首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat treatment improves the dimensional stability and hydrophobicity of wood, and heat-treated wood is currently attracting attention as a new interior material. However, there are few evaluations where the acoustic properties of heat-treated wood are reported when such wood is used as an interior material. In this study, Larix kaempferi wood, typically used as a building material, was heat-treated at 200, 220, and 240 °C for 9, 12, 15, and 18 h. The sound absorption coefficients of the treated wood samples were measured at 250, 500, 1000, 2000, and 4000 Hz in a reverberation room. The sound absorption coefficient increased with the treatment temperature and the treatment time. The results of this study showed that the high-frequency band range sound absorption coefficient of wood can be increased dramatically by heat treatment.  相似文献   

2.
The present study is aimed at investigating the effect of heat treatment of nano-silver-impregnated Populus nigra on weight loss, modulus of rupture (MOR), modulus of elasticity (MOE), and compression parallel to grain. Specimens were impregnated with 200 PPM water-based solution of nano-silver particles at 2.5 bar in a pressure vessel. For heat treatment, both nano-silver-impregnated and simple specimens were kept for 24 h at 45°C and then further for 24 h at 145°C and finally for 4 h at 185°C. MOR decreased from 529 to 461 kg/cm2 in heat-treated specimens; MOE and compression parallel to grain were though improved. Also, comparison between heat-treated and nano-silver-impregnated heat-treated specimens showed that there was a decrease in MOR and MOE in nano-silver-impregnated heat-treated specimens. This shows that nano-silver impregnation facilitates transfer of heat in wood and it may increase the process of degradation and pyrolysis of wood structures in deeper parts of specimens.  相似文献   

3.
Japanese cedar (Cryptomeria japonica) preheated at 700°C was subsequently heated to 1800°C and characterized by electron microscopy, X-ray diffraction, and micro-Raman spectroscopy. The degree of disorder of carbon crystallites and the amount of amorphous phase decreased considerably with an increase in heat treatment temperature to 1400°C, while carbon crystallites clearly developed above this temperature, showing that the microstructure of carbonized wood undergoes drastic changes around 1400°C. Besides showing the bands for sp2-bonded carbon, the Raman spectra showed a shoulder near 1100 cm−1 assigned to sp3-bonded carbon. With an increase of heat treatment temperature, the peak position of the Raman sp3 band shifted to a lower frequency from 1190 to 1120 cm−1, which is due to the transformation of sp3-bonded carbon from an amorphous phase to a nanocrystalline phase. These data showed that the microstructure of carbonized wood from 700° to 1800°C consisted of the combination of sp2- and sp3-bonded carbon, which is probably due to the disordered microstructure of carbonized wood. It is suggested that the sp3-bonded carbon is transformed from an amorphous structure to a nanocrystalline structure with the growth of polyaromatic stacks at temperatures above 1400°C.  相似文献   

4.
The aim of this study was to determine changes in crystallinity and crystalline unit cell type of heat-treated Scots pine (Pinus sylvestris L.) and Uludağ fir (Abies nordmanniana stev. subsp. bornmuelleriana Mattf.) wood samples by means of FT-IR spectroscopic method. Heat treatment was applied on the test samples in an oven at three different temperatures (120, 150, and 180°C) and for two different periods of time (6 and 10 h) under atmospheric pressure. It was designated that crystallinity of both Scots pine and Uludağ fir wood samples increased during heat treatment depending on the duration. However, monoclinic structure in crystalline unit cells of Scots pine and Uludağ fir wood samples converted to triclinic structure when heat treated. It was estimated that monoclinic structure was dominant in the crystalline unit cell. It was established that the crystalline structure of Scots pine wood samples was more affected by heat treatment than that of Uludağ fir wood samples.  相似文献   

5.
Chemistry and ecotoxicity of heat-treated pine wood extractives   总被引:1,自引:0,他引:1  
Pine (Pinus pinaster) wood was heat-treated in an autoclave for 2?C12?h at 190?C210°C. Hemicelluloses were the first compounds affected by the treatment. In general, the sugar decrease was higher for arabinose and galactose followed by xylose and mannose. Lignin started to degrade for small mass losses but at a slower rate than hemicelluloses, and cellulose only degraded significantly for severe treatments. Almost all of the original extractives disappeared, and new compounds arose such as anhydrosugars and phenolic compounds. The compounds that might leach from heat-treated wood were mainly those identified in the water and ethanol extracts, all of which were not harmful at the existing concentrations, thereby reinforcing the wood heat treatment as an environmental benign process.  相似文献   

