首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption of a range of permanent cations, bases and zwitterionic compounds was measured as a function of pH in two soil types. Pyridinium cations were more strongly sorbed (Kd 10– > 1000) than aliphatic cations (Kd < 5). At very low pH, sorption of the aliphatic cations sharply decreased, probably because they are displaced by protons. Most weak bases, including carbendazim andpyridines, were strongly sorbed (Kd 9–35) at low pH, where they would be appreciably protonated, sorption becoming much weaker at soil pH values > 6. However, an additional mechanism of sorption was observed for those zwitterions capable of chelation (e.g. picolinic acid and alanine) which gave rise to high Kd values at pH values near neutral. Inorganic phosphate was strongly sorbed (Kd > 140) save at very low pff. Glyphosate and inorganic phosphate were sorbed very strongly at pH values near to 4 (Kd > 200). The very strong sorption was attributed to ligand exchange interaction. Sorption of picolinic acid was similar when measured in water or calcium chloride solution (0.01 M). However, sorption decreased with increasing concentration of calcium chloride up to 1 M, probably because the protonated form of picolinic acid was displaced by calcium ions.  相似文献   

2.
Although glyphosate (N‐(phosphonomethyl)glycine) is one of the most frequently used herbicides, few controlled transport experiments in undisturbed soils have been carried out to date. The aim of this work was to study the influence of the sorption coefficient, soil‐glyphosate contact time, pH, phosphorus concentration and colloid‐facilitated transport on the transport of [14C]glyphosate in undisturbed top‐soil columns (20 cm height × 20 cm diameter) of a sandy loam soil and a sandy soil. Batch sorption experiments showed strong Freundlich‐type sorption to both soil materials. The mobility of glyphosate in the soil columns was strongly governed by macropore flow. Consequently, amounts of glyphosate leached from the macroporous sandy loam soil were 50–150 times larger than from the sandy soil. Leaching rates from the sandy soil were not affected by soil‐glyphosate contact time, whereas a contact time of 96 h strongly reduced the leaching rates from the sandy loam soil. The role of pH and phosphorus concentration in solution was relatively unimportant with respect to total glyphosate leaching. The contribution of colloid‐facilitated transport was <1 to 27% for the sandy loam and <1 to 52% for the sandy soil, depending on soil treatment. The risk for glyphosate leaching from the top‐soils seems to be limited to conditions where pronounced macropore flow occurs shortly after application. © 2000 Society of Chemical Industry  相似文献   

3.
The effects of several nonionic surfactants on [14C]glyphosate mono(isopropylammonium) diffusion across isolated tomato fruit cuticles (Lycopersicon esculentum Mill.) were compared under controlled atmospheric conditions (25°C; 65% R.H.) using a model system consisting of 1-μl droplets applied to isolated cuticles on agar blocks. Rates of diffusion for glyphosate (10 g acid equivalent litre?1 in the applied solution) and overall amounts recovered in underlying agar blocks were influenced by the ethylene oxide (EO) chain length for a homologous nonylphenol surfactant series (10 g litre?1). Glyphosate uptake increased with EO content, reaching an optimum at a mean of 17 EO, then decreasing below control values for surfactants with 40 EO. There was a strong influence of the hydrophobe on glyphosate penetration for different surfactants with similar mean EO content (10 EO). The primary aliphatic amine enhanced penetration the most, followed by the nonylphenol while the aliphatic alcohol showed no improvement on glyphosate transfer across cuticles. Water soprtion was greatly enhanced by a primary aliphatic amine (10 EO) and by a nonylphenol (17 EO). The aliphatic alcohol (10 EO) and a shorter-chained nonylphenol (4 EO) did not significantly enhance water sorption. Comparison of water sorption with glyphosate diffusion across cuticles suggests a strong relationship between the two. Change in solution pH over a limited range had no significant effect. Promotion of cuticular hydration by surfactants may thus play an important role in the enhancement of foliar uptake of water-soluble herbicides such as glyphosate.  相似文献   

