共查询到20条相似文献,搜索用时 15 毫秒
1.
Scorza Júnior RP Jarvis NJ Boesten JJ van der Zee SE Roulier S 《Pest management science》2007,63(10):1011-1025
Testing of pesticide leaching models against comprehensive field-scale measurements is necessary to increase confidence in their predictive ability when used as regulatory tools. Version 5.1 of the MACRO model was tested against measurements of water flow and the behaviour of bromide, bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide] and imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] in a cracked clay soil. In keeping with EU (FOCUS) procedures, the model was first calibrated against the measured moisture profiles and bromide concentrations in soil and in drain water. Uncalibrated pesticide simulations based on laboratory measurements of sorption and degradation were then compared with field data on the leaching of bentazone and imidacloprid. Calibrated parameter values indicated that a high degree of physical non-equilibrium (i.e. strong macropore flow) was necessary to describe solute transport in this soil. Comparison of measured and simulated bentazone concentration profiles revealed that the bulk of the bentazone movement in this soil was underestimated by MACRO. Nevertheless, the model simulated the dynamics of the bentazone breakthrough in drain water rather well and, in particular, accurately simulated the timing and the concentration level of the early bentazone breakthrough in drain water. The imidacloprid concentration profiles and its persistence in soil were simulated well. Moreover, the timing of the early imidacloprid breakthrough in the drain water was simulated well, although the simulated concentrations were about 2-3 times larger than measured. Deep groundwater concentrations for all substances were underestimated by MACRO, although it simulated concentrations in the shallow groundwater reasonably well. It is concluded that, in the context of ecotoxicological risk assessments for surface water, MACRO can give reasonably good simulations of pesticide concentrations in water draining from cracking clay soils, but that prior calibration against hydrologic and tracer data is desirable to reduce uncertainty and improve accuracy. 相似文献
2.
BACKGROUND: As part of the Dutch authorisation procedure for pesticides, an assessment of the effects on aquatic organisms in surface waters adjacent to agricultural fields is required. The peak concentration is considered to be the most important exposure endpoint for the ecotoxicological effect assessment. Macropore flow is an important driver for the peak concentration, so the leaching model PEARL was extended with a macropore module. The new model has two macropore domains: a bypass domain and an internal catchment domain. The model was tested against data from a field leaching study on a cracking clay soil in the Netherlands. RESULTS: Most parameters of the model could be obtained from site‐specific measurements, pedotransfer functions and general soil structural knowledge; only three macropore‐flow‐related parameters needed calibration. The flow‐related macropore parameters could not be calibrated without using the concentration in drain water. Sequential calibration strategies, in which firstly the water flow model and then the pesticide fate model are calibrated, may therefore be less suitable for preferential flow models. CONCLUSION: After calibration, PEARL could simulate well the observed rapid movement towards drains of two pesticides with contrasting sorption and degradation rate properties. The calibrated value for the fraction of the internal catchment domain was high (90%). This means that a large fraction of water entering the macropores infiltrates into the soil matrix, thus reducing the fraction of rapid flow. Copyright © 2011 Society of Chemical Industry 相似文献
3.
BACKGROUND: For the registration of pesticides in the European Union, model simulations for worst‐case scenarios are used to demonstrate that leaching concentrations to groundwater do not exceed a critical threshold. A worst‐case scenario is a combination of soil and climate properties for which predicted leaching concentrations are higher than a certain percentile of the spatial concentration distribution within a region. The derivation of scenarios is complicated by uncertainty about soil and pesticide fate parameters. As the ranking of climate and soil property combinations according to predicted leaching concentrations is different for different pesticides, the worst‐case scenario for one pesticide may misrepresent the worst case for another pesticide, which leads to ‘scenario uncertainty’. RESULTS: Pesticide fate parameter uncertainty led to higher concentrations in the higher percentiles of spatial concentration distributions, especially for distributions in smaller and more homogeneous regions. The effect of pesticide fate parameter uncertainty on the spatial concentration distribution was small when compared with the uncertainty of local concentration predictions and with the scenario uncertainty. CONCLUSION: Uncertainty in pesticide fate parameters and scenario uncertainty can be accounted for using higher percentiles of spatial concentration distributions and considering a range of pesticides for the scenario selection. Copyright © 2010 Society of Chemical Industry 相似文献
4.
