土壤总有机碳(TOC)、可溶性有机碳(DOC)、微生物量碳(MBC)、颗粒有机碳(POC)以及粗细颗粒有机碳含量(CPOC、FPOC)。【结果】添加玉米有机物料对土壤TOC、MBC、POC、CPOC和FPOC含量的增加作用普遍高于添加小麦有机物料。添加小麦或玉米秸秆对土壤TOC、POC、CPOC、FPOC含量的增加作用均高于添加根茬。单独添加生物炭,作物残体与生物炭配施和单独添加作物残体处理分别在培养的第4、8、21 d有机碳矿化速率最大,为有机碳矿化快速期,之后矿化速率减缓并逐渐趋于稳定。单独添加作物残体其有机碳累积矿化率最大,达到30%~46%;与对照相比,添加有机物料的各处理均显著增加了土壤TOC含量,其中添加生物炭处理土壤TOC含量增幅最大;单独添加小麦和玉米生物炭处理,土壤TOC含量分别显著增加34.4%和36.5%,但其有机碳累积矿化率仅为3%左右,土壤FPOC含量及敏感性指数在单独添加生物炭处理最高;小麦和玉米残体与其生物炭配施处理,土壤MBC和CPOC含量分别显著增加80.2%~199.2%,且其有机碳累积矿化率为12%~19%,介于生物炭和残体单施之间,土壤CPOC含量及敏感性指数均表现为配施处理最高。【结论】单独添加作物残体能够较好地补充土壤养分,但CO2释放量显著高于单施生物炭及配施处理;单独添加生物炭其有机碳累积矿化率较低,短期内对土壤养分的补充作用较小。作物残体与其生物炭配施可以较好地克服各自单独施用的弊端,尤其是玉米秸秆与其生物炭配施,在保证作物养分供应的同时能增加土壤碳库储量,对土壤肥力提升效果更好。  相似文献   

4.
生物炭介导下磷水平对连作苹果幼苗及土壤环境的影响   总被引:1,自引:1,他引:0  
苹果连作障碍是制约苹果产业可持续发展的重要因素之一。研究生物炭介导下不同施磷水平对连作条件下平邑甜茶幼苗生物量、根系呼吸速率和土壤环境的影响,探讨生物炭配施磷肥这种措施对苹果连作障碍的防控效果,并筛选出合适磷肥用量,为生产中老果园改造提供理论依据。盆栽条件下,以苹果常用砧木-平邑甜茶为试材,设计了连作土壤(CK)、连作土用溴甲烷熏蒸处理(F)、连作土+2%生物炭(B)、连作土+2%生物炭+0.5‰磷肥(BP0.5)、连作土+2%生物炭+1‰磷肥(BP1)和连作土+2%生物炭+2‰磷肥(BP2)6个处理。采用常规方法测定了不同处理对平邑甜茶幼苗生物量、根系呼吸速率、土壤养分和土壤酶活性的影响。结果表明:溴甲烷灭菌后,幼苗的株高、地径、鲜重和干重均远远高于连作土,分别是连作土中幼苗的1.6,1.5,2.9,2.5倍,幼苗的根系呼吸速率及保护酶也远远高于对照和其他处理。生物炭、或者生物炭配施磷肥,均可提高平邑甜茶幼苗的生物量,幼苗的株高、地径、鲜重和干重分别是连作土中幼苗的1.2,1.1,1.6,1.4倍和1.4,1.2,2.2,1.9倍,2种处理的根系呼吸速率也有大幅度提高;生物炭配施0.5‰磷肥可明显提高幼苗根系SOD、POD和CAT酶活性,同时降低MDA含量;与对照相比,生物炭配施0.5‰磷肥能明显提高土壤中有机质含量,增加硝态氮和速效磷的含量,促进土壤中脲酶、蔗糖酶和磷酸酶的活性。综合分析比较,生物炭配施0.5‰磷肥相比于单施生物炭,能更好的提高连作条件下平邑甜茶幼苗的生长发育,增加土壤有机质含量,增强土壤酶活性。因此,生物炭配施磷肥这一综合措施能更好的防控苹果连作障碍。  相似文献   