6.
Bending strength and toughness of heat-treated wood   总被引:9,自引:0,他引:9  
The load-deflection curve for static bending and the force-time curve for impact bending of heat-treated wood were examined in detail. The effect of oxygen in air was also investigated. Sitka spruce (Picea sitchensis Carr.) was heated for 0.5–16.0h at a temperature of 160°C in nitrogen gas or air. The dynamic Young's modulus was measured by the free-free flexural vibration test, the static Young's modulus and work needed for rupture by the static bending test, and the absorbed energy in impact bending by the impact bending test. The results obtained were as follows: (1) The static Young's modulus increased at the initial stage of the heat treatment and decreased later. It decreased more in air than in nitrogen. (2) The bending strength increased at the initial stage of the heat treatment and decreased later. It decreased more in air than in nitrogen. (3) The work needed for rupture decreased steadily as the heating time increased. It decreased more in nitrogen than in air. It is thought that heat-treated wood was more brittle than untreated wood in the static bending test because W12 was reduced by the heat treatment. This means that the main factors contributing to the reduction of the work needed for rupture were viscosity and plasticity, not elasticity. (4) The absorbed energy in impact bending increased at the initial stage of the heat treatment and decreased later. It decreased more in air than in nitrogen. It was concluded that heat-treated wood became more brittle in the impact bending test becauseI 12 andI 23 were reduced by the heat treatment.  相似文献   

7.
Heat treatment is an alternative to the chemical treatment in wood preservation, which has been used to some extent in improving timber quality. However, reduction in strength properties has been one of the major limitations in the use of this technique and therefore investigations on the use of various pre-treatment methods are highly essential. Wood samples from Scots pine were immersed in already boiling water (100°C) for 20 min followed by 2 h of heat treatment at 160 and 200°C. The acidity and strength properties were determined by measurement of pH and static bending test, respectively. There were no significant changes in pH due to preboiling in both heat-treated and untreated wood. Similarly, preboiling did not result in any appreciable differences in strength both before heat treatment and during heat treatment at 160°C. However, for 200°C heat treatment preboiling reduced significantly the degree of strength loss as indicated by 19.4% reduction in modulus of rupture in preboiled wood compared to 26.6% reduction in unpreboiled wood. From the results of this study it is evident that preboiling has a buffering effect on wood during heat treatment and the higher the intensity of heat treatment the higher the significance of the buffering effect of pre-boiling.  相似文献   

8.
 Some methods to reduce residual stress inside logs have been reported, although the conditions for stress relaxation are not yet clarified. Our study using precise experiments revealed that residual stress relaxation occurs only when both heat and moisture exist inside the logs. We then determined the heating time and temperature required to relax the residual stress inside the logs. Short air-drying treatments did not relax residual stress even though free water in the logs was greatly reduced. The residual stress of the 33-h 80°C-heated bolts was relaxed, whereas that of the 48-h 70°C-heated bolts was not. As for the influence of treatment time, bolts heated at 100°C were relaxed after 18 h of treatment. The 13-h heated bolts did not show any relaxation. Therefore, residual stress relaxation occurred rapidly owing to the thermomechanical change of the individual wood components comprising the cell wall. The moisture content inside all the bolts was much higher than the fiber saturation point. This is because relaxation occurs only when the heating temperature is maintained above 80°C for a particular duration of treatment. Received: December 12, 2001 / Accepted: February 18, 2002 Present address: Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Sciences and Technology, Independent Administrative Institution, Nagoya 463-8560, Japan Tel. +81-52-736-7320; Fax +81-52-736-7419 e-mail: m.nogi@aist.go.jp Part of this report was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000 Correspondence to:M. Nogi  相似文献   