A screening tool for vulnerability assessment of pesticide leaching to groundwater for the islands of Hawaii, USA 总被引:1,自引:0,他引:1
This paper describes an updated version of a screening tool for groundwater vulnerability assessment to evaluate pesticide leaching to groundwater, based on a revised version of the attenuation factor. The tool has been implemented in a geographical information system (GIS) covering the major islands of the state of Hawaii, USA. The Hawaii Department of Agriculture currently uses the tool in their pesticide evaluation process as a first-tier screening tool. The basic soil properties and pesticide properties necessary to compute the index, and estimates of their uncertainty, are included in the GIS. Uncertainties in soil and pesticide properties are accounted for using first-order uncertainty analysis. Classifications of pesticides as 'likely', 'uncertain' or 'unlikely' to leach are made on the basis of the uncertainty and a comparison of the revised attenuation factor with values and uncertainties of two reference chemicals. The reference chemicals represent what are considered to be a 'leachable' and a 'non-leachable' pesticide under Hawaii conditions. It is concluded that the tool is suitable for screening new and already used pesticides for the islands of Hawaii. However, the tool is associated with uncertainties that are not accounted for, so a conservative approach with respect to interpretation of the results and selection of pesticide parameters used in the tool is recommended. 相似文献
5.
6.
Rimao Hua Niels H Spliid Kirsten Heinrichson Bente Laursen 《Pest management science》2009,65(8):857-861
BACKGROUND: Surfactants are very often used for more efficient pesticide spraying, but knowledge about their influence on the leaching potential for pesticides is very limited. In the present study, the leaching of the herbicide bentazone [3‐isopropyl‐1H‐2, 1,3‐benzothiadiazin‐4(3H)‐one 2,2‐dioxide] was measured in columns with sandy loam soil with or without the addition of a non‐ionic surfactant, octylphenol ethylene oxide condensate (Triton X‐100, Triton), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), and in the presence of both surfactants (SDBS + Triton). RESULTS: The mobility of bentazone (B) increased in the following order: B + Triton (slowest) < B + SDBS + Triton < B < B + SDBS (fastest). When Triton X‐100 was applied to the soil together with bentazone, the leaching of bentazone in the soil decreased significantly compared with leaching of bentazone without the addition of surfactant. SDBS and Triton X‐100 neutralised their influence on the leaching speed of bentazone in the soil columns when both surfactants were applied with bentazone. CONCLUSION: From the study it can be concluded that, depending on their properties, surfactants can enhance or reduce the mobility of bentazone. By choosing a non‐ionic surfactant, bentazone mobility can be reduced, giving time for degradation and thereby reducing the risk of groundwater pollution. Copyright © 2009 Society of Chemical Industry 相似文献
7.
Aaldrik Tiktak Anthonius M. A. van der Linden Leo J. T. van der Pas 《Pest management science》1998,52(4):321-336
The Pesticide Transport Assessment model (PESTRAS) is a process-oriented model to simulate the fate and movement of water and pesticides in a cropped field soil. The model was evaluated using field data for bromide, ethoprophos and bentazone, collected from a field experiment in a humic sandy soil near Vredepeel, the Netherlands. Model predictions were generally within the 95% confidence intervals of the observations when site-specific model inputs were used. If generic parameter values were used, the model predictions sometimes deviated strongly from the observed data. This was especially true for pesticide degradation properties. The bromide simulations showed that preferential flow was not an important process for this field soil. A significant fraction of the applied ethoprophos disappeared by surface volatilization. The downward movement of this pesticide was slightly overestimated, due to not considering sorption kinetics. The depth-dependence of pesticide transformation was atypical: an important fraction of the applied bentazone was transformed under micro-aerobic to anaerobic conditions in the subsoil. © 1998 SCI 相似文献
8.
