首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Leaf architecture, stand leaf area index and canopy light interception were studied in 13 poplar clones growing in a second rotation of a coppice plantation, to determine the role of leaf architectural attributes on canopy light-harvesting efficiency and to assess biomass investment in leaf support tissue. Stand leaf area index (L) varied from 2.89 to 6.99, but L was only weakly associated with canopy transmittance (TC). The weak relationship between TC and L was a result of a higher degree of foliage aggregation at larger values of L, leading to lower light-interception efficiency in stands with greater total leaf area. We observed a strong increase in leaf aggregation and a decrease in light-harvesting efficiency with decreasing mean leaf petiole length (PL) but not with leaf size, possibly because, in cordate or deltoid poplar leaves, most of the leaf area is located close to the petiole attachment to the lamina. Although PL was the key leaf characteristic of light-harvesting efficiency, clones with longer petioles had larger biomass investments in petioles, and there was a negative relationship between PL and L, demonstrating that enhanced light harvesting may lead to an overall decline in photosynthesizing leaf surface. Upper-canopy leaves were generally larger and had greater dry mass (MA) and nitrogen per unit area (NA) than lower-canopy leaves. Canopy plasticity in MA and NA was higher in clones with higher foliar biomass investment in midrib, and lower in clones with relatively longer petioles. These relationships suggest that there is a trade-off between photosynthetic plasticity and biomass investment in support, and also that high light-harvesting efficiency may be associated with lower photosynthetic plasticity. Our results demonstrate important clonal differences in leaf aggregation that are linked to leaf structure and biomass allocation patterns within the leaf.  相似文献   

2.
We examined the effects of structural and physiological acclimation on the photosynthetic efficiency of Scots pine (Pinus sylvestris L.) shoots. We estimated daily light interception (DLI) and photosynthesis (DPHOT) of a number of sample shoots situated at different positions in the canopy. Photosynthetic efficiency (epsilon) was defined as the ratio of DPHOT to the potential daily light interception (DLI(ref)) defined as the photosynthetically active radiation (PAR) intercepted per unit area of a sphere at the shoot location. To calculate DLI(ref), DLI and DPHOT, the radiation field surrounding a shoot in the canopy was first modeled using simulated directional distributions of incoming PAR on a clear and an overcast day, and estimates of canopy gap fraction in different directions provided by hemispherical photographs. A model of shoot geometry and measured data on shoot structure and photosynthetic parameters were used to simulate the distribution of PAR irradiance on the needle surface area of the shoot. Photosynthetic efficiency (epsilon) was separated into light-interception efficiency (epsilon(I) = DLI/DLI(ref)) and conversion efficiency (epsilon(PHOT) = DPHOT/DLI). This allowed us to quantify separately the effect of structural acclimation on the efficiency of photosynthetic light capture (epsilon(l)), and the effect of physiological acclimation on conversion efficiency (epsilon(PHOT)). The value of epsilon increased from the top to the bottom of the canopy. The increase was largely explained by structural acclimation (higher epsilon(I)) of the shade shoots. The value of epsilon(PHOT) of shade foliage was similar to that of sun foliage. Given these efficiencies, the clear-day value of DPHOT for a sun shoot transferred to shade was only half that of a shade shoot at its original position. The method presented here provides a tool for quantitatively estimating the role of acclimation in total canopy photosynthesis.  相似文献   

3.
To examine the effects of different solar irradiances on leaf characteristics at the leaf primordium and expansion stages, we shaded parts of branches in the upper canopies of two adult beech trees, Fagus crenata Blume and Fagus japonica Maxim., for 4 years. The treatments during the leaf primordium and leaf expansion stages, respectively, were: (1) high light and high light (H, control), (2) high light and low light (HL), (3) low light and low light (LL), and (4) low light and high light (LH). Both number of cell layers in palisade tissue and individual leaf area were affected by the previous-year irradiance, whereas cell length of palisade tissue was larger in LH leaves than in LL leaves, suggesting determination by current-year irradiance. Lamina chlorophyll/nitrogen ratio was higher in HL and LL leaves than in LH leaves, suggesting determination by current-year irradiance. Diurnal minimum values of leaf water potential measured under sunlit conditions were lower in H and LH leaves than in HL and LL leaves. Effective osmotic adjustment was found in H and LH leaves, suggesting that leaf water relations were affected by current-year irradiance. Net photosynthetic rate and stomatal conductance measured under sunlight conditions were higher in H and LH leaves than in HL and LL leaves. Thus, effects of current-year irradiance had a greater effect on leaf-area-based daily carbon gain than previous-year irradiance.  相似文献   