9.
Effects of zinc-oxide nanoparticles on physical and mechanical properties, as well as biological resistance of untreated and heat-treated beech wood were investigated in this study. Test specimens were prepared from sapwood and impregnated with a 5,000-ppm nano-zinc-oxide (NZ) suspension with a size ranging from 10 to 80 nm at 2.5 bars of pressure and using the Rueping process for 20 min. Control (C) and nano-zinc-oxide-impregnated specimens after (NZA) and before (NZB) heat treatment were divided into four subgroups of unheated (C and CNZ), heated at 50, 145 and 185 °C. Heat treatment resulted in a significant decrease in mechanical strength at temperatures of 145 and 185 °C. Heat-treated specimens showed less dimensional instability and fungal degradation. Impregnation with nano-zinc resulted in a slight and significant increase in weight loss and biological resistance against Trametes versicolor. The results showed that the impregnation significantly decreased the water absorption of the specimens. Impregnation before heat treatment showed considerable effect on the properties of wood compared to that of untreated ones.  相似文献   

10.
Thermal treatment is an alternative to the chemical treatment in wood preservation, which has been used to some extent in improving timber quality. Despite the enormous works done so far on the effects of heat treatment on wood properties, very little is known about the anatomical changes in the various wood species during the process. Wood samples from western red cedar (Thuja plicata) were heat-treated at a temperature of 220°C for 1 and 2 h. The anatomical structures were examined before and after the heat treatment process by using scanning electron microscope (SEM) and related to density, water uptake, thickness swelling and modulus of rupture of wood samples obtained from the same board. Heat treatment of red cedar wood resulted in the destruction of tracheid walls, ray tissues and pit deaspiration. The destroyed tracheid walls and ray tissues appeared to blow up, thus increasing the size of the specimen. The process of pit deaspiration also resulted in increasing size of the pits, thus creating more openings in the wood. These changes in wood anatomy indicate that the well-established chemical degradation is not the only reason for changes in wood properties during heat treatment. However, it is believed that the effects of the chemical changes still outweigh those of the anatomical changes based on the modification observed during the process of heat treatment.  相似文献   

11.
Vibrational properties of heat-treated green wood   总被引:2,自引:0,他引:2  
To investigate the influence of water on heat treatment, green wood was heat-treated. Sitka spruce (Picea sitchensis Carr.) with about 60% moisture content (MC) was used. Young's modulus and loss tangent were measured by the free-free flexural vibration test. The specimens were heated in nitrogen at 160°C for 0.5h. The results were as follows. (1) Recognizing that the effects of heat treatment are mild and that the same specimens cannot be used for both heat treatment and as controls, it was necessary to investigate the effects of the heat treatment based on the variations of properties in the whole of the test lumber. (2) Young's modulus increased and the loss tangent decreased due to heat treatment. When the vibrational properties were measured at various MCs, the MCs at the maximum value of Young's modulus and the minimum value of the loss tangent were lower in heat-treated specimens than in controls. The effects of heat treatment in green wood were similar to those in air-dried wood. (3) The loss tangents of heat-treated specimens were smaller than those of controls at about 0% MC but were larger than those of controls at about 10% MC. We thought that this resulted from the decreased MC at the minimum loss tangent after the heat treatment mentioned above. (4) The properties measured at several MCs were more useful than those at only one moisture content for investigating the effects of heat treatment.This study was presented in part at the 46th annual meeting of the Japan Wood Research Society, Kumamoto, April 3–5, 1996; and at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 3–5, 1997  相似文献   

12.
This article presents an experimental study into thermal softening and thermal recovery of the compression strength properties of structural balsa wood (Ochroma pyramidale). Balsa is a core material used in sandwich composite structures for applications where fire is an ever-present risk, such as ships and buildings. This article investigates the thermal softening response of balsa with increasing temperature, and the thermal recovery behavior when softened balsa is cooled following heating. Exposure to elevated temperatures was limited to a short time (15 min), representative of a fire or postfire scenario. The compression strength of balsa decreased progressively with increasing temperature from 20° to 250°C. The degradation rates in the strength properties over this temperature range were similar in the axial and radial directions of the balsa grains. Thermogravimetric analysis revealed only small mass losses (<2%) in this temperature range. Environmental scanning electron microscopy showed minor physical changes to the wood grain structure from 190° to 250°C, with holes beginning to form in the cell wall at 250°C. The reduction in compression properties is attributed mostly to thermal viscous softening of the hemicellulose and lignin in the cell walls. Post-heating tests revealed that thermal softening up to 250°C is fully reversible when balsa is cooled to room temperature. When balsa is heated to 250°C or higher, the post-heating strength properties are reduced significantly by decomposition processes of all wood constituents, which irreversibly degrade the wood microstructure. This study revealed that the balsa core in sandwich composite structures must remain below 200°–250°C when exposed to fire to avoid permanent heat damage.  相似文献   