中度苏打盐碱化土壤微咸水淋洗改良利用模式研究 总被引:3,自引:0,他引:3
通过田间试验,研究了用微咸地下水淋洗改良中厦苏打盐碱化土壤对土壤盐碱含量变化和作物产量的影响。结果表明:经过2a 700mm淋洗处理和400mm淋洗处理,0~1.2m深中度盐碱化土壤所有层位的饱和提取液电导率(ECe)均下降到3.0dS/m以下,钠吸附比(SARe)下降到13以下,土壤得到完全改良。700mm淋洗处理和400mm淋洗处理的改良效果没有显著差别。400mm淋洗分2a完成比1a完成的淋洗效果更佳。两个淋洗处理高粱产量分别达到5920kg/hm^2和5355kg/hm^2,玉米产量达到6639kg/hm^2和5872kg/hm^2,接近当地非盐碱地的正常产量水平。 相似文献
9.
Boesten JJ 《Pest management science》2004,60(10):971-980
Harmonisation of the assessment of pesticide leaching to groundwater for EU registration is desirable to minimise confusion in the decision-making process at EU level. Recently, the FOCUS groundwater scenarios have been developed for three chromatographic models (PEARL, PELMO and PRZM) to increase this harmonisation. This study investigates the role of dispersion parameterisation in explaining the cause of the differences in pesticide leaching calculated by these models. PEARL describes dispersion via a physical parameter, ie the dispersion length. PELMO and PRZM simulate dispersion via a numerical procedure which generates an effective dispersion length equal to 0.5 times the thickness of the numerical compartments. The hypothesis was tested that the difference in the dispersion length input parameter (ie 5 cm for PEARL and about 2.5 cm for PELMO and PRZM) is a major cause of the difference in calculated leaching. It was tested whether results of PEARL calculations with a dispersion length of 2.5 cm corresponded much better to results of PELMO or PRZM than results of PEARL calculations with a dispersion length of 5 cm. This was done by calculations for one substance and all nine FOCUS scenarios and by calculations for a range of substances and two FOCUS scenarios (Chateaudun and Sevilla). All calculations were for winter wheat and an application at 1 day before emergence. Both tests showed that reduction of the dispersion length from 5 to 2.5 cm in PEARL led to a much better correspondence between PEARL and either PELMO or PRZM. Hence the hypothesis was supported. It is likely that harmonisation of the dispersion length in the FOCUS groundwater scenarios would reduce the differences in calculated leaching between PEARL and PELMO or PRZM considerably for part of these scenarios. 相似文献
10.
Minghua Zhang Adrian Wadley Paul Hendley Mike Lane Sue Hayes 《Pest management science》1999,55(2):217-218
A Geographic Information System (GIS) has been combined with a simple leaching model to characterize the factors that influence pesticide leaching, and to identify the spatial distribution of these factors. The results were compared with those of a conventional simulation modeling approach, and a strong correlation was found for 40 selected sites in central and eastern USA. ©1999 Society of Chemical Industry 相似文献
11.
Fred Worrall David A. Wooff Allan H. Seheult Frank P. A. Coolen 《Pest management science》1998,54(2):99-112
With the harmonisation of data requirements for pesticide registration under EC Directive 91/414 there is need for progress on the techniques used to analyse such data and so help make consistent the judgements applied by national regulatory authorities. This paper proposes a Bayesian technique for combining data from environmental fate and behaviour studies of pesticides in soil. The method uses expert knowledge, based on degradation and adsorption data, and logistic regression methods to form a prior probability distribution for the probability that a given compound leaches. Results from lysimeter experiments are used update the prior knowledge. Data for the compounds bentazone and triclopyr are used to illustrate the techniques. The advantages of the methodology and its implications for the pesticide registration procedure are discussed in the light of possible advances using modern Bayesian statistical techniques and mathematical models. © 1998 Society of Chemical Industry 相似文献
12.
13.