4.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

5.
Ishida A  Toma T  M 《Tree physiology》1999,19(2):117-124
We tested the hypothesis that, in tropical pioneer tree species, vertical leaf angle contributes to high carbon gain because it minimizes damage caused by high irradiances. Diurnal changes in leaf gas exchange and chlorophyll fluorescence were measured in east-facing (EL), west-facing (WL) leaves, and in leaves artificially held horizontal (HL) in the uppermost canopy of Macaranga conifera (Zoll.) Muell. Arg. Maximum values of net photosynthetic rate (P(n)) for EL and HL reached 12 &mgr;mol m(-2) s(-1), whereas maximum P(n) for WL was only 6 &mgr;mol m(-2) s(-1). Midday depressions of P(n) and stomatal conductance occurred at high photosynthetic photon flux densities (PPFD), especially for HL. Photosystem II quantum yield (DeltaF/F(m)') of HL for a given PPFD at the leaf surface was lower in the afternoon than in the morning. Values of DeltaF/F(m)' for HL measured at dusk were lower than those measured just before dawn, suggesting that HL suffered from high light and heat load. Variations in the morphology and physiology of the canopy leaves were associated with different light environments, and there was circumstantial evidence of a transitional point at a PPFD of about 20-30% of full sunlight. Maximum P(n) and nitrogen (N) content were higher in upper canopy leaves than in lower canopy leaves, and the differences were mainly associated with differences in lamina thickness. We conclude that the vertical leaf angle and thick lamina of the top canopy leaves contributed to enhance total carbon gain of the whole plant.  相似文献   

6.
Foliar morphology and chemical composition were examined along a light gradient in the canopies of five deciduous temperate woody species, ranked according to shade-tolerance as Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. < Fagus sylvatica L. Foliar carbon was divided between structural (cell-wall polysaccharides, lignin) and nonstructural (proteins, ethanol-soluble carbohydrates, starch) fractions. Foliar morphology of all species was strongly affected by irradiance. Both leaf dry mass per area (M(A)), a product of leaf density and thickness, and leaf dry to fresh mass ratio (D(w)), characterizing the apoplastic leaf fraction, increased with increasing relative irradiance (I(sum), calculated as the weighted mean of fractional penetration of diffuse and direct irradiance). Though the relationships were qualitatively identical among the taxa, more shade-tolerant species generally had lower values of M(A) than shade-intolerant species, and their morphological relationships with irradiance were curvilinear; however, there were no signs of saturation even at the highest irradiances in shade-intolerant species. In all species, lignin concentrations increased and cell-wall polysaccharide concentrations decreased with increasing irradiance. Consequently, biomass investment in structural leaf components appeared to be relatively constant along light gradients. The relationship between irradiance and structural compounds tended to be asymptotic in the more shade-tolerant species, whereas M(A) was linearly correlated with concentrations of structural leaf components, suggesting that similar factors were responsible for the curvature in the morphological and chemical relationships with irradiance. Because lignin increases tissue elastic modulus thereby rendering leaves more resistant to low leaf water potentials, we conclude that changes in stoichiometry of cell wall components were related to foliage acclimation to the gradients of water deficit that develop in the canopy and inherently accompany light gradients. We also conclude that increased lignification decreased leaf expansion growth, and that species differences in lignification were partly responsible for the observed interspecific variability in morphological plasticity. Analysis of structural leaf compounds provided no indication of how shade-intolerant species with low investments in lignin acclimated to gradients of water availability in the canopy. Because shade-intolerant species generally had higher capacities for photosynthesis than shade-tolerant species, we postulated that they should also have a greater ability for osmotic adjustment of leaf water potential with photosynthates. The concentrations of soluble carbohydrates increased with increasing irradiance in all species; however, the osmotic adjustment achieved in this way was similar in all species, except for shade-intolerant F. excelsior, which had a lower potential for osmotic adjustment with carbohydrates than the other taxa. Although we did not determine whether the gradients of stem water potential and leaf water deficits were similar in canopies of different species, we demonstrated that water relations play a central role in determining foliar structure and composition along light gradients in the canopy.  相似文献   