5.
研究生物炭和功能菌剂协同调控沙化土壤养分和微生物多样性与功能,可为沙化土壤肥力培育提供理论依据。选择毛乌素沙地典型生态经济林沙化土壤为研究对象,采用田间定位试验,运用高通量扩增测序技术,解析不同添加量(2%,4%,8%)生物炭处理及其配施定量功能菌剂(枯草芽孢杆菌+巨大芽孢杆菌+胶质芽孢杆菌)处理对土壤化学性质及细菌菌群多样性与功能的影响。结果表明:(1)与单一生物炭处理相比,生物炭+功能菌剂处理组土壤有效氮、磷养分含量分别提升44.71%和187.36%;(2)生物炭单施或者配施功能菌剂均使酸杆菌门相对丰度显著降低,而生物炭+功能菌剂处理中厚壁菌门的相对丰度,分别增加163.80%,155.15%,100.21%,并且不同程度上调土壤细菌物种丰富度和多样性;(3)功能菌剂与生物炭配施改变土壤细菌介导的碳氮循环功能,如显著提高土壤细菌的有机物质分解功能,壳聚糖和木聚糖分解过程较对照组分别上升186.54%,242.46%,增强细菌的氨化和呼吸功能,而单施生物炭处理提升细菌的反硝化与固氮功能。综上,生物炭和功能菌剂的添加提高土壤有效氮磷养分含量,显著改变土壤细菌群落多样性与群落功能,生物...  相似文献   

6.
许欣  陈晨  熊正琴 《土壤学报》2016,53(6):1517-1527
基于稻田中氮肥配施生物炭的田间定位试验,研究了施用生物炭与氮肥对旱季稻田土壤理化性质、甲烷氧化与产生潜势及甲烷氧化菌和产甲烷菌丰度的影响。田间试验共设置5个处理:单施生物炭、单施氮肥、氮肥配施生物炭(生物炭设置两个水平)以及对照。结果表明:施用生物炭三年后显著提高了有机碳和微生物生物量碳含量(p﹤0.05),与单施氮肥处理相比,氮肥配施生物炭后可显著提高土壤pH。与对照相比,单施生物炭显著提高土壤甲烷氧化潜势。在施氮条件下,甲烷氧化潜势与生物炭施用量之间存在正相关关系,与氮肥配施20 t hm-2处理相比,40 t hm-2生物炭处理甲烷氧化潜势增长53.8%。氮肥配施高倍生物炭与配施低倍生物炭处理相比产甲烷潜势由0.001提高至0.002 mg kg-1 h-1;氮肥施用一定程度上抑制了甲烷氧化菌数量的增长,单施氮肥处理中产甲烷菌数量较对照处理显著增加了3.0%;单施或配施低水平生物炭显著增加土壤甲烷氧化菌数量。氮肥显著降低了甲烷氧化菌与产甲烷菌基因丰度比(pmoA/mcrA)。而在同氮肥水平下施加生物炭显著增加了土壤pmoA/mcrA比值,即生物炭对甲烷氧化菌的促进作用显著高于产甲烷菌,提高了旱季稻田土壤的甲烷氧化能力,因此有助于减少稻田土壤甲烷的排放。  相似文献   