4.
The adsorption of diuron and isoproturon by a clay loam soil at 35% (3-16 kPa) and 62% (1 kPa) soil moisture content was studied by means of glass microfibre filters capable of sampling soil solution for herbicide analysis. Adsorption was rapid, with 40–80% of the final (24 h) sorption being achieved within 2 min. These equilibria were achieved more rapidly for diuron, which was also the more highly adsorbed. Adsorption of both herbicides was favoured by low soil moisture initially, but was enhanced by higher soil moistures at sorption times greater than 30 min. However, increasing the soil moisture from 31% (10 kPa) to 62% (1 kPa) had little effect on the final soil sorption capacity. Regarding the water status in the soil, it is thought that adsorption took place in small pores (<3 μm). Herbicides diffused rapidly into small pores and adsorption by wet soil was delayed for a short period of time (about 30 min).  相似文献   

5.
Adsorption–desorption characteristics of 2,4-dichlorophenoxyacetic acid (2,4-D) on pure montmorillonite and synthetic chlorite-like complexes [Al(OH)x-montmorillonite complexes, obtained by coating montmorillonite surfaces with different amounts of Al(OH)x] were investigated. The equilibrium adsorption of 2,4-D was described by both Langmuir and Freundlich type isotherms. The extent of adsorption as well as the type of interaction between adsorbate and adsorbent was affected by the nature of incubation buffer and the charge characteristics of supports. At pH 5·6 and in acetate buffer, 2,4-D was negatively adsorbed by montmorillonite and herbicide adsorption capacity increased with increasing amounts of Al(OH)x species loaded on montmorillonite surfaces. When adsorption experiments were performed at the same pH but in phosphate buffer, strong reductions of both the amount of adsorbed pesticide and its affinity for the adsorbents were measured. Evidently, phosphate anions competed strongly with 2,4-D anions for the sorption site on chlorite-like complexes. Furthermore, desorption tests revealed that a large amount (about 60%) of the pesticide was firmly bound to the clay and was not removed even after repeated washings or 24 h exposure to desorption solution. Both electrostatic interactions between the negative COO- moieties of 2,4-D and the positive sites on clays, and ligand exchanges of COO- groups with -OH or water at the clay surface were probably involved in the adsorption process. ©1997 SCI  相似文献   

6.
The very wide use of glyphosate to control weeds in agricultural, silvicultural and urban areas throughout the world requires that special attention be paid to its possible transport from terrestrial to aquatic environments. The aim of this review is to present and discuss the state of knowledge on sorption, degradation and leachability of glyphosate in soils. Difficulties of drawing clear and unambiguous conclusions because of strong soil dependency and limited conclusive investigations are pointed out. Nevertheless, the risk of ground and surface water pollution by glyphosate seems limited because of sorption onto variable-charge soil minerals, e.g. aluminium and iron oxides, and because of microbial degradation. Although sorption and degradation are affected by many factors that might be expected to affect glyphosate mobility in soils, glyphosate leaching seems mainly determined by soil structure and rainfall. Limited leaching has been observed in non-structured sandy soils, while subsurface leaching to drainage systems was observed in a structured soil with preferential flow in macropores, but only when high rainfall followed glyphosate application. Glyphosate in drainage water runs into surface waters but not necessarily to groundwater because it may be sorbed and degraded in deeper soil layers before reaching the groundwater. Although the transport of glyphosate from land to water environments seems very limited, knowledge about subsurface leaching and surface runoff of glyphosate as well as the importance of this transport as related to ground and surface water quality is scarce.  相似文献   

7.
The phytotoxicity of glyphosate applied to the leaves of dwarf bean (Phaseolus vulgaris L.) and several woody species was enhanced by mixed butyl acid phosphates (BAP, a technical mixture of dibutyl hydrogen and butyl dihydrogen phosphates) or ammonium sulphate. Tributyl phosphate, or the mixed sodium salts of BAP, similarly increased the activity of aminotriazole. This type of effect did not occur with mixtures of this herbicide and inorganic ammonium salts or the ammonium salts of BAP. Neither phosphate esters nor ammonium salts enhanced the activity of paraquat. Ammonium BAP was more effective than sodium BAP as an activator for leaf-applied picloram or MCPA salts. While phosphate esters and ammonium salts probably have separate modes of action they have similar effects in mixture with many water-soluble herbicides and for many purposes may be regarded as alternative activators. Ammonium salts, particularly ammonium sulphate, have obvious advantages because of their cheapness and low mammalian toxicity.  相似文献   