7.
Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves.  相似文献   

8.
Shoot architecture may significantly alter mean quantum flux on foliage and thus, photosynthetic productivity. There is currently only limited information about plastic alterations in shoot structure caused by within-canopy variation in mean integrated irradiance (Q(int)) in broad-leaved trees. We studied leaf and shoot structure, and nitrogen and carbon content in late-successional, widely distributed, temperate, broad-leaved Nothofagus taxa to determine the architectural controls on light harvesting and photosynthetic performance. Nothofagus fusca (Hook. f.) Oersted has larger leaves and less densely leaved shoots than the N. solandri varieties. Nothofagus solandri var. solandri (Hook. f.) Oersted is characterized by rounder leaves that potentially have a larger overlap than the ovate-triangular leaves of N. solandri var. cliffortioides (Hook. f.) Poole. Leaf dry mass (M(A)) and nitrogen content (N(A)) per unit area increased with increasing Q(int) in all species, demonstrating enhanced investment of photosynthetic biomass in high light. Although M(A) differed between species at a common irradiance, there was a uniform relationship between N(A) and Q(int) across species. Leaf carbon content per dry mass and leaf dry mass to fresh mass ratio also scaled positively with irradiance, suggesting greater structural investments in high light. In all species, shoots became more horizontal and flatter at lower Q(int), implying an enhanced use efficiency of direct irradiance in natural leaf positions. In contrast, irradiance effects on leaf aggregation varied among species. Across the data, leaf overlap or leaf area density was often greater at lower irradiances, possibly as a result of limited carbon availability for shoot axis extension growth. In N. fusca, leaves of which were more aggregated in high light, the shoot silhouette to total leaf area ratio (S(S)) declined strongly with increasing irradiance, demonstrating a lower light harvesting efficiency at high Q(int). This effect was only moderate in N. solandri var. cliffortioides and S(S) was independent of Q(int) in N. solandri var. solandri. Although the efficiency of light interception at high irradiances was lowest in N. fusca, this species had the greatest nitrogen content per unit shoot silhouette area (2N(A)/S(S)), indicating superior shoot-level photosynthetic potential. These data collectively demonstrate that shoot architecture significantly affects light interception and photosynthesis in broad-leaved trees, and that structural carbon limitations may constrain leaf light harvesting efficiency at low irradiance.  相似文献   

9.
Leaf nitrogen distribution pattern was studied four times during the growing season in a 2-year-old Salix viminalis L. and Salix dasyclados Wimm. plantation in Estonia. We measured the vertical distributions of leaf nitrogen concentration, dry mass, leaf area and light environment (as fractional transmission of diffuse irradiance, a(d)) in the canopy. The light-independent nitrogen pool was evaluated as the intercept of the leaf nitrogen concentration versus a(d) relationship, and the nondegradable nitrogen pool was evaluated as the nitrogen remaining in abscised leaves. A strong vertical gradient of mass-based leaf nitrogen concentration was detected at the beginning of the growing season, and decreased steadily during canopy development. This decline had at least three causes: (1) the amount of nitrogen in the foliage was larger at the beginning of the growing season than at the end of the growing season, probably because of pre-existing root systems; (2) with increasing leaf area index (LAI) during the growing season, the proportion of leaf nitrogen in total canopy nitrogen that could be redistributed (light-dependent nitrogen pool) decreased; and (3) the photosynthetic photon flux density gradient inside the canopy changed during the season, most probably because of changes in leaf area and leaf angle distributions. Total canopy nitrogen increased almost proportionally to LAI, whereas the light-dependent nitrogen pool had a maximum in August. Also, the proportion of the light-dependent nitrogen pool in the total canopy nitrogen decreased steadily from 65.2% in June to 17.2% in September in S. dasyclados and from 63.3 to 15.1% in S. viminalis. The degradable nitrogen pool was always bigger than the light-dependent nitrogen pool.  相似文献   