We describe the theory and current development state of the pesticide process module of the USDA-Agricultural Research Service Root Zone Water Quality Model, or RZWQM. Several processes which are significant in determining the fate of a pesticide application are included together in this module for the first time, including application technique, root uptake, ionic dissociation, soil depth dependence of persistence, volatilization, wicking upward in soil and aging of residues. The pesticide module requires a large number of parameters to run (as does the RZWQM model as a whole) and it is becoming clear that RZWQM will find most interest and use as part of a 'scenario' in which all data requirements are supplied and the predictions of the system compared with a real (usually partial) data set. Such a scenario may then be modified to examine the response of the system to changes in inputs. It also has significant potential as a technology transfer or teaching tool, providing detailed understanding of a specific agronomic system and its potential impacts on the environment. 相似文献
14.
Accounting for uncertainty in pedotransfer functions in vulnerability assessments of pesticide leaching to groundwater 总被引:1,自引:0,他引:1
A simulation tool for site-specific vulnerability assessments of pesticide leaching to groundwater was developed, based on the pesticide fate and transport model MACRO, parameterized using pedotransfer functions and reasonable worst-case parameter values. The effects of uncertainty in the pedotransfer functions on simulation results were examined for 48 combinations of soils, pesticides and application timings, by sampling pedotransfer function regression errors and propagating them through the simulation model in a Monte Carlo analysis. An uncertainty factor, f(u), was derived, defined as the ratio between the concentration simulated with no errors, c(sim), and the 80th percentile concentration for the scenario. The pedotransfer function errors caused a large variation in simulation results, with f(u) ranging from 1.14 to 1440, with a median of 2.8. A non-linear relationship was found between f(u) and c(sim), which can be used to account for parameter uncertainty by correcting the simulated concentration, c(sim), to an estimated 80th percentile value. For fine-textured soils, the predictions were most sensitive to errors in the pedotransfer functions for two parameters regulating macropore flow (the saturated matrix hydraulic conductivity, K(b), and the effective diffusion pathlength, d) and two water retention function parameters (van Genuchten's N and alpha parameters). For coarse-textured soils, the model was also sensitive to errors in the exponent in the degradation water response function and the dispersivity, in addition to K(b), but showed little sensitivity to d. To reduce uncertainty in model predictions, improved pedotransfer functions for K(b), d, N and alpha would therefore be most useful. 相似文献
15.
Calibration of pesticide leaching models may be undertaken to evaluate the ability of models to simulate experimental data, to assist in their parameterisation where values for input parameters are difficult to determine experimentally, to determine values for specific model inputs (e.g. sorption and degradation parameters) and to allow extrapolations to be carried out. Although calibration of leaching models is a critical phase in the assessment of pesticide exposure, lack of guidance means that calibration procedures default to the modeller. This may result in different calibration and extrapolation results for different individuals depending on the procedures used, and thus may influence decisions regarding the placement of crop-protection products on the market. A number of issues are discussed in this paper including data requirements and assessment of data quality, the selection of a model and parameters for performing calibration, the use of automated calibration techniques as opposed to more traditional trial-and-error approaches, difficulties in the comparison of simulated and measured data, differences in calibration procedures, and the assessment of parameter values derived by calibration. Guidelines for the reporting of calibration activities within the scope of pesticide registration are proposed. 相似文献
16.
Twelve lysimeters with a surface area of 0.5 m2 and a length of 60 cm were taken over mole drains from a Denchworth heavy clay soil and divided into two groups with either a standard agricultural tilth or a finer topsoil tilth. The influence of topsoil tilth on leaching of the herbicide isoproturon and a bromide tracer was evaluated over a winter season. The effect of variations in soil moisture status in the immediate topsoil on leaching of isoproturon, chlorotoluron and linuron was investigated in the following winter season. Here, water inputs were controlled such that lysimeters received 50 mm at a maximum intensity of 2 mm h?1 over a 4‐week period with herbicides applied on day 15. Three treatments received the water either all prior to application, all after application, or evenly spread over the 4‐week period. Leaching losses of the three herbicides were monitored for a subsequent drainage event. Analysis of covariance showed a significant effect of topsoil tilth and total flow on both the maximum concentrations (P = 0.034) and total losses (P = 0.012) of isoproturon in drainflow. Both concentrations and losses were c 35% smaller from lysimeters with the finer tilth. However, generation of the fine tilth in the field was restricted by a wet autumn and this is not considered a reliable management option for reducing pesticide losses from heavy clay soils. In the second experiment, variation in soil moisture content prior to and after application did not have any significant effect (P < 0.05) upon subsequent losses of the three herbicides to drains. © 2001 Society of Chemical Industry 相似文献
17.
