共查询到17条相似文献,搜索用时 62 毫秒
1.
基于数码相机的水稻冠层图像分割及氮素营养诊断 总被引:8,自引:3,他引:8
利用数码相机对作物进行快速准确的营养诊断,需要对图像中作物冠层部分与非冠层部分进行有效的分割。该文依据绿色植被和土壤在可见光区域反射光谱的差异,提出了根据数字图像绿色通道和红色通道差值的大小设定阈值对图像进行分割的方法。阈值设定为10~20之间时对水稻冠层图像有较好的分割效果,拔节期和孕穗期获得最佳图像分割效果的阈值分别为10与20。分割后图像中提取的特征参数与SPAD值、叶片含氮量等指标间具有良好的相关关系,其中红光标准化值NRI与两者间的相关系数达到-0.87和-0.65。该方法能准确地分割水稻冠层图像,且简便易行,对绿色植被的图像分割具有普适性,有较高应用价值。 相似文献
2.
基于计算机视觉技术的温室黄瓜叶片营养信息检测 总被引:27,自引:7,他引:27
应用计算机视觉技术研究了诊断温室作物营养状态的方法。在日光条件下采集了温室黄瓜叶片图像,然后分别提取了红绿蓝(RGB)三色分量和它们的相对系数rgb,以及色度、饱和度和亮度指标(HSI)。在RGB和HSI颜色模型下分析了各分量与叶片含氮率、含磷率和含水率之间的相关特性。分析结果表明:叶片绿色分量G和色度H分量与氮含量线性相关,可用作利用机器视觉快速诊断作物长势的指标,而其它分量与氮含量没有明显的相关性;颜色各分量与磷含量和水分含量均没有表现出明显相关关系;在对单次数据进行分析和比较时发现在同一光照条件下,绿色分量G和色度H与氮含量之间存在较好的线性相关特性,而当光照条件不同时,对两变量之间的线性关系存在一些影响,需要在进一步的试验研究中通过使用人工光源和系统标定的方法改进,以提高线性回归的精度。 相似文献
3.
基于玉米冠层原位监测的全生育期叶色建模及其应用 总被引:1,自引:1,他引:1
针对田间玉米冠层叶色变化难以定量描述问题,该文利用田问原位冠层监测系统,在摄像机自动曝光模式下连续采集多个玉米品种的冠层图像,揭示了复杂天气条件对图像和玉米冠层颜色的影响.利用概率密度统计分析方法分别计算玉米6个关键生育期的冠层亮度-色度分布,并针对冠层色度具有明确变化趋势且分离度较高的冠层亮度区间,建立了全生育期玉米冠层叶色模型.进而,基于该模型建立了适合不同玉米生育期的冠层图像自动分割方法,将玉米全生育期的冠层图像分割精度提升到82.6%,并揭示了不同品种玉米在叶片发育过程中冠层叶色与叶龄的相关性,利用登海605和农大108的冠层叶色预测出的生育期叶龄均方根误差RMSE (root mean squared error,RMSE)分别为1.14和1.41叶.试验结果表明,该文建立的玉米冠层叶色模型能够较好描述玉米关键生育期的冠层叶色变化规律,对玉米冠层图像分割、生育期估计、玉米品种表型鉴定具有重要意义. 相似文献
4.
5.
6.
7.
8.
9.
10.
基于计算机视觉技术估算种猪体重的应用研究 总被引:4,自引:10,他引:4
为了解决在种猪体重测量中传统方法所遇见的问题,该研究初步探讨了一种新方法,即把计算机视觉技术应用到种猪饲养管理中,通过数字图像分析技术,测量和计算种猪的投影面积,并分析其与体重的相关性,为种猪体重测量提供了新的依据。结果显示去除头部和尾部后剩余身体部分的投影面积和体重的相关性极大,相关系数可达到0.94,再与人工测量的结果进行对比,相对误差不超过2.8%。试验证实了利用这种无接触的方法来估测种猪的体重,可以减少人力物力,避免由于猪的应激反应而给生产带来的损失,在种猪的科学饲养管理中具有实用意义。 相似文献
11.
12.
为解决奶牛隐性乳房炎难以防治的问题,构建了一种基于计算机视觉技术的快速检测系统。通过电脑与USB摄像头采集牛奶p H测试纸图像,提出了一种融合颜色特征与形态学处理的分割方法,分割化学反应区并获取RGB值,使用Foss5000牛乳体细胞分析仪得到牛奶体细胞实测值,采取幂回归法建立RGB值与牛奶体细胞数的预测模型,并基于Android技术开发了便携式移动终端设备。牛场实测20组数据试验结果显示,牛奶体细胞数估测值与实测值相关系数为0.970,估测平均相对误差为3.67%,标准差为1.88%。系统估测牛奶体细胞数较为准确,可用于奶牛隐性乳房炎快速检测。 相似文献
13.