10.
We examined the effects of leaf age and mutual shading on the morphology, photosynthetic properties and nitrogen (N) allocation of foliage of an evergreen understory shrub, Daphniphyllum humile Maxim, growing along a natural light gradient in a deciduous Fagus crenata-dominated forest in Japan. Seedlings in high-light environments were subject to greater mutual shading and 1-year-old foliage survival was lower than in seedlings in low-light environments, indicating that the survival rates of foliage were related to the degree of mutual shading. Although specific leaf area (SLA) in current- and 1-year-old foliage was curvilinearly related to daily photosynthetic photon flux (PPF), SLA was unaffected by leaf age, indicating that foliage in D. humile may not acclimate morphologically to annual changes in light caused by mutual shading. Light-saturated net photosynthetic rates (Pmax) were correlated with daily PPF in current-year foliage. In addition, a strong, positive relationship was found between nitrogen concentration per unit leaf area and Pmax. In contrast, the relationship among PPF, N and photosynthetic parameters in 1-year old foliage was weak because of the strong remobilization of N from older leaves to current-year foliage in plants growing in high light. However, the relationship between daily PPF and both photosynthetic N-use efficiency and the ratio of maximum electron transport rate to maximum carboxylation rate did not differ between current-year and 1-year-old foliage, suggesting that these responses help maintain a high photosynthetic efficiency even in older foliage. We conclude that D. humile maximizes whole-plant carbon gain by maintaining a balance among photosynthetic functions across wide ranges of leaf ages and light environments.  相似文献   

11.
Photoprotective responses during photosynthetic acclimation in Daphniphyllum humile Maxim, an evergreen understory shrub that grows in temperate deciduous forests, were examined in relation to changes in light availability and temperature caused by the seasonal dynamics of canopy leaf phenology. Gradual increases in irradiance in the understory from summer to autumn as overstory foliage senesced were accompanied by increased concentrations of xanthophyll cycle pigments (VAZ) in understory leaves. The chlorophyll (Chl) a/b ratio in understory leaves also increased from summer to autumn, reflecting the change in ratio of the light-harvesting antenna to the reaction center. However, low temperatures following overstory leaf fall reduced Rubisco activity. In contrast, the photosynthetic capactiy of leaves of D. humile growing at the forest border, which was higher in summer than that of leaves of understory plants, decreased in autumn. In autumn, Fv/Fm ratios decreased and concentrations of zeaxanthin (Z) and especially antheraxanthin (A) increased in leaves of both forest-border and understory plants. Although VAZ was twice as high in leaves of forest-border than of understory plants, NPQ was similar in both. We conclude that leaves of understory plants are able to acclimate to seasonal changes in light and temperature by varying their photosynthetic and photoprotective functions, thereby taking advantage of the favorable light conditions caused by overstory leaf fall.  相似文献   

12.
Morphology and chemical composition of needles of shade-intolerant southern conifers (Pinus palustris Mill. (mean needle length +/- SD = 29.1 +/- 4.1 cm), P. taeda L. (12.3 +/- 2.9 cm) and P. virginiana Mill. (5.1 +/- 0.8 cm)) were studied to test the hypothesis that foliage acclimation potential to canopy light gradients is generally low for shade-intolerant species, and in particular, because of mechanical limitations, in species with longer needles. Plasticity for each needle variable was defined as the slope of the foliar characteristic versus irradiance relationship. A novel geometrical model for needle area and volume calculation was employed for the three-needled species P. palustris and P. taeda. Needle thickness (T) strongly increased, but width (W) was less variable with increasing daily integrated quantum flux density averaged over the season (Q(int)), resulting in changes in cross-sectional needle shape that were manifested in a positive relationship between the total to projected needle area ratio (A(T)/A(P)) and Q(int) in the three-needled species. In contrast, cross-sectional needle geometry was only slightly modified by irradiance in the two-needled conifer P. virginiana. Needle dry mass per unit total needle area (M(T)) was positively related to Q(int) in all species, leading to greater foliar nitrogen contents per unit area at higher irradiances. Separate examination of the components of M(T) (density (D) and the volume (V) to A(T) ratio; M(T) = DV/A(T)) indicated that the positive effect of light on M(T) resulted solely from increases in V/A(T), i.e., from increases in the thickness of foliage elements. Foliar chlorophyll content per unit mass increased with increasing Q(int), allowing an improvement in light-harvesting efficiency in low light. The variables characterizing needle material properties (D, the dry to fresh mass ratio, and needle carbon content per unit mass) were generally independent of Q(int), suggesting that needles were less stiff and had greater tip deflections under their own weight at lower irradiances because of smaller W and T. Comparisons with the literature revealed that plasticity in foliar characteristics tended to be lower in the studied shade- intolerant species than in shade-tolerant conifers, but plasticity among the investigated species was unaffected by needle length. However, we argue that, because of mechanical limitations, plastic changes in needle cross section in response to low irradiance may decrease rather than increase light-interception efficiency in long-needled species.  相似文献   