8.
精异丙甲草胺在土壤中的吸附行为及环境影响因素研究   总被引:2,自引:1,他引:1  
采用平衡振荡法研究了精异丙甲草胺在粘壤土、粘土及砂壤土中的吸附和解吸附行为。结果表明,3种土壤的吸附等温线均属L型并符合Freundlich模型,吸附常数(Kf)分别为4.01、6.15及8.62,且Kf 和1/n(n为经验常数)的乘积与土壤有机质含量呈正相关性。解吸附实验结果表明,精异丙甲草胺在土壤中的解吸附与吸附并不一致,显示出明显的滞后性。温度及pH值等环境因素对吸附影响的结果显示,随温度升高精异丙甲草胺在土壤中的吸附量有所减少,中性环境下土壤吸附量较低。  相似文献   

9.
Detoxification of glyphosate in soil   总被引:1,自引:0,他引:1  
Detoxification of glyphosate in not-autoclaved and autoclaved soils was followed by bioassay with wheat. Comparisons are made with detoxification of MCPA under similar conditions followed by bioassay with spring rape. The well known pattern for microbial metabolism of MCPA with a ‘lag’-phase preceding the rapid degradation was shown. The initial rapid inactivation of glyphosate is by adsorption, but the results also clearly indicate that the further disappearance of activity mainly depends on microbial degradation. Glyphosate does not seem to sustain microbial growth, which indicates that it is degraded by co-metabolism. In autoclaved soil the possibility of a slight chemical degradation or an adsorption that becomes stronger with time could not be excluded.  相似文献   

10.
Summary. The adsorption of simazine from, and subsequent desorption into, 0–01 M calcium chloride solution was investigated using twenty-three Rothamsted soil samples from sites differing greatly in cropping history and manurial treatment. Organic carbon content was the only factor related to the ability of the soils to sorb simazine; this accounted for 90% or more of the variation between soils Equilibrium was attained during adsorption in from fewer than 2 to more than 24 hr. Equilibrium during desorption was only occasionally attained within 24 hr. Differences between theoretically predicted and measured concentrations of simazine in solution following desorption were least for soils that attained equilibrium fastest during adsorption. Differences in adsorption and desorption kinetics between soils could not be related to soil pH, organic carbon content or cropping and manuring history. Comparisons of unlimed and limed soils suggested that no simnazine was lost by acid hydrolysis during the experiments.
Adsorption et désorption de la simazine par quelques sols de Rothamsted  相似文献   

11.
In a study aimed at finding environmentally benign adjuvants for glyphosate, ethoxylates of rapeseed oil and of methylated rapeseed oil were synthesized, with ethylene oxide (EO) content up to 40 and 8 respectively. They had less influence on spray retention by barley shoots than ethoxylated (15 EO) tallow amine (ETA). At 10 g L(-1), ethoxylated rapeseed oil with 30 or 40 EO and ethoxylated methylated rapeseed oil with 6 or 8 EO promoted glyphosate uptake by barley leaves to a greater extent than ETA at the same concentration. However, uptake rates were similar when the concentration was lowered to 2.8 and 3.1 g L(-1) for rapeseed oil derivatives and ETA respectively. In the case of ethoxylated methylated rapeseed oil with 8 EO (MeOil-8), glyphosate uptake increased when MeOil-8 concentration was raised from 5 to 10 g L(-1). In bioassays under controlled conditions, ethoxylated rapeseed oil with 40 EO (Oil-40) and MeOil-8 were slightly less effective than ETA in favouring the efficacy of glyphosate on barley. The same was found on ryegrass. However, both rapeseed oil derivatives compared well with glyphosate formulants such as ethoxylated diethylamine and alkyl ethoxy phosphate. In one field experiment, the efficacy of glyphosate in the presence of Oil-40, MeOil-8 or ETA was comparable with that of a commercial formulation. In another trial, MeOil-8 was as effective as ETA, but Oil-40 performed less well. It is concluded that ethoxylates of rapeseed oil and of methylated rapeseed oil are a promising chemistry for glyphosate adjuvants, provided that their ethylene oxide content is high.  相似文献   