13.
ABSTRACT

This research was aimed to investigate mechanical properties, color and cell-wall components changes, and durability of pre-dried rubberwood (Hevea brasiliensis) after superheated steam (SS) treatment. Wood samples were treated at different SS temperatures (140–180°C) for 1–3?h. The highest compression strength parallel-to-grain, hardness and impact strength were found for samples treated at 160°C for 3?h (30.7% higher than untreated), at 150°C for 1?h (26.6% higher than untreated) and at 150°C for 2?h (52.6% higher than untreated), respectively. The surface color became darker after each treatment in comparison with the untreated wood. The number of accessible hydroxyl groups decreased and the relative cellulose crystallinity increased with SS temperature, indicating decreased hygroscopicity of the treated wood. Also, SEM micrographs of wood surface showed consistent decrease in starch particles with treatment temperature. Both decay and termite resistances of treated rubberwood improved with treatment temperature. All the analyzes showed that dried rubberwood treated with SS had some improvements in the mechanical properties, decreased hygroscopicity, and increase resistance to decay.  相似文献   

14.
The effect of heating on the hygroscopicity of Japanese cedar wood was investigated as a simple evaluation of thermal degradation in large-dimension timber being kiln-dried at high temperatures (>100°C). Small wood pieces were heated at 120°C in the absence of moisture (dry heating) and steamed at 60°, 90°, and 120°C with saturated water vapor over 2 weeks, and their equilibrium moisture contents (M) at 20°C and 60% relative humidity (RH) were compared with those of unheated samples. No significant change was induced by steaming at 60°C, while heating above 90°C caused loss in weight (WL) and reduction in M of wood. The effects of steaming were greater than those of dry heating at the same heating temperature. After extraction in water, the steamed wood showed additional WL and slight increase in M because of the loss of water-soluble decomposition residue. The M of heated wood decreased with increasing WL, and such a correlation became clearer after the extraction in water. On the basis of experimental correlation, the WL of local parts in large-dimension kiln-dried timber was evaluated from their M values. The results indicated that the thermal degradation of inner parts was greater than that of outer parts.  相似文献   

15.
Based on the strong correlation between acidity and thermal degradation in wood reported in previous studies, the effect of borate impregnation as an alkali-buffering medium was investigated on the strength properties of thermally modified wood. Wood samples were impregnated with 0.1 M Sodium borate solution (pH=9) before they were subjected to heat treatment at temperatures of 180°C and 200°C for durations of 2 and 4 h. The borate impregnation results in some reductions in the severity of strength loss during heat treatment and this is invariably due to buffering effect of the alkali on the acidity of wood, which could have mitigated the degree of degradation. The positive effects of borate impregnation as a pretreatment on the strength properties of heat-treated wood depend on the degree of heat treatment. Hence, the use of borate impregnation as a pretreatment method for heat treatment is recommended only where a relatively mild heat treatment is involved.  相似文献   

16.
Data on thermal-death kinetics of bark beetles are essential to develop phytosanitary heat treatments for pine wood and pine wood packaging materials. Using a heating block system, effects of different heating rates between 44 and 50°C at 2°C intervals on destruction of Dendroctonus armandi adult insect were examined. Heat resistance of the insects was found to increase at low heating rates (0.1 or 0.5°C/min). Therefore, the thermal-death kinetics of the beetles were determined at a high heating rate of 5.0°C/min which simulated the rapid dielectric heating of wood products. Results showed that the thermal death curve of D. armandi followed a zero-order reaction kinetic model, indicating the heat destruction rate of the beetle at different treatment temperatures to be independent of their population size. The required thermal holding times to result in destruction of the entire population were 40, 8, 4, and 2?min at 44°C, 46°C, 48°C, and 50°C, respectively. The evaluated thermal-death kinetic data are useful in developing effective beetle elimination quarantine protocols for the wood. A 50°C ?2?min heat treatment with a heating rate of ~5°C/min can be effectively used for disinfesting bark wood materials.  相似文献   