13.
We examined the vertical profiles of leaf characteristics within the crowns of two late-successional (Fagus crenata Blume and Fagus japonica Maxim.) and one early-successional tree species (Betula grossa Sieb. et Zucc.) in a Japanese forest. We also assessed the contributions of the leaves in each crown layer to whole-crown instantaneous carbon gain at midday. Carbon gain was estimated from the relationship between electron transport and photosynthetic rates. We hypothesized that more irradiance can penetrate into the middle of the crown if the upper crown layers have steep leaf inclination angles. We found that such a crown has a high whole-crown carbon gain, even if leaf traits do not change greatly with decreasing crown height. Leaf area indices (LAIs) of the two Fagus trees (5.26-5.52) were higher than the LAI of the B. grossa tree (4.50) and the leaves of the F. crenata tree were more concentrated in the top crown layers than were leaves of the other trees. Whole-crown carbon gain per unit ground area (micromol m(-2) ground s(-1)) at midday on fine days in summer was 16.3 for F. crenata, 11.0 for F. japonica, and 20.4 for B. grossa. In all study trees, leaf dry mass (LMA) and leaf nitrogen content (N) per unit area decreased with decreasing height in the crown, but leaf N per unit mass increased. Variations (plasticity) between the uppermost and lowermost crown layers in LMA, leaf N, the ratio of chlorophyll to N and the ratio of chlorophyll a to b were smaller for F. japonica and B. grossa than for F. crenata. The light extinction coefficients in the crowns were lower for the F. japonica and B. grossa trees than for the F. crenata tree. The leaf carbon isotope ratio (delta(13)C) was higher for F. japonica and B. grossa than for F. crenata, especially in the mid-crown. These results suggest that, in crowns with low leaf plasticity but steep leaf inclination angles, such as those of F. japonica and B. grossa trees, irradiance can penetrate into the middle of the crowns, thereby enhancing whole-crown carbon gain.  相似文献   

14.
Cermák J 《Tree physiology》1998,18(11):727-737
Vertical distributions of leaf dry mass (M(d)) and leaf area (A(f)) were related to relative irradiance (I(r); I(r) above the stand = 1) in closed-canopy, old-growth stands of the floodplain forest in southern Moravia composed largely of Quercus, Fraxinus and Tilia species. Foliage area and mass at any given canopy height were converted to solar equivalent leaf area (A(s)) and mass (M(s)) by multiplying actual values at a given level in the canopy by the relative irradiance at that position. Stand leaf area index (LAI) was 5 (7 including shrub and herb layer), and solar equivalent parameters reached about 25% of that amount. In all species, vertical profiles of both relative irradiance and leaf dry mass to area ratio (LMA) were sigmoidal and the two variables were linearly related. The dominant, upper canopy species had a larger proportion of solar equivalent foliage than suppressed understory species. For individual trees of all species, the upper canopy had a larger proportion of solar equivalent foliage than the lower canopy. Light compensation points at both the leaf and whole-tree level were defined according to leaf or tree position, size and structure. I conclude that optimization of A(s) for forest stands may be used as a basis for determining thinning schedules and evaluating tree survival after damage to tree crowns by various factors.  相似文献   