Vereecken H 《Pest management science》2005,61(12):1139-1151
There is currently concern that glyphosate, a strongly sorbing non-selective herbicide which is widely used in Europe, may be leached from the root zone into drainage water and groundwater. The purpose of this review is to present and discuss the state of knowledge with respect to the mobility and leaching of glyphosate from agricultural soils. Specific attention is given to the adsorption behaviour of glyphosate and the analysis of available studies on glyphosate transport. In addition, there are a number of experimental and numerical studies indicating that other strongly sorbing substances may be transported rapidly to the sub-surface. The experimental studies analysed in the paper encompass column-, lysimeter- and field-scale experiments on glyphosate transport. The experimental findings, combined with transport studies on other strongly sorbing pesticides in the literature, support the hypothesis that transport of glyphosate may be caused by an interaction of high rainfall events shortly after application on wet soils showing the presence of preferential flow paths. Concentrations of glyphosate in European groundwater have been reported occasionally but monitoring is still limited. 相似文献
18.
Jarvis NJ Almqvist S Stenström J Börjesson E Jonsson E Torstensson L 《Pest management science》2006,62(10):940-946
The use of herbicides on railway tracks is known to present a risk to groundwater, but little is known of the mechanisms influencing leaching through the coarse material used to construct railway embankments. Therefore, in the present study, four different models based on the convection-dispersion equation (CDE) were compared with previously reported field data on the leaching of imazapyr. In particular, the significance of non-equilibrium processes was investigated by comparing different CDE formulations accounting for preferential finger flow, particle-facilitated transport and kinetic sorption. The traditional CDE assuming 'local equilibrium' based on 24 h batch sorption data gave poor results (model efficiency - 1.1). It strongly underestimated leaching of imazapyr in the first 4 months following application, thus confirming the importance of non-equilibrium transport processes. Accounting for short-term sorption kinetics made little difference, giving similar results to the 'local equilibrium' CDE simulation. A simulation accounting for particle-facilitated transport could accurately match this accelerated transport, and also gave the best overall fit to the data (model efficiency 0.76). However, not even this model could match the long-term retention of imazapyr residues observed close to the soil surface more than 1 year after application, and it also underestimated the time of breakthrough to groundwater. This strongly suggests that a long-term retention/sorption process not included in any of the models tested (i.e. sorption hysteresis or bound residues) acted to retard leaching. The formation of 'protected' residues was also indicated by a much slower degradation of imazapyr more than 1 year after application. Industry. 相似文献
19.
20.
七种农药在3种不同类型土壤中的吸附及淋溶特性 总被引:2,自引:3,他引:2
采用振荡平衡法和土柱淋溶法研究了2,4-滴酸、丁噻隆、毒草胺、炔草酸、氟环唑、甲基磺草酮和烯啶虫胺7种农药在江西红壤、太湖水稻土及东北黑土3种不同理化性质土壤中的吸附及淋溶特性,探讨了农药性质及土壤理化性质对供试农药在土壤中吸附、淋溶行为的影响。结果表明:农药的水溶性越大,其在土壤中的吸附性越弱,淋溶性越强;农药在土壤中的吸附性与土壤pH值、有机质含量以及阳离子交换量之间有较好的相关性。土壤pH值、有机质含量以及农药性质是影响农药在土壤中淋溶及迁移的主要因素。 相似文献