7.
生防链霉菌配施棉秆炭对连作棉田土壤微生物区系的影响   总被引:1,自引:1,他引:0  
棉花是重要的经济作物,长期连作能引起棉花土壤微生态的失衡、土传病害加重、进而导致产量和品质的下降,影响棉花产业的健康发展。本文以连作棉田土壤为研究对象,进行室内培养试验,在施用生防放线菌黄三素链霉菌(Streptomyces flavotricini)的基础上添加不同量的棉秆炭[0 g·kg~(-1)(CK)、25.0 g·kg~(-1)、50.0 g·kg~(-1)、100.0 g·kg~(-1)],采用微生物计数和16S rDNA基因序列分析的方法,研究两者配施对连作棉田土壤中生防菌数量、微生物数量和种类的影响,为棉花黄萎病的生物防治提供新的思路。研究结果表明:(1)生防放线菌配施棉秆炭对连作棉田土壤中微生物区系有显著的影响。与单施生防放线菌菌剂的处理相比,两者配施显著增加了土壤中细菌、放线菌和真菌数量,其中配施25.0 g·kg-1棉秆炭处理使土壤中细菌/真菌数量比(B/F)、放线菌/真菌数量比(A/F)分别增加了5 271.2%和30.8%(P0.05)。(2)土壤中生防放线菌数量随着棉秆炭施用量增加而显著增加,配施100.0 g·kg~(-1)棉秆炭处理显著增加了2 672.8%(P0.05)。棉秆炭具有作为生防放线菌良好载体的潜力。(3)生防放线菌配施棉秆炭也改变了土壤中优势微生物的数量和比例,尤其提高了细菌中芽孢杆菌的数量和所占的比例;100.0 g·kg~(-1)棉秆炭与菌剂配施使土壤中链霉菌的数量及比例显著高于对照,但降低了小单孢菌数量;增加了真菌中米曲梅、黑曲霉和木霉的数量,但使其所占比例降低。由此可以看出,生防放线菌配施棉秆炭能提高连作棉田土壤中生防放线菌的数量,增强生防菌制剂的防病促生作用,改善连作棉田土壤微生物群落结构,在防控棉花连作障碍上具有较大的应用潜力。  相似文献   

8.
以单施氮磷肥为对照,研究设施栽培条件下秸秆灰、秸秆灰配施生物菌肥、生物菌肥、碳酸钾及碳酸钾配施生物菌肥对碱蓬嫩茎叶产量、品质、养分形态及土壤养分的影响。结果表明,+K、+KM、+A、+AM及+M处理使碱蓬3次收获的嫩茎叶总产量显著增加14.3%~41.1%,其中,以+A与+AM处理增产效果最显著。+A与+AM处理碱蓬嫩茎叶中Vc含量提高14.3%~28.3%,氨基酸含量提高5.4%~27.3%,硝酸盐含量降低13.3%~14.8%,营养品质得到明显改善。碱蓬嫩茎叶中磷、钾养分形态均以非蛋白态为主,氮素养分形态比较均衡。+AM与+A处理提高了碱蓬嫩茎叶中非蛋白态养分含量,且+A与+AM处理使土壤有效磷、有效钾及有机质含量增加21.3%~128.0%,显著高于施用化肥的处理。  相似文献   

9.
连作现象在香蕉生产上非常普遍,而长期连作会导致严重的连作障碍。本文针对香蕉连作障碍,选择连作香蕉13年的地块,采用常规方法结合变性梯度凝胶电泳(PCR-DGGE)技术,在田间条件下研究了轮作茄子配施生物有机肥对高发枯萎病连作蕉园土壤可培养微生物数量、土壤化学性状以及土壤细菌群落结构的影响。结果表明:与连作香蕉相比,轮作茄子处理可显著降低可培养尖孢镰刀菌数量,使其数量从种植初的10~4 cfu·g~(-1)(干土)下降到10~3 cfu·g~(-1)(干土),同时提高了土壤p H,增加了土壤有机质、速效钾、碱解氮含量。无论是轮作还是连作种植模式,与配施普通有机肥相比,配施生物有机肥对可培养尖孢镰刀菌、真菌和细菌数量影响均不显著;但在轮作模式下,施用生物有机肥处理的细菌数量与真菌数量比值(B/F,381.2)显著高于配施普通有机肥处理(270.3)。PCR-DGGE分析结果表明,轮作茄子配施生物有机肥显著改变了土壤细菌群落结构,增加了细菌丰度、稳定性和多样性,其中多样性指数(Shannon-Wiener指数,3.22)较连作香蕉配施普通有机肥处理(2.89)显著增加。以上结果表明,茄子与香蕉轮作有利于连作蕉园土壤的微生态环境,同时轮作配施生物有机肥效果更优。  相似文献   