15.
In young sugi (Cryptomeria japonica D. Don) stands, crown shape (crown length/crown diameter) ratio, average branch inclination, and spatial density of foliage in the crown increased with stand age. Within crowns, foliage distribution increased from the apex downward and, until crown closure, reached a maximum near the crown base. After crown closure, the maximum occurred near the middle of the crown. In each stand, foliage distribution in the canopy showed almost the same vertical change over time as it did in individual crowns. The vertical distribution of foliage in the canopy moved upward with stand age, accompanied by an increase in canopy depth and leaf mass. The shape of the vertical distribution was almost symmetrical between the upper and lower halves in the closed stands, although slightly skewed downward. The logarithm of average spatial density decreased linearly as cumulative leaf mass increased with distance from the top of the canopy. The total cross-sectional area of the crowns exceeded the stand area from the middle of the canopy downward in the closed stands because of crown overlap. However, partly because of changes in crown morphology and structure, the increase in leaf mass with stand age did not always cause more severe crown competition.  相似文献   

16.
Cermák J 《Tree physiology》1989,5(3):269-289
The solar equivalent leaf area (A(s)), a simply and easily determined biometrical parameter of leaves, trees and stands, was derived theoretically. The parameter is defined as projected leaf area weighted for the time integral of irradiance at a given location in the canopy relative to that of fully irradiated leaves at the top of the canopy. The efficiency of A(s) as a basis for estimating stand-area transpiration of a mature oak (Quercus robur L.) forest from measurements of transpiration by individual trees was compared with that of other stand and tree characteristics. Stand transpiration estimates based on A(s) were more precise and less prone to systematic error than estimates based on basal area, timber volume, projected tree crown area, projected leaf area, or leaf dry mass. Solar equivalent leaf area reflects both the amount and the physiological properties of leaves and can be used as a measure of tree size and functional capacity. It can be calculated from ordinary forest inventory data on trees and stands, adjusted according to simple phyllometric data. It appears to have wide application in ecological and forestry studies for relating the physiological characteristics of individual leaves to those of entire trees or stands.  相似文献   

17.
We measured variations in leaf dark respiration rate (Rd) and leaf nitrogen (N) across species, canopy light environment, and elevation for 18 co-occurring deciduous hardwood species in the southern Appalachian mountains of western North Carolina. Our overall objective was to estimate leaf respiration rates under typical conditions and to determine how they varied within and among species. Mean dark respiration rate at 20 degrees C (Rd,mass, micromol CO2 per kg leaf dry mass per s) for all 18 species was 7.31 micromol per kg per s. Mean Rd,mass of individual species varied from 5.17 micromol per kg per s for Quercus coccinea Muenchh. to 8.25 micromol per kg per s for Liriodendron tulipifera L. Dark respiration rate varied by leaf canopy position and was higher in leaves collected from high-light environments. When expressed on an area basis, dark respiration rate (Rd,area, micromol CO2 per kg leaf dry area per s) showed a strong linear relationship with the predictor variables leaf nitrogen (Narea, g N per square m leaf area) and leaf structure (LMA, g leaf dry mass per square m leaf area) (r squared = 0.62). This covariance was largely a result of changes in leaf structure with canopy position; smaller thicker leaves occur at upper canopy positions in high-light environments. Mass-based expression of leaf nitrogen and dark respiration rate showed that nitrogen concentration (Nmass, mg N per g leaf dry mass) was only moderately predictive of variation in Rd,mass for all leaves pooled (r squared = 0.11), within species, or among species. We found distinct elevational trends, with both Rd,mass and Nmass higher in trees originating from high-elevation, cooler growth environments. Consideration of interspecies differences, vertical gradients in canopy light environment, and elevation, may improve our ability to scale leaf respiration to the canopy in forest process models.  相似文献   