12.
BACKGROUND: Pesticide degradation and adsorption in soils are key processes determining whether pesticide use will have any impact on environmental quality. Pesticide degradation in soil generally results in a reduction in toxicity, but some pesticides have breakdown products that are more toxic than the parent compound. Adsorption to soil particles ensures that herbicide is retained in the place where its biological activity is expressed and also determines potential for transportation away from the site of action. Degradation and adsorption are complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behaviour of ionisable pesticides. This paper reports the sorption and degradation behaviour of four acidic pesticides in five soils from southern Spain. Results are used to investigate the influence of soil and pesticide properties on adsorption and degradation as well as the potential link between the two processes. RESULTS: Adsorption and degradation of four acidic pesticides were measured in four soils from Spain characterised by small organic matter (OM) contents (0.3-1.0%) and varying clay contents (3-66%). In general, sorption increased in the order dicamba < metsulfuron-methyl < 2,4-D < flupyrsulfuron-methyl-sodium. Both OM and clay content were found to be important in determining adsorption, but relative differences in clay content between soils were much larger than those in OM content, and therefore clay content was the main property determining the extent of herbicide adsorption for these soils. pH was negatively correlated with adsorption for all compounds apart from metsulfuron-methyl. A clear positive correlation was observed for degradation rate with clay and OM content (P < 0.01), and a negative correlation was observed with pH (P < 0.01). The exception was metsulfuron-methyl, for which degradation was found to be significantly correlated only with soil bioactivity (P < 0.05). CONCLUSIONS: Both OM and clay content were found to be important in determining adsorption, but relative differences in clay content between soils were much larger than those in OM content, and therefore clay content was the main property determining the extent of herbicide adsorption for soils of this type. pH was negatively correlated with adsorption for all compounds apart from metsulfuron-methyl. The contrasting behaviour shown for these four acidic pesticides indicates that chemical degradation in soil is more difficult to predict than adsorption. Most of the variables measured were interrelated, and different behaviours were observed even for compounds from the same chemical class and with similar structures.  相似文献   

13.
In aquatic situations it was expected that adsorption by sediments and suspended solids would influence the movement of glyphosate away from the application zone and attenuate its phytotoxicity. However, the results of two experiments showed that only a minor proportion of glyphosate was adsorbed onto suspended solids, even in turbid irrigation water. Phytotoxicity, as measured by the effect on the root growth of safflower (Carthamus tinctorius L.), was not significantly reduced. Where glyphosate was intentionally injected into flowing water of contrasting quality to simulate incidental contamination of water during foliage treatment, adsorption by benthic sediments attenuated loads of glyphosate only slowly. The attenuation was 13–27% for each kilometre of travel downstream, as compared to 31% observed previously. However, when glyphosate was sprayed onto the sediment exposed after channel draining, less than 7% of the glyphosate applied was subsequently eluted. Consequently, draining before treatment should be an effective strategy for minimising the contamination of irrigation water.  相似文献   