10.
基于稻田中氮肥配施生物炭的田间定位试验,研究了施用生物炭与氮肥对旱季稻田土壤理化性质、甲烷氧化与产生潜势及甲烷氧化菌和产甲烷菌丰度的影响。田间试验共设置5个处理:单施生物炭、单施氮肥、氮肥配施生物炭(生物炭设置两个水平)以及对照。结果表明:施用生物炭三年后显著提高了有机碳和微生物生物量碳含量(p﹤0.05),与单施氮肥处理相比,氮肥配施生物炭后可显著提高土壤p H。与对照相比,单施生物炭显著提高土壤甲烷氧化潜势。在施氮条件下,甲烷氧化潜势与生物炭施用量之间存在正相关关系,与氮肥配施20 t hm-2处理相比,40 t hm-2生物炭处理甲烷氧化潜势增长53.8%。氮肥配施高倍生物炭与配施低倍生物炭处理相比产甲烷潜势由0.001提高至0.002 mg kg-1 h-1;氮肥施用一定程度上抑制了甲烷氧化菌数量的增长,单施氮肥处理中产甲烷菌数量较对照处理显著增加了3.0%;单施或配施低水平生物炭显著增加土壤甲烷氧化菌数量。氮肥显著降低了甲烷氧化菌与产甲烷菌基因丰度比(pmo A/mcr A)。而在同氮肥水平下施加生物炭显著增加了土壤pmo A/mcr A比值,即生物炭对甲烷氧化菌的促进作用显著高于产甲烷菌,提高了旱季稻田土壤的甲烷氧化能力,因此有助于减少稻田土壤甲烷的排放。  相似文献   

11.
接种AM真菌对采煤沉陷区文冠果生长及土壤特性的影响   总被引:2,自引:2,他引:0  
煤炭井工开采往往造成地表塌陷,导致了土壤养分贫瘠和水分缺乏,土壤沙化和水土流失,从而限制了当地矿区植被生长,而丛枝菌根真菌(arbuscular mycorrhiza fungi,AM真菌)对植被生长有促进作用。以文冠果为宿主植物,采用野外原位监测和室内分析方法,研究了未接种和接种丛枝菌根真菌对采煤沉陷区复垦植物文冠果生长和土壤特性的影响。结果表明:与未接种AM真菌处理相比,接种AM真菌显著提高了文冠果根系菌根侵染率和土壤根外菌丝密度,7月接种AM真菌文冠果的株高、冠幅和地径提高了31.89%,23.07%,9.89%。同时,9月接种AM真菌处理的根际土壤全氮、碱解氮和有机碳含量分别比对照组增加0.29g/kg、13.0mg/kg和1.4g/kg,接种AM真菌显著提高了根际土壤的含水率、总球囊霉素和易提取球囊霉素,而速效磷和速效钾的含量显著降低。相关分析结果表明,菌根侵染率、土壤根外菌丝密度与根际土壤理化性质之间存在协同反馈效应。因此,接种AM真菌促进了采煤沉陷区复垦植被文冠果的生长和土壤的改良,这对矿区水土保持、维持生态系统稳定性和持续性具有重要意义。  相似文献   

12.
Biochar application to soils has potential to simultaneously improve soil fertility and store carbon to aid climate change mitigation. While many studies have shown positive effects on plant yields, much less is known about the synergies between biochar and plant growth promoting microbes, such as mycorrhizal fungi. We present the first evidence that arbuscular mycorrhizal (AM) fungi can use biochar as a physical growth matrix and nutrient source. We used monoxenic cultures of the AM fungus Rhizophagus irregularis in symbiosis with carrot roots. Using scanning electron microscopy we observed that AM fungal hyphae grow on and into two contrasting types of biochar particles, strongly attaching to inner and outer surfaces. Loading a nutrient-poor biochar surface with nutrients stimulated hyphal colonization. We labeled biochar surfaces with 33P radiotracer and found that hyphal contact to the biochar surfaces permitted uptake of 33P and its subsequent translocation to the associated host roots. Direct access of fungal hyphae to biochar surfaces resulted in six times more 33P translocation to the host roots than in systems where a mesh prevented hyphal contact with the biochar.We conclude that AM fungal hyphae access microsites within biochar, that are too small for most plant roots to enter (<10 μm), and can hence mediate plant phosphorus uptake from the biochar. Thus, combined management of biochar and AM fungi could contribute to sustainable soil and climate management by providing both a carbon-stable nutrient reservoir and a symbiont that facilitates nutrient uptake from it.  相似文献   