基于机器视觉的植物群体生长参数反演方法 总被引:1,自引:1,他引:1
为实现植物群生长参数在线无损检测,采用机器视觉技术捕获植物群冠层图像,通过RGB空间超绿色-超红色指标(excess green minus excess red,ExG-ExR)、超绿色指标(excess green,ExG)和归一化差异指标(normalized difference indices,NDI)3种指标分割植物群冠层图像,提取植物群图像特征参数:覆盖率、冠层幅长和冠层幅宽,并结合人工测量植物群体参数:茎秆高度、茎直径、叶面数量、坐果数量和叶面指数(leaf area index,LAI)(拟合值),建立植物群5个生长参数的5种反演模型分别为覆盖率反演模型、冠层幅宽反演模型、冠层幅长反演模型、回归方程反演模型和均值反演模型。结果表明:采用ExG-ExR分割的植物群冠层区域与人工提取区域重合度大于99.5%,识别率大于98.2%,分割性能优于ExG+Otsu和NDI+Otsu分割方法。采用120幅反演模型验证图验证反演模型性能,结果表明植物群冠层覆盖率反演模型反演5个植物群生长参数时,其反演值与测量值间相关性决定系数大于0.958,性能优于冠层幅宽和幅长反演模型,而回归方程和均值反演模型在反演植物群5个生长参数时,都仅有2个参数反演性能优于覆盖率反演模型。茎秆高度、叶面数量、茎直径、坐果数量和LAI的反演模型反演值与测量值间线性相关决定系数最高分别为0.979、0.976、0.979、0.965和0.973,标准误差(standard error,SE)分别为10.55 cm、1.37、0.213 mm、0.672和0.055,其对应的反演模型分别为均值反演模型、覆盖率反演模型、覆盖率反演模型、覆盖率反演模型和均值反演模型。通过机器视觉技术及反演模型能够在线无损准确反演植物群生长参数,为温室环境调控及精准肥水一体灌溉控制系统提供具有代表性意义的决策依据。 相似文献
14.
在番茄自然生长条件下利用计算机双目视觉获取的二维图像其处理必然会涉及到特征匹配不确定问题。该文利用近红外光谱和可见光谱各自有效的生物信息,在双目匹配搜索中,提取多源视觉融合图像的番茄有效形心点,采用极线约束和唯一性约束进行区域相关双向匹配。试验结果表明,基于此匹配方法可以实现果实的唯一匹配,准确率较高。 相似文献
15.
水果轮廓特征提取的Zernike矩分水岭分割方法 总被引:5,自引:3,他引:2
果实轮廓特征的测量提取是了解水果等农作物发育过程中内部生理生态变化的重要手段。该文提出了一种基于Zernike矩边缘检测的分水岭算法,并将该算法应用于葡萄果粒的轮廓特征提取。与传统的标记驱动分水岭算法相比,该算法利用Zernike矩边缘检测避免了标记对于轮廓的破坏,较好的保护了目标轮廓,从而减少了后续处理,提高了检测效率。最后,将用该算法所得到的轮廓和用传统的标记驱动分水岭算法所得到的轮廓进行比较,验证了该算法的可行性。该算法具有较高的检测效率,相较传统算法提高约6.9%左右,能够满足连续提取葡萄果粒的轮廓特征的要求。该方法可用于实时检测葡萄果粒的几何特征的变化。 相似文献
16.
17.
基于彩色信息的树上柑橘识别研究 总被引:14,自引:9,他引:14
为正确识别自然环境中的树上水果,从而为机械手的运动提供参数并完成水果的自动采摘,研究了基于彩色信息的树上柑橘识别方法。在对53幅含有各种背景情况的可见光彩色图像进行颜色特征提取和理解的基础上,建立了利用柑橘、树叶、树枝在R-B颜色指标上的差异进行树上柑橘识别的颜色模型,并利用动态阈值法,根据图像特征动态产生阈值T,将柑橘从背景中分割出来。分别在顺光条件和逆光条件下进行了试验分析,试验结果表明该识别模型可以实现对树上可见的柑橘的识别,并适用于单个和多个果实的识别,正确识别率较高。 相似文献