14.
Li P  He S  Tang T  Qian K  Ni H  Cao Y 《Pest management science》2012,68(2):170-177
BACKGROUND: Glyphosate is a non‐selective, foliar‐applied, systemic herbicide that kills weeds by inhibiting the synthesis of 5‐enolpyruvylshikimate‐3‐phosphate synthase. Urea phosphate (UPP), made by the reaction of urea with phosphoric acid, was applied as an adjuvant for glyphosate in this study. Experiments in the greenhouse and the field were conducted to determine the effects of UPP by comparing the efficacies of glyphosate plus UPP, glyphosate plus 1‐aminomethanamide dihydrogen tetraoxosulfate (AMADS) and Roundup. RESULTS: The optimum concentration of UPP in glyphosate solution was 2.0% when UPP was used as an adjuvant. The ED50 values for glyphosate‐UPP were 291.7 and 462.4 g AI ha?1 in the greenhouse and the field respectively, while the values for Roundup were 448.2 and 519.6 g AI ha?1. The ED50 values at 2 weeks after treatment (WAT) and 3 WAT were lowered when UPP was used as an adjuvant in the greenhouse and field study, and the glyphosate + UPP was absorbed over a 2 week period. UPP may increase the efficacy by causing severe cuticle disruption or accelerating the initial herbicide absorption. The result also showed that UPP could reduce the binding behaviour of Ca2+ to glyphosate. CONCLUSION: The application of UPP as an adjuvant could increase the efficacy of glyphosate and make it possible to achieve effective control of weeds with glyphosate at lower dose. Moreover, UPP showed less causticity to spraying tools and presented less of a health hazard. Therefore, UPP is accepted as being a new, effective and environmentally benign adjuvant for glyphosate. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Adsorption isotherms of prosulfocarb were determined on soils with different physicochemical properties. The extent of adsorption increased with the organic carbon content, but the results also suggested the involvement of some inorganic soil surfaces. In order better to understand the role of each soil surface, adsorption-desorption isotherms were determined on model soil colloids consisting of a soil humic acid, a montmorillonite, a synthetic aluminium hydroxide and their associations. The highest adsorption was observed on the humic acid, but it was also confirmed that the montmorillonite interacted with prosulfocarb. In contrast, the aluminium hydroxide was not active and its association with montmorillonite provoked a decrease in adsorption compared with montmorillonite alone. Except for humic acid, the highest adsorption took place on the ternary association montmorillonite-aluminium hydroxide-humic acid. On each surface tested, the adsorption was largely reversible and decreased at increasing pH. The herbicidal activity of prosulfocarb was tested by the determination of the germination and growth of a typical weed, Lolium multiflorum Lam, in contact with prosulfocarb solutions at different concentrations. The herbicide did not prevent the germination of the seeds but inhibited the growth of the roots and leaves. The same test was performed in the presence of the ternary system to evaluate the influence of adsorption on the plant bioavailability. It was concluded that the presence of an adsorptive surface reduced the herbicidal activity and that the simple bioassay proposed could be useful in predicting the extent of adsorption in a given soil.  相似文献   

16.
Annual ryegrass (Lolium rigidum) is the only weed species to have evolved resistance to the broad‐spectrum herbicide glyphosate in Australia. A population that had failed to be controlled by glyphosate was collected from a vineyard in the Adelaide Hills region of South Australia. Dose–response experiments on this population (SLR 77) showed that it was glyphosate resistant, with an LD50 that was 1.9–3.4 times higher than that of a susceptible population (VLR 1). The movement of radiolabelled glyphosate within SLR 77 plants showed that this population did not have the differential glyphosate translocation mechanism of resistance common to several other Australian glyphosate‐resistant populations. Subsequent analysis of shikimic acid accumulation within the plant after glyphosate treatment showed that this population accumulated significantly less shikimic acid than a susceptible population, but more than a glyphosate‐resistant population with the translocation mechanism, indicating the possible involvement of another mechanism of resistance. Sequencing of a portion of the SLR 77 5‐enolpyruvylshikimate‐3‐phosphate synthase gene was carried out and a mutation causing an amino acid change at position 106 from proline to threonine was identified. This mutation is likely to be responsible for glyphosate resistance in this population, as mutations in this position have been found to be responsible for glyphosate resistance in goosegrass (Eleusine indica) from Malaysia. This paper represents the first report of target‐site glyphosate resistance in L. rigidum and provides evidence that this species has at least two mechanisms of glyphosate resistance present in Australia.  相似文献   

17.
The ability of ‘waste’ Fe(III)/Cr(III) hydroxide to adsorb paraquat has been investigated. Effects of contact time, initial concentration and pH, adsorption capacity and desorption have been studied. Adsorption followed a first-order expression. The adsorption rate constant decreased from 1–84 to 0–50 min?1 with the increase of paraquat concentration from 10 to 40 mg litre?1. Adsorption obeyed the Freundlich isotherm and the K1 value was found to be 0.1995. A maximum removal of 93% was attained at pH 1204. Desorption with water occurred to the extent of 39% indicating that physical sorption was partly responsible in the adsorption process.  相似文献   