13.
Hou  Shaowei  Zhang  Yu  Li  Minghui  Liu  Homgmin  Wu  Fuyong  Hu  Junli  Lin  Xiangui 《Journal of Soils and Sediments》2020,20(1):452-460
Purpose

Both reductive disinfestation and germicide can suppress Phytophthora blight, while soil arbuscular mycorrhizal (AM) fungi also have biocontrol effects on soilborne diseases. However, the combined effects of reductive disinfestation and botanical germicide [e.g., tobacco (Nicotiana tabacum L.) waste] on pepper (Capsicum annuum L.) Phytophthora blight and soil AM fungi are at present unclear. The purposes of this work were to develop application strategy for dealing with pepper Phytophthora blight, and to explore the concomitant contribution from soil indigenous AM fungi.

Materials and methods

A field experiment with four treatments was carried out in a pepper continuous planting field, including normal film-mulching with common fertilizer (control), normal film-mulching with reductive fertilizer (RF), upfront film-mulching with reductive fertilizer (UM+RF), and upfront film-mulching with reductive fertilizer and tobacco waste (UM+RF+TW). Phytophthora blight severity index, root mycorrhizal colonization rate, and the biomass and nutrient (N, P, and K) concentrations of shoots, roots, and fruits of pepper were measured. Soil pH, organic C, mineral N, available P, available K, acid phosphatase activity, and AM fungal abundance were also tested. The Pearson correlation analysis was carried out among plant and soil parameters.

Results and discussion

RF tended to increase pepper fruit yield compared with control, and UM+RF tended to decrease Phytophthora blight severity in relative to RF, while UM+RF+TW tended to decrease blight severity and increase fruit yield compared with UM+RF, and had a significantly (P?<?0.05) lower blight severity and a significantly higher fruit yield in comparison with control. UM+RF+TW also significantly decreased soil pH, and significantly increased AM fungal population and colonization, as well as soil acid phosphatase activity and available P concentration. In addition, UM+RF+TW had a significantly higher fruit K accumulation ratio, which negatively correlated with blight severity and positively correlated with fruit yield. However, fruit K accumulation ratio positively correlated with fruit P accumulation ratio, which was greatly elevated by the enhanced mycorrhizal colonization.

Conclusions

The coalition of reductive disinfestation (upfront film-mulching with reductive fertilizer) and tobacco waste had the greatest suppression of pepper Phytophthora blight, and the highest fruit yield and AM fungal population. It suggests that combined application of reductive disinfestation and botanical germicide has superposition in inhibiting Phytophthora blight and increasing fruit yield, and there seems to be a concomitant biocontrol by soil indigenous AM fungi which could enhance P and K transfer from plant to fruit.

  相似文献   

14.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

15.
In order to study the effect of plant growth promoting rhizobacteria (PGPR), Azolla compost and Azolla biochar on some soil quality indicators and rosemary growth, a greenhouse experiment was conducted in a completely randomized design with six replications. Treatments consisted of T1 (control), T2 (1% Azolla compost), T3 (1% Azolla biochar), T4 (PGPR (P. fluorescens), T5 (1% compost + PGPR) and T6 (1% biochar + PGPR). Rosemary growth parameters and nutrients concentration increased in all treatments compared to control. Treatments increased soil nutrient concentrations, soil microbial respiration (SMR) and microbial biomass C (MBC) but decreased soil metabolic quotient (qCO2) compared to control treatment. A significant enhancement in rosemary growth occurred due to the improved soil quality as a result of organic fertilizers application, particularly by co-application of P. fluorescens and compost or biochar of Azolla.  相似文献   