18.
Regeneration of beech (Fagus crenata) forests depends on the formation of canopy gaps. However, in Japan Sea-type beech forests, a dwarf bamboo (Sasa kurilensis) conspicuously occupies sunny gaps. Therefore,F. crenata seedlings must escape the severe interference ofS. kurilensis in the gaps and persist beneath a closed canopy of the beech forest. We hypothesized that the growth ofF. crenata seedlings in the understory would be favored by their being more plastic thanS. kurilensis in photosynthetic and morphological traits, which would support the matter production ofF. crenata seedlings in a wide range of light availabilities. To examine this hypothesis, the photosynthetic-light response of individual leaves and the biomass allocation in aboveground parts (i.e., the culm/foliage ratio) were surveyed at sites with contrasting light availabilities in a Japan Sea-type beech forest in central Japan. InF. crenata, photosynthetic light utilization efficiency at relatively low light was greater, and the dark respiration rate was smaller in the leaves of seedlings (10 cm in height) beneath the closed canopy than in the leaves of saplings at the sunny forest edge. The culm/foliage (C/F) ratio of theF. crenata seedlings at the shady site was small, suggesting effective matter-production beneath the beech canopy. On the other hand,S. kurilensis both in the gap and beneath the beech canopy showed low plasticity in photosynthesis and the culm/foliage ratio. Because the shoot density ofS. kurilensis was smaller beneath the beech canopy than in the gap, the light availability at the bottom of theS. kurilensis layer was greater beneath the beech canopy. These results suggest that the photosynthetic productivity of theF. crenata seedlings would be enough for the seedlings to survive in the understory with a low density ofS. kurilensis shoots beneath the closed beech canopy.  相似文献   

19.
Will RE  Teskey RO 《Tree physiology》1999,19(11):761-765
Pinus taeda L. stomata respond slowly to changes in irradiance. Because incident irradiance on a leaf varies constantly, the rate of change in stomatal conductance to fluctuating irradiance may have a large effect on plant water use. We estimated total daily water use of Pinus taeda foliage for 10 days with very different irradiance patterns, assuming that rates of stomatal opening and closing were similar. To determine how the most extreme imbalance in rates of stomatal opening and closing affects estimates of water use, we also estimated total daily water use assuming instantaneous stomatal opening and a realistic rate of stomatal closing. Total daily water use was calculated by summing estimates of transpiration based on irradiance and vapor pressure deficit measured every minute at locations atop and within a canopy. Estimates of total daily water use calculated on the basis of realistic rates of stomatal opening and closing were similar to estimates calculated assuming instantaneous stomatal change (mean difference between methods of calculation was less than 0.2%). Estimates of total daily water use assuming instantaneous stomatal opening and a realistic rate of closing differed from estimates of total daily water use based on similar rates of stomatal opening and closing. The discrepancy was greater within the canopy (mean difference 6%) than at the top of the canopy (mean difference 1%). Calculation of mean daily conductance from mean daily irradiance, without accounting for minute-by-minute variations in irradiance, resulted in overestimations of daily stomatal conductance (13% mean error) and the magnitude of the error was directly related to the variation in irradiance for that day. We conclude that, provided variation in irradiance is accounted for, rates of stomatal opening and closing have little effect on estimates of daily water use.  相似文献   

20.
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments.

In the unthinned treatment, upper crown needles were heavier and had more leaf area than lower crown needles. Branch- and crown-level leaf area of the thinned trees increased 91 and 109%, respectively, and whole-crown foliage biomass doubled. The increased crown leaf area was a result of more live branches and foliated shoots and larger branch sizes in the thinned treatment. Branch leaf area increased with increasing crown depth from the top to the mid-crown and decreased towards the base of the crown. Thinning stimulated foliage growth chiefly in the lower crown. At the same crown depth in the lower crown, branch leaf area was greater in the thinned treatment than in the unthinned treatment. Maximum leaf area per branch was located nearly 3–4 m below the top of the crown in the unthinned treatment and 4–5 m in the thinned treatment. Leaf area of the thinned-treatment trees increased 70% in the upper crown and 130% in the lower crown. Fertilization enhanced needle size and leaf area in the upper crown, but had no effect on leaf area and other variables at the shoot, branch and crown level. We conclude that the thinning-induced increase in light penetration within the canopy leads to increased branch size and crown leaf area. However, the branch and crown attributes have little response to fertilization and its interaction with thinning.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号