18.
Many herbicides promote plant growth at doses well below the recommended application rate (hormesis). The objectives of this study were to evaluate glyphosate‐induced hormesis in soyabean (Glycine max) and determine whether pre‐treating soyabean seedlings with low doses of glyphosate would affect their response to subsequent glyphosate treatments. Seven doses (1.8–720 g a.e. ha?1) of glyphosate were applied to 3‐week‐old seedlings, and the effects on the electron transport rate (ETR), metabolite (shikimate, benzoate, salicylate, AMPA, phenylalanine, tyrosine and tryptophan) levels and dry weight were determined. The lowest dose stimulated ETR and increased biomass the most. Benzoate levels increased 203% with 3.6 g a.e. ha?1 glyphosate. Salicylate content and tyrosine content were unaffected, whereas phenylalanine and tryptophan levels were increased by 60 and 80%, respectively, at 7.2 g a.e. ha?1. Dose–response curves for these three amino acids were typical for hormesis. In another experiment that was replicated twice, soyabean plants were pre‐treated with low doses of glyphosate (1.8, 3.6 or 7.2 g a.e. ha?1) and treated with a second application of glyphosate (1.8, 3.6, 7.2, 36, 180 or 720 g a.e. ha?1) 14 days later. For total seedling dry weight, a 3.6 and 7.2 g a.e. ha?1 glyphosate dose preconditioned the soyabean seedlings to have greater growth stimulation by a later glyphosate treatment than plants with no preconditioning glyphosate exposure. Optimal hormetic doses were generally higher with pre‐treated plants than plants that had not been exposed to glyphosate. Thus, pre‐exposure to low doses of glyphosate can change the hormetic response to later low‐dose exposures.  相似文献   

19.
施用7%草甘膦水剂对土壤盐化和碱化的影响   总被引:2,自引:0,他引:2  
通过室内盆栽模拟实验,研究了5种浓度的7%草甘膦水剂对土壤盐化和碱化的影响。结果表明,施药后土壤盐度(用电导率表示)、钠碱化度(ESP)、钠吸附比(SAR)、总碱度及pH值都明显增大,且随施药次数的增加,上述各项盐化和碱化指标不断增大;每次施药后,土壤的各项盐化和碱化指标都随施药浓度的升高呈增大趋势。6次施用0.352 g/L的7%草甘膦水剂后,土壤的电导率由施药前的1 010增加为2 460 μS/cm,ESP由2.247%增加为7.983%,SAR由1.576增加为4.305,总碱度由1.443 mmol/L增加为4.485 mmol/L,pH值由6.92变为7.89。虽然土壤各项盐化和碱化指标的变化都还在非盐化和非碱化土范围内,但有盐化和碱化的趋势。  相似文献   

20.
In Shizuoka Prefecture, Japan, glyphosate‐resistant Lolium multiflorum is a serious problem on the levees of rice paddies and in wheat fields. The mechanism of resistance of this biotype was analyzed. Based on LD50, the resistant population was 2.8–5.0 times more resistant to glyphosate than the susceptible population. The 5‐enolpyruvyl‐shikimate‐3‐phosphate synthase (EPSPS) gene sequence of the resistant biotype did not show a non‐synonymous substitution at Pro106, and amplification of the gene was not observed in the resistant biotype. The metabolism and translocation of glyphosate were examined 4 days after application through the direct detection of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) using liquid chromatograph‐tandem mass spectrometer (LC‐MS/MS). AMPA was not detected in either biotype in glyphosate‐treated leaves or the other plant parts. The respective absorption rates of the susceptible and resistant biotypes were 37.90 ± 3.63% and 41.09 ± 3.36%, respectively, which were not significantly different. The resistant biotype retained more glyphosate in a glyphosate‐treated leaf (91.36 ± 1.56% of absorbed glyphosate) and less in the untreated parts of shoots (5.90 ± 1.17%) and roots (2.76 ± 0.44%) compared with the susceptible biotype, 79.58 ± 3.73%, 15.77 ± 3.06% and 4.65 ± 0.89%, respectively. The results indicate that the resistance mechanism is neither the acquisition of a metabolic system nor limiting the absorption of glyphosate but limited translocation of the herbicide in the resistant biotype of L. multiflorum in Shizuoka Prefecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号