16.
Arbuscular mycorrhizal (AM) fungi are an important component of the soil biota in most agroecosystems, and their association can directly or indirectly affect the diversity of soil microorganisms, nutrient cycling, and growth of host plants. Since not all crops are symbiotic, we hypothesized that the presence of AM fungi can: (1) inhibit the growth of non‐host plants by resulting in biotic stress, or (2) promote their growth indirectly by increased nutrient mobilization. These hypotheses were tested in the present study on the non‐mycorrhizal crop canola (Brassica napus L.) in the presence and absence of other autochthonous soil microorganisms. The soil was inoculated with a mixture of AM fungi (Acaulospora longula, Glomus geosporum, G. mosseae, Scutellospora calospora) and as a control, a non‐inoculated soil was used. The impact of inoculation on plant growth (biomass production, nutrient concentrations) and expression of the stress protein metallothionein gene BnMT2 was investigated in the shoots. B. napus L. did not form mycorrhizal associations on its roots, but its growth was promoted after inoculation with AM fungi. In the soil with autochthonic microorganisms, growth inhibition after inoculation was observed compared to the control. The concentrations of N, P, K, and S in the shoot were always significantly increased after inoculation with AM fungi. However, this was partly combined with reduced growth and thereby decreased total uptake of nutrients. Expression of BnMT2 in the leaves was increased after inoculation with AM spores at the soil devoid of indigenous microorganisms, but decreased in their presence. The expression of stress proteins (BnMT2) significantly increased with increasing length and biomass of shoots. In conclusion, the inhibition of the non‐host plant B. napus L. following inoculation with AM fungi was confirmed, however, only in combination with autochthonous microorganisms. Growth promotion of B. napus L. in the presence of AM fungi in the absence of autochthonous soil microorganisms suggest that plant growth depression in the presence of AM fungi was based on interactive effects of AM fungi with the autochthonous microorganisms in the soil rather than on a direct impact of the AM fungi.  相似文献   

17.
ABSTRACT

Enhanced phosphorus (P) uptake from the soil and increased plant growth related to arbuscular mycorrhizal (AM) fungi in pot culture, using sterilized soil, are well-known phenomena. However, these enhancements are not widely observed under field conditions because field sterilization is difficult. The aim of this study was to investigate the effects of AM fungi on P uptake and the growth of Allium fistulosum in non-fumigated and fumigated fields, under different levels of P availability. Plants were inoculated with the AM fungus Glomus R-10 and grown in fumigated soil. For the uninoculated treatment, a sterilized inoculum was applied directly. The field was fumigated using dazomet. Superphosphate was applied to the field at the rates of 0 (P0) or 500 (P500) kg P2O5 ha?1. The inoculated and uninoculated plants were transplanted into the fields and sampled three times to measure AM fungal colonization, shoot P concentration, and shoot dry weight of the plants. At the transplanting stage, AM fungal colonization was observed in the inoculated plants (>70%) but not in the uninoculated plants. At the third sampling, irrespective of P treatment, AM fungal colonization was observed both in the uninoculated and inoculated plants in the non-fumigated field, and there was no difference in shoot P content and shoot dry weight between the inoculated and uninoculated plants. AM fungal colonization in the fumigated field was higher in the inoculated than uninoculated plants, irrespective of P treatment; shoot P content and shoot dry weight were both higher in the inoculated plants than in the uninoculated plants with P0. These results suggest that the responses of A. fistulosum to AM fungal inoculation under the low-P and fumigated conditions are similar to those observed in sterilized pot culture conditions.  相似文献   

18.
Ammonia (NH3) emissions, the most important nitrogen (N) loss form, always induce a series of environmental problems such as increased frequency of regional haze pollution, accelerated N deposition, and N eutrophication. Arbuscular mycorrhizal (AM) fungi play key roles in N cycling. However, it is still unclear whether AM fungi can alleviate N losses by reducing NH3 emissions. The potential mechanisms by which AM fungi reduce NH3 emissions in five land-use types (grazed grassland, mowed grassland, fenced grassland, artificial alfalfa grassland, and cropland) were explored in this study. Results showed that AM fungal inoculation significantly reduced NH3 emissions, and the mycorrhizal responses of NH3 emissions were determined by land-use type. Structural equation modeling (SEM) showed that AM fungi and land-use type directly affected NH3 emissions. In addition, the reduction in NH3 emissions was largely driven by the decline in soil NH+4-N and pH and the increases in abundances of ammonia-oxidizing archaea (AOA) amoA and bacteria (AOB) amoB genes, urease activity, and plant N uptake induced by AM fungal inoculation and land-use type. The present results highlight that reducing the negative influence of agricultural intensification caused by land-use type changes on AM fungi should be considered to reduce N losses in agriculture and grassland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号