17.
Test samples of Japanese larch (Larix leptolepis) heartwood and Japanese beech (Fagus crenata) sapwood were heated for 22 h at constant temperatures (50°–180°C) under three water content conditions. Raman spectra of the samples were recorded before and after the heat treatments, and spectral changes in the range from 1000 cm−1 to 1800 cm−1 were evaluated using the difference spectrum method. For both wood species, the Raman band intensity at 1655–1660 cm−1 due mainly to the C=C and C=O groups in lignin clearly decreased with increasing heat-treatment temperature (HTT). The spectral change was thought to reflect the progress of condensation reactions of lignin molecules during the heat treatment. Moreover, the decrease in band intensity was considerably facilitated by the presence of water in the cell wall, suggesting that the condensation is closely related to the softening of lignin. From the spectral changes in the wavenumber region of 1200–1500 cm−1, it was considered that wood constituents are partially decomposed at the higher HTT. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

18.
Heat treatment of Pinus pinaster and Eucalyptus globulus woods, two important species in Portugal, was performed in the absence of air by steaming, inside an autoclave, for 2–12 h at 190–210°C. Mass losses increased with treatment time and temperature reaching 7.3% for pine and 14.5% for eucalypt wood. The wood behaviour with moisture was improved. The equilibrium moisture content decreased by 46% for pine and 61% for eucalypt, the dimensional stability increased (maximum anti-shrinking efficiency in the radial direction of 57 and 90% for pine and eucalypt, respectively) and the surface wettability was lowered. In relation to mechanical properties, the modulus of elasticity was little affected (maximum decrease of 5% for pine and 15% for eucalypt) but the bending strength was reduced (by 40% at 8% mass loss for pine and 50% at 9% mass loss for eucalypt wood). The variation of properties was related to treatment intensity and mass loss but significant improvements could already be obtained for a 3–4% mass loss without impairing the mechanical resistance. The response of eucalypt was higher than that of pinewood. Heat treatment of eucalypt wood shows an interesting potential to improve the wood quality for solid timber products.  相似文献   

19.
Element content and pH value in wood tissues of veneer grade logs of P. serotina Ehrh. were investigated with regard to wood colour variations, measured in the CIEL*a*b* system. The average pH value of heartwood tissue was about pH 4.0 and medium colour parameters of veneer sheets were determined at L* = 73, a* = 9.8, and b* = 23.5. Optical emission spectroscopy (ICP-OES) analyses showed differences in the element contents between two regional forest sites coming from Pennsylvania and West Virginia, USA, respectively. The latter is mainly characterised by higher variations of micro-element content in the transition zone (influencing heartwood formation) and also pH value of wood tissue, which contributes to higher variations in colour response of industrially produced veneer sheets. Investigations under industrial conditions underline the correlation between length and intensity of heat treatment in veneer production and colour development: with increasing duration and temperature of hot water treatment, veneer surfaces become darker and wood colour is intensified (ΔL = 3.6, Δa = 2.1, comparing 12 and 72 h of hot water treatment at 60°C). However, no equalisation of wood colour was achieved by modifying the treatment conditions. Artificial radiation by UV–visible light, quickly and extensively darkens and intensifies wood colour (ΔL = 16, Δa = 3.5, and Δb = 4.0 after 15 h of artificial radiation), but variations in wood colour deriving from different treatment conditions during veneer production, were not reduced.  相似文献   

20.
Wood modification, of which thermal modification is one of the best-known methods, offers possible improvement in wood properties without imposing undue strain on the environment. This study investigates improvement of the properties of heat-treated solid wood. Scots pine (Pinus sylvestris) was modified in two stages: impregnation with modifiers followed by heat treatment at different temperatures. The impregnation was done with water glass, melamine, silicone, and tall oil. The heat treatment was performed at the temperatures of 180°C and 212°C for three hours. The modified samples were analyzed using performance indicators and scanning electron microscope micrographs. The mechanical and physical properties were determined with water absorption, swelling, bending strength, and impact strength tests. All the modifiers penetrated better into sapwood than hardwood; however, there were significant differences in the impregnation behavior of the modifiers. As regards the effect of heat treatment, generally the moisture properties were improved and mechanical strengths impaired with increasing treatment temperature. In contrast to previous studies, the bending strength increased after melamine impregnation and mild heat treatment. It is concluded that the properties of impregnated wood can be enhanced by moderate heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号